Oliveira, Hellen Cristine Prata deAssis, Paulo SantosLeal, Thales EduardoFilgueira, MarcelloBatista, Adriano CorrêaPerpétuo, Genivaldo JulioReis, Ana Carolina Fernandes2019-03-292019-03-292018OLIVEIRA, H. C. P. de. et al. Study of the abrasion resistance of Fe-Cu-Nb and NEXT 100® metallic matrices for the manufacture of diamond tools. Materials Science Forum, v. 930, p. 395-399, 2018. Disponível em: <https://www.scientific.net/MSF.930.395>. Acesso em: 15 fev. 2019.16629752http://www.repositorio.ufop.br/handle/123456789/10862The substitution of cobalt, present in the commercial binder metal matrix commonly used by the industry, was analyzed: 25,2%Fe-49,5%Cu-24,1%Co – NEXT 100® by the niobium element of the Fe-Cu-Co system, obtaining 4 metal matrices: 28,34%Fe–56,66%Cu–15%Nb; 25%Fe– 50%Cu–25%Nb; 21,67%Fe–43,33%C–35%Nb; 18,34%Fe–36,66%Cu–45%Nb. This study aims to evaluate the behavior of metal matrices to better choose the type of matrix to be used in the manufacture of diamond tools. The metal powders were blended according to the compositions of each metal matrix and then hot pressed at 800º /35MPa / 3min, thus occurring the sintering. The sintered samples of each metal matrix were conducted to the Abrasion Resistance test in order to verify the wear, for the accumulated times of 2, 6, 12 and 20 minutes. In these metal matrices, density, porosity and Vickers hardness (HV5) tests were performed to better understand the wear suffered by the samples. Thus, the metal matrix 25% Fe-50%Cu-25%Nb presented, in the general context of the properties and from the abrasive point of view, satisfactory results capable of replacing the NEXT 100 matrix.en-USrestritoHot pressingFe-Cu-Nb systemFe-Cu-Co systemStudy of the abrasion resistance of Fe-Cu-Nb and NEXT 100® metallic matrices for the manufacture of diamond tools.Artigo publicado em periodicohttps://www.scientific.net/MSF.930.395