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Dynamic stability in random and scale-free B-lymphocyte networks
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One of the most intriguing features of the immune system is regulation: a limited response when perturbed
repeatedly. We propose a minimal network model for immune regulation in a lymphocyte network containing
two types of elements: B lymphocytes and ligands that bind to their receptors. Effective interactions between
B cells, mediated by other components of the immune system can be excitatory or inhibitory. In our model, B
cell clones and ligand species are represented by nodes, and interactions by links. We expect that, as in many
complex systems, the connectivity distribution is broad, motivating study of the model on a scale-free network;
for comparison we study the same dynamics on a random graph. We characterize the dynamics of the model
and its response to perturbations. Our model reproduces several key features of immune system dynamics:
regulation (saturation of response), and more rapid response upon repeated perturbation with the same agents.
Our results suggest that a scale-free network of interactions contributes to the regulation and dynamics of the

immune system.
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I. INTRODUCTION

Lymphocyte-mediated immunity is a remarkable charac-
teristic of jawed vertebrate organisms. Immunology has
made spectacular advances in the last decades in terms of
defining the genetic, molecular, and cellular components in-
volved in these phenomena. In this work we propose a mini-
mal model for immune regulation in a lymphocyte network.

Immunological activity is based on the activation of T and
B lymphocytes generated by special (‘“combinatorial””) so-
matic processes of gene rearrangement in which each lym-
phocyte acquires a unique membrane receptor. If activated, a
lymphocyte may multiply and form cell clones with a vari-
able number of cells; if it is not activated, it will likely die by
apoptosis without ever dividing. Binding of the specific re-
ceptor (BCR or TCR) is important for cell activation and in
determining whether or not the lymphocyte will survive and
expand. B lymphocytes may further turn into plasma cells,
which are short-lived cells that secrete soluble forms of the
BCR to the extracellular space, where they are known as
immunoglobulins (Ig).

Immunological memory, or the ability to generate second-
ary immune responses (more sensitive, intense, and pro-
longed) upon contact with previously encountered antigens,
is believed to play an important role in anti-infectious immu-
nity and to be the basis of the efficacy of some vaccines. T
lymphocytes are involved in the generation of immunologi-
cal memory. This memory, however, must be limited to avoid
progressively higher responses upon repeated contacts with
the same or similar antigens, as this would trigger damaging
inflammatory reactions. Secondary responsiveness, therefore,
must be submitted to some form of regulation, currently a
subject of intensive investigation [1,2]. Regulation must also
account for the absence (in normal organisms) of progressive
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immune responses to dietary proteins [3] and products of the
autochthonous microbiota [4], which together represent by
far the largest collection of foreign macromolecules to which
the organism is daily exposed.

Above all, lymphocytes must be prevented from making
progressive immune responses to the organism itself, includ-
ing to other lymphocytes during their mutual interactions.
Explanation of this kind of regulation, also known as natural
tolerance, is a prime objective of any theory aiming to elu-
cidate immunological activity [5]. Natural tolerance does not
imply the absence of reactivity to body components, as de-
manded by initial versions of the clonal selection theory [6].
Self-reactivity, in the form of abundant autoantibody forma-
tion [7] and autoreactive T cells [8], is now accepted as part
of healthy immunological physiology. (The transformation of
these dynamically stable forms of autoreactivity into pro-
gressive, secondary immune responses characterizes a vari-
ety of autoimmune diseases [9,10]). These observations dem-
onstrate the need to study the global dynamics of interactions
within the immune system.

Diverse mechanisms mediate the interactions between B
and T lymphocytes [11-13]. As a consequence of this multi-
plicity, distinct B cell clones may become functionally con-
nected via a certain T cell population. Those mechanisms can
generate effective interactions between B cell clones, allow-
ing us to view the immune system as a highly connected
network [14].

Given the motivation for studying immune regulation in a
global context, we turn to the definition of an appropriate
model. Several immune network models have been proposed
[15-18]. These models describe clonal expansion and con-
traction in response to external stimuli and the inherent dy-
namics of the immune system. They assume a regular or
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random network of interactions, in physical space [19,20] or
in a space of molecular shapes [21,22].

Among the many network structures possible, three gen-
eral classes, commonly known as regular, random, and scale-
free networks, have attracted interest in modeling complex
systems. By a regular network we mean a lattice structure
with links between nearest neighbors, with each node (or
site) having the same number of neighbors. A maximally
random network (or Erdés-Renyi graph) is a collection of N
nodes, with each of the N(N—1)/2 possible links present,
independently with probability p. In this case the number of
neighbors varies from site to site; the probability p(k) for a
node to have exactly k neighbors (“degree k”) follows a Pois-
son distribution. (Structures that are random but preserve
some degree of regularity are also possible, such as small-
world networks). A scale-free network may be either random
or regular; it is characterized by a degree distribution p(k)
that decays as a power law, so that there is no characteristic
degree. Following the work of (Barabasi and co-workers
[23,24]), it is now apparent that the connectivity structure of
diverse types of natural and social systems are well repre-
sented by scale-free networks.

There is evidence that the network of interactions within
the immune system is not maximally random. Early in onto-
genesis, natural immunoglobulins spontaneously organize to
form defined profiles of reactivity with complex mixtures of
ligands (molecules that bind to specific B cell receptors),
which from then on are robustly conserved despite continu-
ous exposure to immunogenic materials. The form of these
profiles is influenced by alleles of genes important in immu-
nological activity [25]. The transfer of maternal 1gG to the
young also influences the pattern of immunological activity
in specific ways [26]. These observations demonstrate highly
organized immunological activity, influenced by specific ge-
netic and molecular elements. The point is that, although the
generation of lymphocyte receptors involves random shuf-
fling of genetic material, the actual lymphocyte population of
an organism is shaped by interactions with proteins, both
intrinsic and foreign, so that the result is far from being a
maximally random collection of receptors.

There are suggestions in the current immunology litera-
ture of structured networks. Given the evidence for a highly
connected web of autoreactive components, coexisting with
specific responses to foreign antigens, Varela and Coutinho
[27] proposed a functional split of the immune system into
central and peripheral parts, the connectivity of the former
being much higher than that of the latter. Cohen [28] pro-
posed a hierarchy of immune reactivity, in which certain T
cell clones regulate the activity of various other clones.
These proposals for structured immune interactions are better
accommodated in a scale-free network than in a maximally
random one, motivating our study of both architectures.

In our highly simplified model, each site in the network
represents either a B cell clone or a species of ligand; in each
realization, the network architecture is fixed. A variable de-
fined at each site represents the clonal population or ligand
concentration. The dynamics of the system involves steady
generation and death of B cells and random input of ligands.
A given ligand stimulates a certain set of B cell clones, and is
in turn eliminated when these clones expand. There are also
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interactions, both excitatory and inhibitory, between specific
pairs of B cell clones.

Starting with all population variables set to the same
value, the system relaxes to a stationary state, with a broad
distribution of population sizes, which is found to be stable
to small perturbations. We study the response of the system,
starting from the stationary state, to relatively large perturba-
tions caused by a sudden increase in a small set of ligand
populations. The perturbation represents a challenge to the
immune system accompanying, for example, an infection or
exposure to foreign proteins. The excess of ligands is elimi-
nated by the system, which subsequently relaxes to a station-
ary state, generally different from that preceding the pertur-
bation. The model exhibits regulation in the sense that the
response to each perturbation is limited. Memory appears in
the form of a sharpened response to repeated challenges with
the same set of ligands.

The balance of this paper is structured as follows. In Sec.
II we define the structure and dynamics of the model, Section
IIT contains results obtained via numerical simulation. In
Sec. IV we discuss, conclude, and suggest extensions of this
work.

II. THE MODEL

Since immunological activity involves manifold, complex
mechanisms, we must decide which part of the system we
intend to model. B lymphocytes may bind substances di-
rectly to their membrane receptors (BCR) but, in general,
they are not activated when this happens. By contrast, T
lymphocytes are unable to bind isolated molecules to their
receptors (TCR); the molecule (usually a protein) must first
be captured and processed by accessory cells, and then pre-
sented to T lymphocytes along with certain accessory mol-
ecules [29-31]. Various types of cells may function as pre-
senting cells for T lymphocytes; among them are the B
lymphocytes themselves, a point of considerable importance
in developing a network model.

We model the population dynamics of B cell clones, in-
cluding a plausible set of effective interactions among such
clones, mediated by T cells. Immune system components
other than B cells are not, however, explicitly represented in
our model. Each node of the network corresponds to a dis-
tinct B cell clone or to a species of ligand. The associated
population sizes are denoted by the variables B; (if site i
represents a B cell clone) and L; (if site i represents a ligand
species). Interactions between pairs of B cell clones, and
between B cells and ligands, correspond to links in the net-
work. As discussed in the Introduction, a network model of
effective interactions between B cell clones should feature a
broad connectivity distribution. We therefore allow that cer-
tain clones interact with many others, while other clones in-
teract with only a few. The broad distribution of connectivity
is realized on a scale-free network; for comparison we study
the same dynamics on an Erdos-Renyi network, in which the
degree distribution p(k) decays rapidly for large values of k.

Interactions between a pair of B cell clones may be either
mutually excitatory or mutually inhibitory, leading to clonal
expansion or contraction, respectively. The B cell-ligand in-
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FIG. 1. Schematic representation of the components [lympho-
cytes (B) and ligands (L)] of our model and the interactions be-
tween them. Continuous lines represent excitatory interactions and
dotted lines suppressive ones.

teraction is such that presence of the ligand stimulates ex-
pansion of the B cell population, while a B cell clone tends
to reduce the quantity of the ligands that stimulate it. The
rate of excitation of a clone is given a function «a(Inx),
where « is Gaussian (see below) and x represents the sum of
excitatory influences on the clone in question. (We believe
direct interactions between different species of ligands to be
unimportant in the present context; they are not considered in
the model.) Figure 1 is a schematic representation of the
model. Circles represent network sites: lymphocytes (B) and
ligands (L). Continuous lines represent excitatory interac-
tions and dotted lines suppressive ones.

The model evolves in discrete time; five kinds of events
lead to changes in population.

(i) New B cells enter the system continuously, represent-
ing production in the bone marrow. Each clone receives a
number S of new cells per unit time. The number of cells
produced per unit time is fixed, independent of the popula-
tion sizes {B;} and {L;}. Ligands also enter the system at a
fixed rate of 8 molecules per species and per unit time.

(ii) B cells continually leave the system due to cell death.
Removal occurs at a fixed rate per cell, so that the number of
cells removed per unit time from clone i is proportional to B;.
[Note that a B cell clone may disappear and subsequently
reappear via mechanism (i).]

(iii) A B cell population grows due to interactions with
ligands or other B cells. The contribution to the growth rate
due to a neighboring ligand population (at site j, say) is
given by the function a(L;) (defined below), where L; is the
number of ligand molecules of type j. Similarly, for sites k
bearing B cell clones having a stimulatory interaction with B
cell clone i, the contribution to the growth rate of B; is a(By).

(iv) B cells are eliminated by suppressive interactions
with other B cell clones.

(v) Ligand populations are reduced due to the interaction
with B cell clones.

The above dynamics is studied via numerical simulation.
To generate an Erdds-Renyi random network of m=N; +Np
sites, we link each pair of sites with probability p, indepen-
dently (we use m=9000 and p=0.01). To construct a SFN of
m sites, we follow the Barabasi-Albert prescription [23,24]:
my=10 connected sites are the initial seed of the network.
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Then a new site is added and connected to k sites. (We use
k=10 in the studies reported here.) The probability of con-
necting the new site to a given site j is proportional to the
number of sites already connected to site j. This process is
repeated until a network of m sites has been grown. The
network generated by this prescription shows a power-law
degree distribution P(k) ~k™¢ with ¢=2.89(2). After con-
structing the network (either Erdos-Renyi or scale-free), N,
sites are selected to represent ligands (type-L sites) species
and the remaining Ngy=m—N/ sites (type-B sites) represent B
cell clones. Note that links between ligand sites, which con-
stitute on average 25% of all links, are nonfunctional. After
depleting these nonfunctional links, the degree distribution
follows a power law with exponent=2.87(2), essentially the
same as before pruning.

At each step in the evolution, the following sequence of
events is realized:

(1) A site is chosen at random. The associated population
increases by S, regardless of whether it represents an ligand
type or a B cell clone.

(2) Another site i is chosen at random. If it is of type B,
the corresponding population B; reduced by \B;. (Otherwise
there is no change.)

(3) A pair of connected sites are chosen at random.

If both are of type L there is no change. In the case where
one site is of type B (B, say) and the other of type L (species
L;, say), then B; increases by the factor l+a(pLj), where pL,
is the number of ligands j per B; cell. At the same time L;
decreases by y;B;. If both are of type B and the interaction
between them is excitatory, the population of each clone in-
creases by the factor 1+ a(pp), where pg is the concentration
of complementary B cell population. If both are of type B
and the interaction between them is suppressive, the popula-
tion of each clone decreases by the factor 1-1,B.

If the result for a new population size, B; or L;, turns out
to be negative, it is instead set to zero. The above events are
repeated in sequence for a total of M steps. In the studies
reported here on scale-free networks we use the values y;
=1/25, y,=1/50, and N\=1/100; for Erdos-Renyi networks
we use y;=1/25, y,=1/10, A\=1/50. The function mediat-
ing excitatory influences is a=0.3 exp{~[In(x/1000)]?/2}.
This function reflects the fact that B cell activation is maxi-
mal for intermediate concentrations, and is small for both
very low, and very high ligand concentrations [17].

III. SIMULATION RESULTS

Initially, all population variables are equal A;=B;=1000,
Vi. At short times the dynamics is dominated by the ligand-
stimulated growth of certain B cell clones. B cell prolifera-
tion in turn causes a reduction in ligand concentration, lead-
ing to a decrease in the B cell population (due to the finite B
cell lifetime), until a stationary state is established.

We adopted the following protocol to study regulation and
memory in the model. Once a stationary state is attained, we
perturb the system by increasing the population of a small
number (ten) of randomly chosen ligand species. For each
set of perturbed ligands, call the set of B cell clones directly
linked to this set the “first-line clones.” Following the per-
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FIG. 2. Hamming distance per clone versus perturbation number
n on the scale-free network, for the ten most connected clones (open
circles), first-line clones (open squares), and averaged over all B
cell clones (filled circles).

turbation, the first-line clone populations grow, so that the
perturbation is suppressed, and the system relaxes to a sta-
tionary state. The perturbation/recovery protocol is repeated
several times. We allow the system to reach a stationary state
before perturbing it, always with the same set of ligands in a
given study. (It is worth noting that, without suppressive in-
teractions between B cell clones, the B cell population grows
without limit following the perturbation, instead of reaching
a steady state.) Following each perturbation we determine
three quantities that characterize the response of the system:
(i) the integrated excess mean B cell population I in the
transient state; (ii) the time 7 necessary for the mean ligand
population decay to 1/5 of its value at the moment of per-
turbation; (iii) and the average Hamming distance, defined
here as H= %,Efv |B§")—B§O) , where B™ is the stationary av-
erage of B; after n perturbations. (Bl(.o5 is the average prior to
any perturbation.) In general, the Hamming distance is a
measure of system response when perturbed. The Hamming
distance averaged over first-line clones represents the imme-
diate response to infection, while that averaged over the en-
tire system reflects global reorganization. (Note that in the
latter case, some clonal populations will actually be smaller
after infection, but they make a positive contribution to H.)
We interpret I as a measure of the overall immune response
to the infection.

Figure 2 shows the Hamming distance per clone for three
different sets of B cell clones, as a function of number of
perturbation 7, in the scale-free network. These results rep-
resent an average over 50 independent realizations. Open
circles represent the Hamming distance of the ten most con-
nected clones, the largest hubs of the network; open squares
represent the Hamming distance of the first-line clones, and
filled circles represent the Hamming distance averaged over
all B cell clones. The Hamming distance saturates after about
eight infections.
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FIG. 3. Hamming distance (open circles) and population varia-
tion (filled circles) of first-line clones.

Figure 3 shows the Hamming distance (open circles) and
the variation of first-line B cell population (filled circles).
The latter is used in immunological experiments as a mea-
sure of specific immune response. In the case of first-line B
clones, the Hamming distance and population follow the
same trends, supporting our interpretation of Hamming dis-
tance as a measure of specific immune response, and its gen-
eralization to the other sets of B cells defined above.

Note that the Hamming distance averaged over the ten
largest hubs is greater than that of the first-line clones or that
averaged over all clones. This suggests that the perturbation
initiated at the first-line clones propagates through the net-
work until it is suppressed by the hubs. To test this hypoth-
esis, we perform simulations (following the same procedure
as described above), in which, once the system attains a sta-
tionary state following the first perturbation, we remove the
10 most connected sites from the network. (This procedure is
used to test robustness of SFN against attacks and random
failures [24,32-34].) The result (Fig. 4) is that the mean
population of B clones grows by about 800%, showing that
the hubs are responsible for regulation of the network.

Figure 5 shows the time 7 needed to eliminate a perturba-
tion as a function of the number of perturbations. Two dif-
ferent situations are studied. In the first (open circles), only
the first hub (the most connected one) is a B cell clone, that
is, the sites ranked 2—10 in order of connectivity all represent
ligand populations. In the second case (filled circles) the ten
most connected sites are B cell clones. After each infection
the time necessary to eliminate the perturbation tends to be
smaller, demonstrating memory. The enhanced rapidity of
response is more marked when all ten of the most highly
connected sites represent B cell clones, suggesting that
memory is associated with regulation. Further evidence of
memory is the systematic increase (Fig. 6) of immune re-
sponse [ (the area under the curve of the mean B cell popu-
lation in the transient state) following each perturbation, fol-
lowed by saturation, as observed experimentally [35].
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FIG. 4. Evolution of mean population of B clones. At t=5000
the system is perturbed and at =10 000 the ten most connected
sites of network are deleted.

We also performed simulations on Erdos-Renyi networks,
following the same procedure as for the scale-free network.
Figure 7 shows the Hamming distance per clone of three
different sets of B cells clones, as a function of the number
of perturbations. Open circles represent the Hamming dis-
tance of the ten most connected clones, open squares the
Hamming distance of first-line clones and filled circles the
Hamming distance averaged over all clones. The variation of
Hamming distance in this case is about 7% while in the scale
free network it is about 20%, showing that the response in
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FIG. 5. Time 7 needed to eliminate a perturbation as a function
of the number of perturbations, on a scale-free network. We com-
pare the case in which the ten most connected hubs represent B
clones (open circles), with that in which only the most connected
hub represents a B clone (filled circles).
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scale-free network.

the random network is weaker than in the scale-free network.
The variation of 7 as a function of the number of infections
follows the same trends as observed in the scale-free network
(see Fig. 8). The role of highly connected sites in the ER
network is however different than in the scale-free case. The
variation of Hamming distance of the ten most connected
sites is smaller than that of the first-line clones. Moreover,
depleting the ten most connected sites does not provoke the
marked growth in B cell population observed in the scale-
free network. These observations suggest that the sites with
high connectivity are not essential to regulating the random
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FIG. 7. Hamming distance per clone versus infection number n
on the Erdds-Renyi network, for the ten most connected clones
(open circles), first-line clones (open squares), and averaged over
all B cell clones (filled circles).

031911-5



RIBEIRO et al.

3200 :

3150

3100 |- .
3050 [ Y e

3000 |- 4

| | |
2
9500

=2

FIG. 8. Time 7 needed to eliminate a perturbation as a function
of the number of perturbations, on a random network.

network, as they are in regulating the scale-free network.

A series of studies were realized to probe the stability of
the system. Once a stationary state is attained, we introduce a
small perturbation and study the resulting variation in the
mean Hamming distance of the B cell population. The per-
turbation is made by choosing randomly single ligand, not
highly connected, among the 4500 in the network, and
changing its population to a certain value L. Since ligands
are suppressed by the system dynamics, they generally have
very small populations in the stationary state, so that L is a
measure of the perturbation. After a new stationary state has
been reached, we calculate the mean Hamming distance H of
B cell clones between this new state and that prior to the
disturbance. Since the system is subject to a certain random
drift over time, even in the absence of a perturbation, it is of
interest to study H—H,, where H, is the mean Hamming
distance calculated for the same time interval but with no
perturbation. Figure 9 shows H—H,, as a function of L, for a
scale-free network (full circles), and for a random network
(open circles). Small perturbations produce no significant
long-term change in configuration: the system remains in the
same basin of attraction. For larger perturbations the system
leaves the initial basin of attraction and visits many configu-
rations until reaching a new basin of attraction. These results
indicate that the system is locally stable.

The random and scale-free networks studied have the
same number of nodes (N=9000) and the same mean num-
ber of connections (about 10 per node); the difference lies in
how the nodes are connected. In the stability analysis we use
the same set of parameters (\,y;,7y;) so that we may com-
pare directly the behavior of the two networks. Figure 9
shows that the Hamming distance grows more rapidly with L
in the scale-free network than in the random one. The scale-
free network presents a higher sensitivity to (large) perturba-
tions, suggesting that the basins of attraction are more dis-
tant. In Fig. 10 we show the behavior of 7, the time necessary
for the mean ligand population decay to 1/5 of its value at
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the moment of perturbation, as a function of L. In the scale
free network (full circles) this time is smaller than in the
random network (open circles). The greater change in B cell
populations in the scale free network is accompanied by
faster elimination of the disturbance.

IV. CONCLUSIONS

We introduce a network model for the population dynam-
ics of B cell clones and associated ligands; both scale-free
and random networks are investigated. Our simulations show

900 T 1o T 1o T 1o T oot
o

800 |- :
700 - 7
600 |- O R
ol j: f |
bt
400 |- /]
300 - O . ]
200 |- £ -
ot e oS _ ;

Oﬁﬁmmmﬂmffﬁfﬁif:””“

10 10° 10° 10* 10
L

5

FIG. 10. Time 7needed to eliminate a perturbation as a function
of the perturbation L: scale free network (full circles); random net-
work (open circles).
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that the model attains a stationary state following a certain
initial transient. Once a stationary state is attained, we per-
turb the system by increasing the population of a small num-
ber of randomly chosen ligand species, and allow the system
to relax to a stationary state. The latter may be different from
that obtaining prior to the perturbation. The perturbation/
relaxation protocol is repeated several times. The response to
the perturbation is characterized by integrated excess B cell
population in the transient state, the relaxation time of the
ligand population, and the Hamming distance between the
stationary B cell populations before and after the perturba-
tion.

The Hamming distance saturates after several perturba-
tions, which is reminiscent of the saturation of immune re-
activity (e.g., specific antibody formation) observed experi-
mentally under repeated administration of boosters. We find
that in the scale-free network, the Hamming distance aver-
aged over the ten largest hubs is greater than that of the
first-line clones or that averaged over all clones. When the
hubs are removed, we observe a much higher increase in the
mean B cell population, showing that the hubs regulate the
network by blocking the propagation of the disturbance.

In addition to the saturation of the response after several
perturbations, our model exhibits another feature observed in
immune systems. After each perturbation, there is a system-
atic increase in Hamming distance, and also a reduction in
the time necessary to eliminate the perturbation, both char-
acteristics of immunological memory. Two configurations
were used to study this particular feature: in one, only the
largest hub represents a B cell clone, while in the other the
ten most connected sites all represent B cell clones. The
return to the stationary state is faster in the second case,
suggesting that memory is associated with regulation. Simi-
lar but less dramatic behavior is observed in a random net-
work. Our results suggest that, in a random network, the sites
with high connectivity are not essential to regulation, as they
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are in regulating the scale-free network. Our results also
show that the system on the scale free network has a higher
sensitivity to perturbations, and a faster response, than on the
random network.

The model studied here resembles a spin glass in that the
interactions between pairs of B cell clones are taken ran-
domly as excitatory (i.e., ferromagnetic, J>0) and suppres-
sive (J<0). Thus we may expect to observe many basins of
attraction, just as the spin glass possesses many free energy
minima. History dependence of the system configuration is
another characteristic trait of spins glasses shared by the
present model. It is therefore tempting to identify the persis-
tent immunological profiles observed experimentally
[36-38] with basins of attraction (stored patterns) of a spin-
glass-like system [39]. Verification of this conjecture must
await studies elucidating effective interactions between
clones and global behavior of immune systems under pertur-
bation.

In summary, our model of the B cell populations on a
scale-free network reproduces several key features of the dy-
namics of the immune system: regulation, saturation of re-
sponse, and more rapid response upon repeated perturbations
with the same agents. This suggests that, as in other biologi-
cal systems, a functional network of interactions character-
ized by a scale-free network may be responsible for the regu-
lation and dynamics of the immune system. An alternative
interpretation is that, if immune regulation is indeed struc-
tured as a scale-free network, this may confer the disadvan-
tage of extreme sensitivity to the loss of hubs. As is known
from studies of other scale-free networks, such systems are
quite robust to random attack, but highly susceptible to at-
tacks directed at the principal hubs.
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