Please use this identifier to cite or link to this item: http://www.repositorio.ufop.br/jspui/handle/123456789/8618
Title: Formation of secondary containment systems using permeation of colloidal silica.
Authors: McCartney, John S.
Nogueira, Christianne de Lyra
Homes, Daniel
Zornberg, Jorge Gabriel
Keywords: Colloidal silica
Grout
Permeation
Infiltration
Issue Date: 2011
Citation: McCARTNEY, J. et al. Formation of secondary containment systems using permeation of colloidal silica. Journal of Environmental Engineering, New York, v. 137, p. 444-453, 2011. Disponível em: <http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EE.1943-7870.0000345>. Acesso em: 20 jul. 2017.
Abstract: U.S. Environmental Protection Agency (USEPA) regulations require the capture of spills from liquid tanks containing hazardous chemicals by using a secondary containment system. Compacted clay or geomembrane liners are commonly used in secondary containment systems, but they are cumbersome when used in conjunction with existing liquid tanks because of pipeline networks surrounding the tanks. This study evaluates the formation of hydraulic barriers for secondary containment through the permeation of colloidal silica grout. A simplified infiltration model is presented to predict the downward movement of the colloidal silica grout into a soil layer, considering the timedependent increase in dynamic viscosity of the colloidal silica for different concentrations of an electrolyte accelerator. Because the simplified infiltration model cannot predict the soil-grout interaction or the permeation of the colloidal silica by fingering, its results were calibrated by using the observations from a large-scale column test involving the permeation of colloidal silica into sand. The predicted position of the wetting front was found to match that of the experiment when the parameter governing the change in viscosity of the colloidal silica was increased by a factor of 30. The infiltration model calibrated with observations from column infiltration experiments provides a simple approach to the design of the secondary containment systems using permeation of colloidal silica.
URI: http://www.repositorio.ufop.br/handle/123456789/8618
metadata.dc.identifier.uri2: http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EE.1943-7870.0000345
metadata.dc.identifier.doi: https://doi.org/10.1061/(ASCE)EE.1943-7870.0000345
ISSN: 1943-7870
Appears in Collections:DEMIN - Artigos publicados em periódicos

Files in This Item:
File Description SizeFormat 
ARTIGO_FormationSecondaryContainment.pdf
  Restricted Access
1,12 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.