
WEARABLE EDGE AI TOWARDS CYBER-PHYSICAL APPLICATIONS

Mateus Coelho Silva

Orientadores: Ricardo Augusto Rabelo Oliveira

Servio Pontes Ribeiro

Andrea Gomes Campos Bianchi

Ouro Preto

Janeiro de 2024

WEARABLE EDGE AI TOWARDS CYBER-PHYSICAL APPLICATIONS

Mateus Coelho Silva

Tese de Doutorado apresentada ao Programa

de Pós-graduação em Ciência da Computação,

da Universidade Federal de Ouro Preto, como

parte dos requisitos necessários à obtenção do

t́ıtulo de Doutor em Ciência da Computação.

Orientadores: Ricardo Augusto Rabelo

Oliveira

Servio Pontes Ribeiro

Andrea Gomes Campos Bianchi

Ouro Preto

Janeiro de 2024

Silva, Mateus Coelho.
SilWearable Edge AI towards Cyber-Physical Applications. [manuscrito] /
Mateus Coelho Silva. - 2023.
Sil184 f.: il.: color., gráf., tab..

SilOrientador: Prof. Dr. Ricardo Augusto Rabelo Oliveira.
SilCoorientadores: Profa. Dra. Andrea Gomes Campos Bianchi, Prof. Dr.
Servio Pontes Ribeiro.
SilTese (Doutorado). Universidade Federal de Ouro Preto. Departamento
de Computação. Programa de Pós-Graduação em Ciência da
Computação.
SilÁrea de Concentração: Ciência da Computação.

Sil1. Computação Vestível. 2. Edge AI. 3. Ecologia. 4. Cuidados com a
Sáude. I. Oliveira, Ricardo Augusto Rabelo. II. Bianchi, Andrea Gomes
Campos. III. Ribeiro, Servio Pontes. IV. Universidade Federal de Ouro
Preto. V. Título.

Bibliotecário(a) Responsável: Luciana De Oliveira - SIAPE: 1.937.800

SISBIN - SISTEMA DE BIBLIOTECAS E INFORMAÇÃO

S586w

CDU 004

MINISTÉRIO DA EDUCAÇÃO
UNIVERSIDADE FEDERAL DE OURO PRETO

REITORIA
INSTITUTO DE CIENCIAS EXATAS E BIOLOGICAS

DEPARTAMENTO DE COMPUTACAO
PROGRAMA DE POS-GRADUACAO EM CIENCIA DA

COMPUTACAO

FOLHA DE APROVAÇÃO

Mateus Coelho Silva

Wearable edge AI towards cyber-physical applications

Tese apresentada ao Programa de Pós-Graduação em Ciência da Computação da Universidade Federal
de Ouro Preto como requisito parcial para obtenção do título de Doutor em Ciência da Computação

Aprovada em 01 de setembro de 2023

Membros da banca

Prof. Dr. Ricardo Augusto Rabelo Oliveira - Orientador - Universidade Federal de Ouro Preto
Prof. Dr. Fernando Augusto Teixeira - Universidade Federal de São João Del Rei

Prof. Dr. Jorge Miguel Sá Silva - Universidade de Coimbra
Prof. Dr. Luiz Henrique Andrade Correia - Universidade Federal de Lavras

Prof. Dr. Saul Emanuel Delabrida Silva - Universidade Federal de Ouro Preto
Dr. Vicente José Peixoto de Amorim - Dell Technologies

Prof. Dr. Ricardo Augusto Rabelo Oliveira, orientador do trabalho, aprovou a versão final e autorizou seu depósito no Repositório Institucional da
UFOP em 13/12/2023

Documento assinado eletronicamente por Ricardo Augusto Rabelo Oliveira, PROFESSOR DE MAGISTERIO SUPERIOR, em
15/12/2023, às 11:47, conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do Decreto nº 8.539, de 8 de outubro de
2015.

A autenticidade deste documento pode ser conferida no site http://sei.ufop.br/sei/controlador_externo.php?
acao=documento_conferir&id_orgao_acesso_externo=0 , informando o código verificador 0642091 e o código CRC 3513E80B.

Referência: Caso responda este documento, indicar expressamente o Processo nº 23109.016865/2023-80 SEI nº 0642091

R. Diogo de Vasconcelos, 122, - Bairro Pilar Ouro Preto/MG, CEP 35402-163
Telefone: (31)3559-1641 - www.ufop.br

http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
http://sei.ufop.br/sei/controlador_externo.php?acao=documento_conferir&id_orgao_acesso_externo=0

“The day we cease the

exploration of the cosmos is the

day we threaten the continuing of

our species. In that bleak world,

arms-bearing, resource-hungry

people & nations would be prone

to act on their low-contracted

prejudices and would have seen

the last gasp of human

enlightenment... until the rise of

a visionary new culture that once

again embraces the cosmic

perspective. A perspective in

which we are one, fitting neither

above nor below, but within.”

Neil DeGrasse Tyson

Agradecimentos

Obrigado a todas as pessoas que estão do meu lado e seguraram minhas mãos.

Primeiramente à minha famı́lia, por sempre me acompanhar ao longo da minha

formação. Aos meus amigos, obrigado por estarem lá. À minha companheira,

obrigado por tudo que você faz e fez, de graça e sem saber o quanto é importante.

Obrigado aos meus orientadores. De fato, posso dizer que tive orientadores

durante toda pós-graduação. Fui desafiado constantemente a ser a melhor versão

de mim. Obrigado por nunca ter deixado faltar essa fagulha que sempre se tornou

incêndio.

Obrigado à equipe do IFMG Itabirito pela oportunidade profissional. Vocês me

ajudaram a pavimentar mais uma etapa essencial no meu caminho de me tornar

professor e pesquisador. Além disso, vocês me estenderam um tratamento humano

e justo, que me ensinou como qualquer ĺıder profissional deve ser.

Obrigado aos amigos do G6.1 da Universidade de Coimbra. Vocês foram bons

amigos, companheiros fiéis de risadas, trabalhos e discussões. Me ajudaram a me

sentir acolhido quando eu estava a muitos quilômetros de casa. Importante ressaltar

que o laboratório era o mais latino-americano do continente europeu. Sobretudo,

espero a visita de vocês em Ouro Preto para comer, beber e ser feliz por aqui também.

Obrigado às equipes dos laboratórios iMobilis, LEAF e XR4Good pela compa-

nhia, risadas, alegrias e angústias compartilhadas. Obrigado por se levantarem pra

me ajudar quando eu precisei, e de confiar em mim em vezes que precisavam de

ajuda. Obrigado por me ensinarem a ser mais profissional e mais humano, e por

aguentar as minhas piadas sem graça.

Obrigado a todos que me ouviram quando eu precisava falar, obrigado a todos

que se calaram quando eu precisava de silêncio. Obrigado a todos os abraços quando

eu precisava de carinho, e todas as palavras que foram ditas quando eu precisava

ouvir.

Obrigado pela estadia.

O autor gostaria de agradecer à CAPES, CNPq, a UFOP e a Universidade de

Coimbra pelo fomento ao projeto de pesquisa apresentado. O presente trabalho

foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nı́vel

Superior - Brasil (CAPES) - Código de Financiamento 001.

Resumo da Tese apresentada à UFOP como parte dos requisitos necessários para a

obtenção do grau de Doutor em Ciências (D.Sc.)

WEARABLE EDGE AI TOWARDS CYBER-PHYSICAL APPLICATIONS

Mateus Coelho Silva

Janeiro/2024

Orientadores: Ricardo Augusto Rabelo Oliveira

Servio Pontes Ribeiro

Andrea Gomes Campos Bianchi

Programa: Ciência da Computação

A aplicação de tecnologias em pesquisas e trabalhos em campo é impulsionada

por tecnologias como a Internet das Coisas (IoT), Edge Computing e computação

vest́ıvel. Nesse contexto, o uso de sistemas baseados em Inteligência Artificial (AI)

é cada vez mais comum e uma tendência nos trabalhos mais recentes. Ambientes

com pouca conectividade e dificuldade para transmissão de dados com baixa latência

reforçam o uso de tecnologias de Edge Computing para tratamento de dados adqui-

ridos. Contudo, não existe clareza na maneira como o uso de AI é transportado para

a computação de borda em ambientes extremos, dada a complexidade dos demais

requisitos. Essa lacuna é mais clara no contexto de dispositivos vest́ıveis (weara-

ble), onde as restrições para desenvolvimento de sistemas são ainda mais complexas.

Dessa forma, esse trabalho apresenta o protocolo de desenvolvimento e aplicações

em casos de uso para criação de soluções baseadas em Edge AI no contexto de dis-

positivos vest́ıveis. Esse estudo ajuda a avaliar a criação do contexto de Wearable

Edge AI como novo campo de pesquisa.

Abstract of Thesis presented to UFOP as a partial fulfillment of the requirements

for the degree of Doctor of Science (D.Sc.)

WEARABLE EDGE AI TOWARDS CYBER-PHYSICAL APPLICATIONS

Mateus Coelho Silva

January/2024

Advisors: Ricardo Augusto Rabelo Oliveira

Servio Pontes Ribeiro

Andrea Gomes Campos Bianchi

Department: Computer Science

The creation of novel technologies to support field work and research has a major

impact from technologies such as the Internet of Things (IoT), Edge Computing and

wearable computing. In this context, Artificial-Intelligence-based systems became

more common and a trend in recent work. Environments with low connectivity and

high latency in data transmission enforce the usage of Edge Computing technologies

in the treatment of acquired data. Nonetheless, there is no clarity in how to transport

Artificial Intelligence (AI) to Edge Computing in extreme environments, given the

complexity of the requirements. This gap is more clear in the context of wearable

computing, where the systems restrictions for developing systems are even harder.

Thus, this work presents a protocol for developing Edge AI appliances and some

case-study applications in the context of wearable devices. This study helps to

evaluate the creation of Wearable Edge AI context as a novel research field.

Contents

List of Figures

List of Tables

List of Abbreviations

1 Introduction 1

1.1 Wearable Computing . 2

1.2 Edge Computing . 3

1.3 Artificial Intelligence (AI) . 4

1.4 Stakeholders . 6

1.5 Objectives . 7

1.6 Text Organization . 8

1.7 Contributions . 8

2 Edge AI 12

2.1 Defining Edge AI . 13

2.2 Mapping Edge AI applications . 15

2.2.1 Applications Overview . 16

2.2.2 Preliminary Analyses . 23

2.3 Edge Computing and AI taxonomies analysis 26

2.3.1 Edge Computing Taxonomies 26

2.3.2 AI Algorithms Taxonomies . 27

2.4 Edge AI Taxonomy . 27

2.5 Final Remarks . 29

3 Wearable Edge AI 31

3.1 Cooperative Wearable Systems . 33

3.2 Wearable Edge AI . 35

3.2.1 Rethinking the hardware/software co-design for Edge AI so-

lutions . 36

CONTENTS

4 Case Study - Wearable Edge AI towards environmental studies 39

4.1 Leaf damage estimation . 39

4.1.1 Requirements . 39

4.1.2 Method overview . 40

4.1.3 Datasets Description . 41

4.1.4 Preprocessing . 41

4.1.5 Synthetic Dataset Generation 43

4.1.6 Conditional GAN Architecture 45

4.1.7 Damage Estimation . 46

4.1.8 Evaluation Methods . 46

4.1.9 A Broader Evaluation on the Damage Estimation Results . . . 47

4.1.10 Technical Evaluation: How to embed this solution? 53

4.2 Evaluating and mapping diseases in forest canopies 55

4.2.1 Requirements . 58

4.2.2 General Architecture Proposal 59

4.2.3 Validation Tests . 66

4.2.4 Results . 73

4.3 Ant distribution and counting estimation 86

4.3.1 Requirements . 87

4.3.2 Methods overview . 88

4.3.3 Experimental Results . 97

5 Wearable Edge AI towards healthcare applications 107

5.1 Physical condition monitoring in field 107

5.1.1 Requirements . 107

5.1.2 Context Overview . 108

5.1.3 Wearable computing requirements 110

5.1.4 Device Architecture Description 110

5.1.5 System Architecture . 113

5.1.6 Evaluation Methods . 115

5.1.7 Results . 116

5.2 Smart wearable systems in the context of COVID-19 119

5.2.1 Requirements . 120

5.2.2 Architecture Proposal . 121

5.2.3 Prototyping and Validation Tests 122

5.2.4 Validation Tests Results . 125

5.2.5 Edge Computing - Architecture Proposal 130

5.2.6 Experimental Tests . 134

5.2.7 Results . 137

CONTENTS

5.3 Wearable-based human activity recognition 142

5.3.1 Requirements . 143

5.3.2 Evaluation Tests . 147

5.3.3 Results and Discussion . 149

6 Conclusions and Final Remarks 155

6.1 Theoretical Backbone . 156

6.2 Lessons learned . 158

6.3 Future Works . 158

Bibliography 160

List of Figures

1.1 Machine Learning Hierarchy (inspired from Shinde and Shah [1]) . . . 5

1.2 Examples of applications developed towards the first stakeholders.

These solutions include automatic ant-counting using CNNs, leaf dis-

ease detection, and leaf shape estimation. 6

1.3 Examples of applications developed towards the second stakeholders.

These solutions include health monitoring using a faceshield, a multi-

sensored smart vest for industrial applications, and a human activity

recognition (HAR) monitor. 7

2.1 Correspondence to the classifications of edge computing devices and

systems from Khan et al. [2] and Shi et al. [3] 14

2.2 Number of application papers per year. The first applications in this

context were proposed in 2017, but the it was established in 2019. . . 24

2.3 Contributions of each category of edge computing to the curated ap-

pliances. The majority of works apply “Mobile edge computing”. . . . 24

2.4 Location of the AI algorithms. The analysis display that appliances

can deploy models on edge devices or edge servers. 25

2.5 AI models identified in the articles. The three individual categories

that contributed the most are CNNs, LSTMs, and DNNs. Many

authors identify their appliances generically as “Machine Learning” . 26

2.6 Classification of the works from Section 2.2 according to the proposed

taxonomy. Each gray square is a single work evaluated in this section

of the work. 28

3.1 Original Hardware and Software co-design process, presented in [4] . . 31

3.2 Co-design principle diagrams. The traditional approach does not con-

sider architectural aspects in parallel with the HW and SW design. . 37

4.1 Simplified Co-design diagram. 40

4.2 Proposed Method and Work Overview 40

4.3 Example of damage probability density distribution. This function is

used to generate the artificial damage. 44

LIST OF FIGURES

4.4 Illustration of the punctual artificial damage generation method [5]. . 44

4.5 Validation Set - Damage Distribution for the Initial and Improved

Rounds. 48

4.6 Validation damage estimation results for the Initial and Improved

Rounds . 49

4.7 Test Set - Damage Distribution for the Initial Round 49

4.8 Test set damage estimation results for the Initial Round 50

4.9 MEW 2012 set damage estimation results for the Initial and Improved

rounds . 50

4.10 Dice coefficient distribution for the validation set - Initial Round . . . 51

4.11 Dice coefficient distribution for the validation set - Improved Round . 51

4.12 Dice coefficient distribution for the test set - Initial Round 52

4.13 Dice coefficient distribution for the test set - Improved Round 52

4.14 Dice coefficient distribution for the MEW 2012 set 53

4.15 Complete segmentation pipeline proposal 54

4.16 Illustration of the usage of ArUco tags to segment a map area. 54

4.17 Region segmentation process illustration 55

4.18 Binarization process illustration . 55

4.19 Experiments displaying the results of the proposed process. These

experiments validate the usage of this technique to provide a mean

to take this appliance onto the field. 56

4.20 Illustration of the Cylinder-Transect study. 57

4.21 Example of a possible location for a disease spread. We model this

spread using a spatially-distributed probability density function (PDF). 58

4.22 Simplified Co-design diagram. 59

4.23 Proposed General Architecture. The smart helmets use the wearable

Edge AI server to provide machine learning inferences. 60

4.24 Prototype Assembled . 61

4.25 Edge AI service pipeline. In the proposed architecture, clients per-

form part of the processing, while the AI pipeline is provided by the

Edge AI server node. 62

4.26 Sample of healthy and diseased leaf images obtained from the dataset. 63

4.27 Data processing pipeline and associated substages. For the image

extraction, the associated stages are the color space conversion and

histogram extraction. 63

4.28 Pseudospectrum extraction samples 64

4.29 Neural network representation. The chosen model was a Multi-Layer

Perceptron (MLP). All layers are fully connected. The number be-

neath the blocks represents the number of neurons in each layer. . . . 65

LIST OF FIGURES

4.30 Loss function during the training process 65

4.31 Proposed CNN model. The convolutional layers have 3x3 filters, with

2x2 pooling. The output is a single value obtained from a sigmoid

activation function. 67

4.32 Values for accuracy and loss functions in the CNN training process. . 67

4.33 Sampling process illustration . 71

4.34 Demonstration of the segmentation process. The prototype used a

USB camera to capture the data, which can be processed by the

prototype itself or in the Edge AI server node. 72

4.35 Arbitrary PDF display. The larger and more colorful red dots have

a bigger probability density. The brown cylinder represents the main

tree trunk. 73

4.36 Pipeline for the hardware validation test. 74

4.37 Latency results for the first stage. 74

4.38 Latency results for the second stage. 75

4.39 Latency results for the third stage. 75

4.40 Average expected predictions per second ratio on each platform. The

number in blue displays the expected ratio. 76

4.41 MLP and CNN performance comparison test results. 78

4.42 Stages considered in the architectural validation test. 80

4.43 Latency for each of the steps presented in Figure 4.42 81

4.44 Quality Factor test result . 81

4.45 Latency test results for step 1 . 82

4.46 Latency test results for step 2 . 82

4.47 Latency test results for step 3 . 83

4.48 Latency test results for step 4 . 83

4.49 Upper view of the case study organization 84

4.50 Case Study sampling distribution. The larger and more colorful red

dots have a bigger percentage of diseased leaves. The brown cylinder

represents the main tree trunk. 84

4.51 Estimated PDF display. The larger and more colorful red dots have

a bigger probability density. The brown cylinder represents the main

tree trunk. 85

4.52 Simplified Co-design diagram. 87

4.53 Proposed system overview . 89

4.54 Dataset generation software diagram 90

4.55 Initial Screen . 90

4.56 Counting Screen . 91

4.57 Ending Screen . 91

LIST OF FIGURES

4.58 Number of Ants per Image Distribution 92

4.59 Data Augmentation Process Example 93

4.60 MobileNet Training Graph . 94

4.61 EfficientNet Training Graph . 95

4.62 Application output example . 97

4.63 Confusion Matrix for the MobileNet 98

4.64 Confusion Matrix for the EfficientNet V2-B0 99

4.65 Scatter plot from the counting samples for the MobileNet. The red

line indicates the ground truth. 101

4.66 Scatter plot from the counting samples for the EfficientNet V2-B0.

The red line indicates the ground truth. 102

4.67 Boxplots indicating the time per using each backbone 103

4.68 Training information using the augmented dataset. On the left, we

display the results for the MobileNet. On the right, we display the

results for the EfficientNet-V2B0. 103

4.69 Confusion Matrix for the validation set using the MobileNet backbone 104

4.70 Confusion Matrix for the test set using the MobileNet backbone . . . 104

4.71 Confusion Matrix for the validation set using the EfficientNet backbone105

4.72 Confusion Matrix for the test set using the EfficientNet backbone . . 105

4.73 Counting graph for using the MobileNet backbone 106

4.74 Counting graph for using the EfficientNet backbone 106

5.1 Simplified Co-design diagram. 108

5.2 Wearable Device Prototype, proposed in [6]. 108

5.3 Proposed device architecture. 111

5.4 Wearable device illustration. 112

5.5 Field research cooperative wearable system architecture. 114

5.6 Results of the QoS tests on each device. 118

5.7 QoS average factor for each k value. 119

5.8 Simplified Co-design diagram. 120

5.9 Schematic View of the Proposed Prototype 121

5.10 Pulse-Oxymeter and Temperature Sensor Placement 122

5.11 HUD See-through Display . 123

5.12 Data Flow for the Proposed Prototype 123

5.13 Current Consumption Probe Configuration 124

5.14 Current Consumption Profiling Test Result 126

5.15 Discharge Test Result . 127

5.16 QR Code Acquisition Validation . 128

5.17 MAX30100 Probe Readings . 129

LIST OF FIGURES

5.18 SpO2 Readings Obtained from the Computer-on-Module 129

5.19 Overview of the proposed architecture 130

5.20 Face shield HUD Prototype. 131

5.21 Overview of the elements of the produced prototype 132

5.22 Proposed Interfaces Illustration . 133

5.23 Edge Computing Server Node . 133

5.24 Data Flow for the Experimental Setup on the Second Test 137

5.25 Edge Server Node Algorithm . 138

5.26 Visualization Prototype Application Example 139

5.27 Quality Factor Test Results . 141

5.28 Quality Factor Test Results . 142

5.29 Performance Test Results . 143

5.30 Simplified Co-design diagram. 144

5.31 Architecture layers . 145

5.32 Wearable device schematics proposal 145

5.33 Mobile edge computing platform . 146

5.34 LSTM illustration . 147

5.35 Training session result . 148

5.36 Confusion Matrix for the Validation Set 151

5.37 Confusion Matrix for the Test Set . 153

5.38 Times measured from the Cloudlet 153

5.39 Times measured from the Mobile Edge Device 154

5.40 Comparison from the measurements in both tests 154

6.1 New co-design approach . 156

List of Tables

2.1 Taxonomic table compiling the collected information from papers. . . 29

4.1 RMSE Results . 48

4.2 Hardware Specifications for the Edge AI server node candidates. . . . 68

4.3 Metric results for the validation dataset. This set was obtained sep-

arating 10% of the training data for validation. 78

4.4 Confusion Matrix for the validation data 78

4.5 Metric results for the test dataset. This set previously separated,

taking 10% of all images. 79

4.6 Confusion Matrix for the test data 79

4.7 Metric results for the test dataset - CNN results. This set is the same

previously separated for the MLP. 79

4.8 Confusion Matrix for the test data - CNN results 79

4.9 MobileNet classification metrics . 98

4.10 EfficientNet V2-B0 classification metrics 99

4.11 Counting metrics for the MobileNet 100

4.12 Counting metrics for the EfficientNet V2-B0 101

5.1 Sampling time ratio for each sensor. 112

5.2 WPAN and WLAN connectivity technologies. 114

5.3 Profiling Test Results . 127

5.4 Real Time Constraint Definition Results 140

5.5 Classes of activities in the KU-HAR dataset 147

5.6 Classification Metrics for the Validation Set 150

5.7 Classification Metrics for the Test Set 152

List of Abbreviations

AI Artificial Intelligence

ASL American Sign Language

CNN Convolutional Neural Network

CPS Cyber-Physical System

CPU Central Processing Unit

CWS Cooperative Wearable System

DNN Deep Neural Network

ECG Electrocardiography

EEG Electroencephalography

FPGA Field-Programmable Gate Array

GAN Generative Adversarial Network

GPE Gaussian Process Estimator

GRP Gaussian Random Process

HPS Hybrid Pelletized Sinter

HUD Head-Up Display

HW Hardware

IDS Intrusion Detection System

IMU Inertial Measurement Unit

IoT Internet of Things

LIDAR Light Detection and Ranging

LIST OF ABBREVIATIONS

LSTM Long Short-Term Memory

MCG Magnetocardiography

MEC Mobile Edge Computing

MLP Multi-Layer Perceptron

NLP Natural-Language Processing

PCB Printed Circuit Board

PPG Photoplesmiography

QoS Quality-of-Service

SVM Support Vector Machine

SW Software

UAV Unmanned Aerial Vehicles

VAE Variational Autoencoders

VANET Vehicular Ad Hoc Network

WBAN Wireless Body-Area Network

WLAN Wireless Local Area Network

WSN Wireless Sensor Networks

ZB Zettabytes

Chapter 1

Introduction

Cyber-Physical Systems (CPSs) are a nomenclature created to describe the appli-

cations that combine digital aspects with real-world applications. This integration

happens through an integrated loop using sensors to add perception and often actu-

ators to interact with the environment [7]. Some of the essential aspects that enable

the development of such systems are hardware miniaturization and the increased

number of devices with networking abilities [8].

Cyber-physical systems relate to some aspects of computer science, especially

within the context of embedded computing and edge computing. Among these

aspects, we highlight the following related context [8, 9]:

� Industry 4.0;

� Internet of Things (IoT);

� Big data;

� Cloud computing;

� Edge computing;

� Wearable devices;

� Mobile devices;

� Real-time systems;

Our understanding is that these concepts are linked through two fundamental

features of cyber-physical systems. The first important concept we raise is the con-

text awareness. Applications of CPSs must have means to perceive the context

around them. Then, the second context is environmental interaction. These ap-

plications must be able to interact with the users, stakeholders, and the surrounding

environment. Besides these main concepts, some of the features from CPSs are [10]:

1

� Closely integrated systems;

� Resource constrained;

� Networked;

� Executes in closed loops;

� Reliable and secure.

Modeling CPSs is a challenge [11]. Applications within this range must integrate

system specifications, considering physical restraints, hardware and software inte-

gration, and the network interconnecting the devices. Also, software development

in CPSs must consider its correctness and often timing constraints.

In this text, we will henceforth name the applications built within the CPS range

as cyber-physical applications. Some examples of stakeholders from cyber-physical

applications are smart cities, industries, aviation, environmental monitoring agencies

and researchers, healthcare professionals and patients, and meteorologists [7–9, 12].

As stated before, wearable computing and edge computing are essential concepts

within the range of CPSs. In this work, we explore how to use both these concepts

together with artificial intelligence algorithms to create cyber-physical applications.

In the following sections, we offer an initial individual perspective on each of these

concepts before presenting the main objective of this thesis.

1.1 Wearable Computing

A relevant topic among CPSs is wearable computing, which creates several cyber-

physical applications. Steve Mann and Thad Starner took some pioneer steps to-

wards wearable computing in the late 80s and early 90s [13, 14]. Mann [13] enforced

that a critical component in the creation of these systems was hardware minia-

turization. Starner [14] had an early understanding of the issues of creating these

applications, enforcing the difficulty in energy availability, weight, and size.

Since then, wearable computing has reached various stakeholders with various

applications. Roggen et al. [15] pointed out several uses of wearable computing

in robotics and automation, even with gesture and activity recognition. Jhajharia

et al. [16] enforce the usage of such systems in healthcare and medical appliances,

fitness, wellness, military, and industry.

Wearable computing shares some standard features among their applications

[16]. Some of the main features of these systems are:

� Reliabiliy: Wearable computers and systems must be consistent and reliable;

2

� Context awareness: Wearable computing systems must add or enhance the

user’s environmental perception;

� Ease of use: Wearable systems must be easy to use, often not requiring any

interaction to perform their duties;

� Non-obstrusive and mobile: Wearable systems must preserve the users’

ability to move freely.

From this perspective, we notice that several of these features come from the

broader field of CPSs. Therefore, within our context, we consider wearable comput-

ing systems to be examples of cyber-physical applications.

Wearable devices are trending topics in different areas such as healthcare and

activity recognition [17–23], sports [24, 25], education [26, 27], industry [28, 29],

human–computer interaction [30] and other areas. The rise of new concepts like the

Internet of Things (IoT) [31–33] and Industry 4.0 [34] along with hardware miniatur-

ization allow for the development of novel devices and solutions. Furthermore, the

communication aspect of wearable systems is an essential aspect of novel developed

solutions [35, 36].

1.2 Edge Computing

The following fundamental concept within this work is Edge Computing. This ex-

pression refers to using tools closer to the user’s end and further away from the cloud.

According to Varghese et al. [37], the motivations for this movement include decen-

tralized computing, low latency, sustainable energy consumption, and smart compu-

tation techniques. These authors exemplify that the distance between Berkeley and

Canberra causes a latency of 175 ms, which imposes an issue for latency-sensitive

algorithms. Furthermore, the added network traffic can cause uncertainty.

Cao et al. [38] enforce that the expected global traffic on the internet in 2019

was 10.4 Zettabytes (ZB). They assert that 45% of this information would be stored,

processed, and analyzed on the network’s edge. By 2020, the number of connected

devices was expected to surpass 50 billion. These authors also realized that cloud

computing came short on some restraints, namely:

� Real-time;

� Energy consumption;

� Security;

� Privacy;

3

Both authors agree on the understanding that there are some issues that are not

solved within the domain of cloud computing. Even with the 5G networks, these

issues still need to be solved. El-Shorbagy [39] enforces that although 5G networks

are faster and have low latencies in the ideal functioning scenario, there are issues

as any physical obstacle blocks its signal and it has a lower range.

Khan et al. [2] also enforce that fast computing and quick application response

are some of the features expected from edge computing, making it more suitable for

real-time applications. He presents a division of edge computing among three main

areas: cloudlets, fog computing, and mobile edge computing.

Cloudlets are infrastructures with high processing power that perform the role

of cloud computing closer to the end-users. Fog computing is the virtualization

of cloud-like services using a distributed computing environment through mobile

devices. Mobile edge computing is the processing through isolated or restricted edge

computing platforms providing processing power at the very edge of the network.

Khan et al. [2] also affirm that edge computing can have a dense geographical

distribution, supports mobility, is closer to the end-user, enforces low latency solu-

tions, and provides context-awareness. Finally, the authors display heterogeneity as

an aspect of edge computing, given the diversity of devices involved in communica-

tion and processing.

Current technologies and environmental conditions still require storage, process-

ing, and analyses at the network’s edge. Edge computing is relevant in several

cyber-physical applications, including cooperative wearable systems. In this study,

this concept has a critical role in creating novel applications using wearable com-

puting and AI techniques.

1.3 Artificial Intelligence (AI)

By the time this work was published, Artificial Intelligence had been a topic of

research and development by scientists and engineers for almost 70 years. Jiang et

al. [40] presented some projections for the near future of AI, stating that its market

share is projected to reach over 190 billion US dollars by 2025. They exemplify some

fields of acting from AI, such as:

� Speech recognition;

� Image processing;

� Natural-language processing (NLP);

� Smart robots;

4

� Autonomous vehicles;

� Healthcare;

Besides these, there are numerous fields in which AI has been applied. Jiang

et al. [40] also assess some of the facts that enabled the uprise of AI. According

to them, the increased number of theoretical proposals, the increasing amount of

available data, the increasing computing power, and the outperformance of humans

in some tasks of interest have contributed to an increasing interest over the years,

starting from the 80s.

In a Q&A paper published in 2007, McCarthy [41] offers a simple definition of

Artificial Intelligence. He states that AI is the science and engineering of making

intelligent machines, especially intelligent software. This definition is a simple ap-

proach but requires a definition of intelligence. Still, according to McCarthy [41],

intelligence is the ability to achieve goals in the world.

Shinde and Shah [1] present machine learning in computer science as the pro-

cess of creating so-called “intelligent agents”. In their perception, these agents are

capable of perceiving the environment and acting to maximize its opportunity for

success. Although artificial intelligence concepts came from the 1950s, the hardware

and software advances allowed it to reach the desired potential later on. From the

general concept of AI, these advances led to the uprise of machine learning and deep

learning. Figure 1.1 displays the hierarchy of these concepts according to Shinde

and Shah.

Figure 1.1: Machine Learning Hierarchy (inspired from Shinde and Shah [1])

Most AI applications follow the process described in the previous paragraph.

The set of algorithms that follow this is called machine learning (ML) [42]. More

recently, the most extensive set of algorithms developed is called deep learning (DL)

[43, 44], a subset of machine learning algorithms with multiple processing layers to

learn abstract data representations.

However, machine and deep learning often find limitations when integrating with

edge computing. This condition happens especially when the computing power of

5

the edge application is constrained. Liu et al. [45] assert that although many re-

search projects try to reduce this gap, machine, and deep learning often require high

computational power and energy consumption. Sze et al. [46] also state that these

applications require significant computational power, pushing applications toward

the clouds.

1.4 Stakeholders

There are two main stakeholders to the technologies developed in this context. The

first stakeholders are professors, students, practitioners, and ecology researchers.

The technologies within this context were created aiming for canopy studies and

entomology needs. These appliances are usually driven towards environmental per-

ception. Figure 1.2 displays some applications developed for these stakeholders.

Figure 1.2: Examples of applications developed towards the first stakeholders. These
solutions include automatic ant-counting using CNNs, leaf disease detection, and leaf
shape estimation.

The second stakeholders are researchers, physiologists, medical practitioners,

patients, and people who require health monitoring appliances. These technologies

aim to monitor the users’ health conditions and their activities. These applications

6

usually focus on perceiving the users’ activities and conditions. Figure 1.3 displays

some applications developed for the second group of stakeholders.

Figure 1.3: Examples of applications developed towards the second stakeholders.
These solutions include health monitoring using a faceshield, a multi-sensored smart
vest for industrial applications, and a human activity recognition (HAR) monitor.

1.5 Objectives

In this work, we focus on understanding how to mesh the concepts of edge comput-

ing, wearable computing, and AI to create a novel concept within Cyber-Physical

Systems. A relatively novel concept named Edge AI works as a baseline for starting

this establishment. Therefore, the main objective of this work is:

� Establish the concept of Wearable Edge AI and its design process to create

cyber-physical applications.

We also contemplate a set of specific objectives withing this context. They are:

7

� Propose a novel taxonomy to describe the modalities of Edge AI;

� Develop a set of cyber-physical applications aiming ecological studies;

� Develop a set of cyber-physical applications aiming healthcare and human-

activity recognition;

1.6 Text Organization

This text is organized into six chapters. In this first chapter, we introduce the subject

of the study, motivation, stakeholders, objectives, and contributions. Chapter 2

reviews the Edge AI concept and establishes a taxonomy to describe it. Chapter

3 displays how we evolved the concept of Wearable Edge AI and defined its design

patterns. Chapter 4 discusses the applications developed aiming at the ecology

stakeholders. Chapter 5 discusses the applications developed aiming at healthcare

stakeholders. Finally, we discuss the learned lessons, conclusions, and final remarks

in Chapter 6.

1.7 Contributions

Within this work’s context, we have published the following articles, with a total of

28 citations according to the Google Scholar metrics:

� An Automatic Ant Counting and Distribution Estimation System Using Con-

volutional Neural Networks [47];

� Designing a Multiple-User Wearable Edge AI system towards Human Activity

Recognition (2022 XII Brazilian Symposium on Computing Systems Engineer-

ing (SBESC)) [48];

� Edge Computing Smart Healthcare Cooperative Architecture for COVID-19

Medical Facilities (IEEE Latin America Transactions 2022) [49];

– 1 citation (Google Scholar);

� Bringing Deep Learning to the Fields and Forests: Leaf Reconstruction and

Shape Estimation (SN Computer Science, 2022) [50];

� Wearable Edge AI applications for Ecological Environments (Sensors, 2021)

[51];

– 7 citations (Google Scholar);

8

� An Improved Deep Learning Application for Leaf Shape Reconstruction and

Damage Estimation (Proceedings of the 23rd International Conference on En-

terprise Information Systems - Volume 1: ICEIS, 2021) [5]

– 4 citations (Google Scholar);

– Best Student Paper Award in the Area of Artificial Intelligence and De-

cision Support Systems;

� Faceshield HUD: Extended Usage of Wearable Computing on the COVID-

19 Frontline (Proceedings of the 23rd International Conference on Enterprise

Information Systems - Volume 1: ICEIS, 2021) [52];

– 1 citation (Google Scholar);

� IDiSSC: Edge-computing-based Intelligent Diagnosis Support System for Cit-

rus Inspection (Proceedings of the 23rd International Conference on Enterprise

Information Systems - Volume 1: ICEIS, 2021) [53];

– 4 citations (Google Scholar);

� Leaf shape reconstruction and damage estimation using a U-net-based condi-

tional GAN (Proceedings of the 36th Annual ACM Symposium on Applied

Computing - SAC’21, 2021) [54];

� Constraints and Challenges in Designing Applications for Industry 4.0: A

Functional Approach (Proceedings of the 22nd International Conference on

Enterprise Information Systems - Volume 1: ICEIS, 2020) [55];

– 1 citation (Google Scholar);

� Field Research Cooperative Wearable Systems: Challenges in Requirements,

Design and Validation (Sensors, 2019) [4];

– 10 citations (Google Scholar);

In this period, I have also collaborated with these works with relevant contribu-

tions to this topic’s knowledge, with 20 more citations:

� Towards a mobile system with a new wearable device and an AI application for

walking and running activities (Anais do L Seminário Integrado de Software e

Hardware, 2023) [56];

� A Mobile Robot Based on Edge AI (Anais do L Seminário Integrado de Soft-

ware e Hardware, 2023) [57];

9

� Towards Autonomous Mobile Inspection Robots Using Edge AI (Proceedings

of the 25th International Conference on Enterprise Information Systems - Vol-

ume 1: ICEIS, 2023) [58];

� Towards a Novel Edge AI System for Particle Size Detection in Mineral Pro-

cessing Plants (Proceedings of the 25th International Conference on Enterprise

Information Systems - Volume 1: ICEIS, 2023) [59];

� Blockchain-Based Smart Contract and Edge AI Applied in a Multirobot Sys-

tem: An Approach (IEEE Robotics and Automation Magazine, 2023) [60];

� Using Mobile Edge AI to Detect and Map Diseases in Citrus Orchards (Sensors,

2023) [61];

– 2 citations (Google Scholar);

� Towards novel smart wearable sensors to classify subject-specific human walk-

ing activities (Anais Estendidos do XII Simpósio Brasileiro de Engenharia de

Sistemas Computacionais) [62];

� A novel intelligent mobile application using human-centered AR: A case study

in orange inspection (Anais Estendidos do XXI Simpósio Brasileiro de Fatores

Humanos em Sistemas Computacionais) [63];

– 1 citation (Google Scholar);

� Enabling Digital Twins in Industry 4.0 [64];

– 3 citations (Google Scholar);

� Edge Deep Learning Towards the Metallurgical Industry: Improving the Hy-

brid Pelletized Sinter (HPS) Process [65];

– 1 citation (Google Scholar);

� Towards a novel wearable solution for citrus inspection using Edge AI (2022

IEEE 46th Annual Computers, Software, and Applications Conference (COMP-

SAC)) [66];

– 1 citation (Google Scholar);

� Applying Edge AI towards Deep-learning-based Monocular Visual Odometry

Model for Mobile Robotics (Proceedings of the 24th International Conference

on Enterprise Information Systems - Volume 1: ICEIS, 2022) [67];

– 2 citations (Google Scholar);

10

� Mask R-CNN Applied to Quasi-particle Segmentation from the Hybrid Pel-

letized Sinter (HPS) Process (Proceedings of the 17th International Joint Con-

ference on Computer Vision, Imaging and Computer Graphics Theory and

Applications (VISIGRAPP 2022) - Volume 4: VISAPP) [68];

� Deep Learning Approach at the Edge to Detect Iron Ore Type (Sensors, 2022)

[69];

– 1 citation (Google Scholar);

� Deep-Learning-Based Embedded ADAS System (Proceedings of the XI Brazil-

ian Symposium on Computing Systems Engineering (SBESC)) [70];

� Deep-Learning-Based Visual Odometry Models for Mobile Robotics (Proceed-

ings of the XI Brazilian Symposium on Computing Systems Engineering (SBESC))

[71];

– 2 citations (Google Scholar);

� Synchronous and Asynchronous Requirements for Digital Twins Applications

in Industry 4.0 (Proceedings of the 23rd International Conference on Enterprise

Information Systems - Volume 1: ICEIS, 2021) [72];

– 4 citations (Google Scholar);

� Edge Deep Learning Applied to Granulometric Analysis on Quasi-particles

from the Hybrid Pelletized Sinter (HPS) Process (Proceedings of the 23rd In-

ternational Conference on Enterprise Information Systems - Volume 1: ICEIS,

2021) [73];

– 3 citations (Google Scholar);

We have also deposited a patent request, with its text already in public domain:

� ESCUDO FACIAL PARA PROTEÇÃO CONTRAOCOVID-19 E DOENÇAS

INFECCIOSAS COM MONITOR PORTÁTIL PARA MONITORAMENTO

DA SAÚDE DO USUÁRIO E VARIÁVEIS DO AMBIENTE. 2022, Brazil.

Registration number: BR1020220014477, INPI - Instituto Nacional da Pro-

priedade Industrial, Brazil.

Our total contributions add up to 29 research papers and a deposited patent

request, with 48 citations up to this date. We also have two more papers invited to

become book chapters.

11

Chapter 2

Edge AI

Edge computing has gained several applications in academic, industrial, and com-

mercial media. The fundamental applications of this concept have a vast reach,

standing from mobile edge applications to Cloudlets [2]. On the one hand, this

broad concept creates a large set of possible novel technologies. On the other hand,

this vastness requires an organization of the surrounding concepts.

Several novel knowledge areas contribute to the uprise of edge computing. Khan

et al. [2] enforce that some of these areas are the Internet of Things (IoT), 5G,

and augmented reality, among others. They also present a set of several application

areas of edge computing, including industrial automation, traffic management, and

intelligent monitoring of several environments.

Shi and Dustdar [3] suggest that the IoT success has significantly impacted

the need for solutions on edge. They discuss that the data processing power of

cloud computing is not the only factor to consider when discussing the availability

of processing services. Creators should consider that despite the computing power

provided by cloud services, some other variables impact the need for edge computing,

such as bandwidth and response time.

Satyanarayanan [74] also initially assesses the importance of the Internet of

Things in the rise of edge computing. The author proposes that the IoT pushed

the computing paradigm towards decentralization. The hardware miniaturization

contributes to the increased processing power on edge devices. This author rein-

forces the importance of physical proximity in this context, which is a crucial value

when arguing in favor of edge computing appliances.

These discussions show that edge computing is essential in academic and com-

mercial matters. Also, this area is somehow organized, displaying a set of applica-

tions in which performing computing on edge is relevant. This text explores how

edge computing evolved with artificial intelligence (AI) applications.

McCarthy [41] described artificial intelligence as the science and engineering

to create intelligent machines. In the author’s understanding, this intelligence is

12

described as the ability to learn how to achieve goals in the world through an algo-

rithm. The usage of intelligence on edge pursuits to enforce the latest techniques

to edge computing scenarios. In the latest years, the most significant advances and

breakthroughs are in deep learning, raising a particular interest in performing its

integration among different edge computing variations [75].

Before entering the realm of what we will define as Edge AI, it is necessary to

choose an edge computing organization as a foundation. In this text, we present

a classification similar to Khan et al. [2], which divides edge computing into three

main groups:

� Cloudlets: In this paradigm, a resourceful infrastructure works similarly to

the cloud but are physically near to the end-user;

� Fog computing: This paradigm represents virtualization of cloud services to

distributed heterogeneous devices closer to the edge of the network;

� Mobile edge computing: This perspective considers isolated edge comput-

ing networks and services. The local resources and network should provide all

the infrastructure.

From these three perspectives and concepts, we use these main groups as foun-

dations to describe what Edge AI is and its features. For this matter, Section 2.1

will organize and provide a definition for Edge AI, and Section 2.2 will provide an

overview of Edge AI applications found in the literature. In Section 2.3, we dis-

cuss and analyze the main taxonomies for both edge computing and AI, presenting

how they contribute to the definitions of Edge Computing assessed above. Finally,

we present our proposed taxonomy in Section 2.4, discussing the final aspects and

conclusions in Section 2.5.

2.1 Defining Edge AI

In the first section of this text, we presented the relevance of integrating edge com-

puting and AI algorithms. With such an importance, different authors discuss this

integration with several names. Some of the names presented in the literature for

this confluence are:

� Edge Intelligence [75–77];

� In-Edge AI [78];

� Edge AI [79, 80];

13

� AI on Edge [81];

While other authors discuss the convergence of edge computing and AI without

a known name for this phenomenon. Regardless of the name, even in more gen-

eral discussions, authors usually discuss these concepts within a limited scope of

Intelligence algorithms or discuss an aspect of Edge AI/Edge Intelligence.

For instance, Shi et al. [3] discuss the communication aspect of Edge AI. Liu

et al. [77] also discuss the networking and communication aspects. Li et al. [79]

discuss deep learning inference acceleration through edge computing. Zhou et al.

[76] present a survey based on deep learning applications in edge computing. Deng et

al. [75] display an evaluation of the confluence of edge computing and deep learning.

Wang et al. [78] discuss the convergence of edge computing and AI through federated

learning. Although it is natural to overview the most trending AI technologies, the

area requires a formal definition that applies to the confluence of artificial intelligence

and edge computing regardless of the AI technology.

Concerning the classification of Edge AI devices, Shi et al. [3] separate the

edge computing elements among two classes: edge devices and edge servers. Then,

they discuss the communication-awareness of authors’ proposals that developed al-

gorithms and systems based on Edge AI. Their classification can be correlated to

the one presented by Khan et al. [2]. Mobile edge computing can belong to both

edge devices and edge server nodes. Fog computing and cloudlets belong only to the

edge server class. Figure 2.1 displays a Venn diagram displaying these relationships.

The union of these definitions displays a more general classification regarding the

works of both authors.

Figure 2.1: Correspondence to the classifications of edge computing devices and
systems from Khan et al. [2] and Shi et al. [3]

Regarding a formal Edge AI definition, none of the authors present a formal

14

definition of Edge AI. As much as the definition seems evident at this point, there

is no formal sentence defining the concept. For this matter, we establish an entry

for the concept of Edge AI.

� Edge AI Concept: Edge AI is the set of methods that describes the design

process and validation of solutions that combine edge computing and machine

learning concepts in developing novel appliances, systems, and applications to

solve real-world problems.

This definition bases itself on the main common aspects of all evaluated works.

It is important to mention that this definition encompasses the other terminologies

found in the literature, such as Edge Intelligence, and In-Edge AI, among others.

From previous analyses, we also state some of the main features of Edge AI, which

are:

� Regarding the devices’ role in edge computing appliances, the devices can

be edge servers or edge devices ;

� Regarding the applications’ organization, an application can be classified

among mobile edge computing, fog computing, and cloudlets.

We use Edge AI as the official terminology in this work. Nonetheless, it is

essential to clarify that this concept and features also refer to works that consider

Edge Intelligence or other terminologies, as this is a general terminology. Finally,

these terms work regardless of the technologies applied, as long as they can be

classified as edge computing and AI together.

2.2 Mapping Edge AI applications

After defining the Edge AI, we also provide a mapping of the applications based

on this concept. We initially assess and discuss some of the main works regarding

Edge AI applications, their organization, and algorithms. Then, we provide some

insights on classifying these systems according to the existing organizations and

their contexts.

To perform this evaluation, we searched through the bibliography for papers

describing applications based on Edge AI. For this matter, we used four different

research strings to perform this search, performed on Google Scholar:

� “Edge AI”;

� “Edge Intelligence”;

15

� “Edge Computing Intelligent System”;

� “Edge AI system”;

We initially curated 70 articles describing appliances based on edge computing

and AI algorithms. The criteria to select papers was that they should describe one

or more case studies that are direct applications of Edge AI. After reviewing this

selection, we remained with 54 papers. We excluded those that described general-use

frameworks or did not describe specific use cases.

For evaluation purposes, we decided to provide a set of variables to be evaluated

considering the edge computing and AI classifications. As discussed in the previous

sections, edge computing systems can be classified into three classes according to

their organization paradigm: cloudlets, fog computing, or mobile edge computing.

Also, the devices running intelligent models can be classified into two main cate-

gories: edge devices and edge servers. For the AI, we will initially provide which

algorithm or paradigm was used in the appliance. We will also briefly describe the

process described in the paper.

2.2.1 Applications Overview

This subsection provides an overview of the applications. Each paragraph describes

briefly a single work found in the literature. For each work, we evaluate the system’s

organization pattern (Mobile Edge, Fog, or Cloudlets), the AI paradigm applied in

the solution, and whether the intelligence algorithms run on separate edge servers or

edge nodes. The selection and classification criteria are described at the beginning

of this section.

The text iRobot-Factory: An intelligent robot factory based on cognitive manu-

facturing and edge computing [82] describes an architecture of a multi-robot factory

based on Edge AI. In this case, the edge devices are the robots and sensors involved

in the production process. The intelligence algorithms are based on edge servers

through direct connection or emulating cloud services. Their application targets the

creation of intelligent and integrated industrial architectures.

The work AI-enabled emotion-aware robot: The fusion of intelligent clothing,

edge clouds, and robotics [83] provides a proposal for an application integrating

a robot and smart clothing to provide an emotion-aware system to mitigate men-

tal health issues. The involved edge devices, in this case, were wearable devices

and robots. Edge server nodes run a system called an emotion-cognition engine to

provide AI-based actuation.

The authors of An edge AI-enabled IoT healthcare monitoring system for smart

cities [84] assess the possibility of creating a healthcare solution based on edge

16

computing, AI, and the IoT. The edge devices involved in this proposal are personal

end-users smart devices, patient monitoring devices, and connected ambulances.

Intelligent algorithms run on edge servers based in cloudlets.

In Energy efficient for UAV-enabled mobile edge computing networks: Intelligent

task prediction and offloading [85], the authors provide a network-based application

for unmanned aerial vehicles (UAVs) for intelligent tasks. In this work, the edge

devices are UAVs, smart devices, and edge servers. The intelligent inferences occur

in Edge Servers throughout a mobile edge computing organization.

The work entitled Real-time strawberry detection using deep neural networks

on embedded system (rtsd-net): An edge AI application [86] provides a case study

in which the authors apply computer vision and deep neural networks to detect

strawberries in real-time. The edge devices involved in this perspective are UAVs

and an edge server node. Intelligence algorithms run on the edge server node,

provided by the Jetson Nano development board.

In the work named Edge computing and artificial intelligence for real-time poul-

try monitoring [87], the authors propose and prototype an application for real-time

poultry monitoring. The intelligent algorithm runs on a mobile edge computing

server based on a Jetson Nano development board. The authors used ESP32 micro-

controllers as the media for sensing the environment.

The text named Edge AI-IoT pivot irrigation, plant diseases, and pests iden-

tification [88] describes the usage of Edge AI within an IoT perspective to detect

pests and diseases in plants. They also monitor environmental variables to detect

anomalies. In their case, the edge devices are weather stations, remote sensors,

and image capturing devices. The edge server runs several intelligent processes to

provide insights into understanding environmental health.

The paper Edge computing and artificial intelligence for landslides monitoring

[89] discusses the possibility of using Wireless Sensor Networks (WSNs), the IoT,

and artificial intelligence to monitor landslides. The edge devices involved in the

proposed architecture are multiple sensing nodes. The edge servers, in this case, are

ODroid N2s and Jetson Nano boards, which run the intelligence algorithms.

In the article Edge AI in smart farming IoT: CNNs at the edge and fog computing

with LoRa [90] the authors propose an appliance using edge and fog computing

to provide Edge AI for smart farming. The edge devices are power-efficient IoT

sensors that communicate through LPWAN networks. The intelligence applications

are distributed among the fog and cloud layers.

In the paper Edge Intelligence-Assisted Smoke Detection in Foggy Surveillance

Environments [91], the authors discuss the training and deployment of an Edge-

AI-based system to detect smoke in foggy surveillance environments. The edge

intelligence proposed models are convolutional neural networks (CNNs) that classify

17

an image according to the presence of smoke. They search for models with lesser

operations per second and size to enable the deployment of edge devices.

In the work named Deep-Learning-Based Visual Odometry Models for Mobile

Robotics [70], the authors propose the usage of CNNs and data from a simultaneous

localization and mapping (SLAM) data to generate visual odometry models. The

edge devices were robots with different capabilities: one can perform slam, while

the other relies on visual odometry. The intelligence algorithm runs directly on the

edge device.

The article IDiSSC: Edge-computing-based Intelligent Diagnosis Support System

for Citrus Inspection [53] presents a proposal of an algorithm to perform the inspec-

tion of citrus fruits using Edge AI. The edge devices are image-capturing gear. The

authors assess the possibility of using both edge devices or edge server hardware in

the disease detection process.

In Conveyor Belt Longitudinal Rip Detection Implementation with Edge AI [92],

the authors assess the proposal of a novel conveyor belt rip detection system using

edge AI for the mining industry. The edge devices, in this case, are image-capturing

apparatuses. The authors’ study considers the possibility of running the intelligence

algorithms on both edge devices and edge servers.

The paper Edge Deep Learning Applied to Granulometric Analysis on Quasi-

particles from the Hybrid Pelletized Sinter (HPS) Process [73] discusses a novel

proposal for an edge-computing- and AI-based system to detect Quasi-particles in

a steel industry process. The edge device involved in this proposal is an image cap-

turing device, which also bears processing capabilities. The intelligence algorithms

are CNNs running on the edge device.

In the work called Investigating the Spread of Coronavirus Disease via Edge-

AI and Air Pollution Correlation [93], the authors present an application based

on information from an Edge AI system and Air Pollution data to investigate the

spread of coronavirus disease. In this case, the authors evaluate the information

flow from the cloud to the edge to perform predictions.

The paper A Lossless Data-Hiding based IoT Data Authenticity Model in Edge-AI

for Connected Living [94] discusses the usage of Edge AI to verify and validate smart

living IoT data before passing it through analytics. In this case, the edge devices

are local IoT sensor nodes, mainly monitoring the user’s health. The intelligent

verification algorithm runs on an Edge AI server node.

The article Edge Computing AI-IoT Integrated Energy-Efficient Intelligent Trans-

portation System for Smart Cities [95] displays a distributed multi-agent system

based on edge computing, AI, and IoT for efficient and intelligent transportation.

The intelligence systems run on cloudlets. Edge devices in this network are onboard

devices gathering sensor data from transporting agents.

18

In National Sports AI Health Management Service System Based on Edge Com-

puting [96], the authors propose an AI sports health management system based

on edge computing. Edge devices in this context are smart sensors and intelligent

health systems. Intelligence algorithms run in cloudlet layers of the application.

The authors of Towards AI-Based Traffic Counting System with Edge Computing

[97] discuss implementing an AI-based traffic counting system based on the intelli-

gent transportation system concept. The edge devices in this context are cameras

capturing live traffic images attached to AI-capable hardware. The edge devices run

the intelligence models and feed a server with information.

Edge AI-Based Automated Detection and Classification of Road Anomalies in

VANET Using Deep Learning [98] discusses the application of DNNs and edge

computing to create an intelligent environment for road anomalies detection and

classification. Edge devices, in this case, are image-capturing instruments dis-

tributed among the network. Edge servers integrate the Vehicular Ad Hoc Network

(VANET), running intelligence algorithms.

The work named Intelligent and Smart Irrigation System Using Edge Computing

and IoT [99] proposes the intelligent usage of ontology and sensor data together

with a machine learning classification algorithm to create a smart irrigation system

based on Edge AI. Edge devices are smart sensors capturing field data. Intelligent

algorithms run on the edge server layer.

The paper entitled AI at the Edge for Sign Language Learning Support [100]

suggests a novel method to recognize the American Sign Language (ASL) alpha-

bet using CNNs and Fog Computing. Edge devices in this architecture are smart

end devices responsible for capturing images. The proposed method deploys the

intelligent algorithms on a fog computing layer.

In AI on edge device for laser chip defect detection [101], the authors propose

a novel edge system to detect defects in chips based on laser images. Intelligence

algorithms run on the edge device, accelerated by a neural network stick. The edge

devices are computer-on-modules with an attached microscope and a neural network

accelerator.

The work An AI-edge Platform with Multimodal Wearable Physiological Signals

Monitoring Sensors for Affective Computing Applications [102] displays a proposal

for a novel platform to monitor user’s emotions. The edge devices are a set of wear-

able sensors measuring electroencephalography (EEG), electrocardiography (ECG),

and photoplesmiography (PPG). Intelligence algorithms run on an AI/IoT edge

server based on FPGA and a RISC-V platform.

In A New Deep Learning-Based Food Recognition System for Dietary Assessment

on An Edge Computing Service Infrastructure [103], the authors propose a food

recognition system based on edge computing and AI. Edge devices in this proposal

19

are mobile image capturing devices. The intelligent processing happens in a cloudlet

layer.

The authors of Implementation of Pavement Defect Detection System on Edge

Computing Platform [104] present a novel edge computing platform to detect defects

in pavements. Edge devices are a composition of cameras and computing modules.

Intelligence algorithms run on these specialized modules, which can be computer-

on-modules or FPGAs.

Edge-AI-Based Real-Time Automated License Plate Recognition System [105]

presents a new license plate recognition system based on Edge AI and IoT. The

edge intelligence runs on the device, which has AI accelerators. The edge devices

are image-capturing computer-on-modules.

In A Wireless Multi-Channel Capacitive Sensor System for Efficient Glove-Based

Gesture Recognition With AI at the Edge [106], the authors present a wearable-based

edge system for ASL gesture recognition. Their edge device is a wearable system

based on capacitive sensors. The edge intelligence runs in the wearable computer-

on-module.

Blockchain-Based Trust Edge Knowledge Inference of Multi-Robot Systems for

Collaborative Tasks [107] provides a proposal for a blockchain-based system to pro-

vide AI inferences in multi-robot systems. Edge devices are robots composing a

multi-robot system. Edge servers, in this case, are local Edge AI nodes that run AI

inference algorithms.

The paper Deep Learning Models for Magnetic Cardiography Edge Sensors Im-

plementing Noise Processing and Diagnostics [108] presents an implementation of

deep learning models to process noise and aid in diagnostics using magnetic cardio-

graphy edge sensors. Edge devices, in this case, are magnetocardiography (MCG)

sensors. Signals are processed in a high-performance edge machine as an edge server.

In the work Deep Reinforcement Learning for Collaborative Edge Computing

in Vehicular Networks [109], the authors display a mobile edge computing system

based on collaborative and decentralized intelligence in vehicular applications. Edge

devices are onboard computers in vehicular networks. Edge servers are distributed

edge clusters that run the intelligence algorithms.

The work named Development and Validation of an EEG-Based Real-Time Emo-

tion Recognition System Using Edge AI Computing Platform With Convolutional

Neural Network System-on-Chip Design [110] displays a solution to recognize emo-

tions using electroencephalography (EEG) data. The edge device employed in this

system is a field-programmable gate array (FPGA) board. For the edge server, the

application uses networking to develop high-level appliances using the inferences

from the edge devices.

In the article Distributed Deep Learning Model for Intelligent Video Surveillance

20

Systems with Edge Computing [111], the authors propose a novel model for video

surveillance systems based on Edge AI. These are two layers of edge servers, orga-

nized as a mobile edge computing appliance and getting closer to cloud integration.

In this context, the edge devices are video capturing devices.

Edge-AI in LoRa-based Health Monitoring: Fall Detection System with Fog Com-

puting and LSTM Recurrent Neural Networks [112] presents the proposal of an

ecosystem based on Edge AI and LPWAN connections toward remote healthcare

monitoring. The edge devices are wearable IoT sensors. Edge servers provide the

intelligence algorithms necessary to analyze signals and detect falls.

The article Edge artificial intelligence for the industrial internet of things ap-

plications: an industrial edge intelligence solution [113] presented a novel edge-

computing-based model for developing intelligent industrial solutions. The edge de-

vices present in this work are industrial end devices performing several tasks. The

intelligence models are updated in the edge servers within the federated learning

organization.

AI-Aided Individual Emergency Detection System in Edge-Internet of Things

Environments [114] displays an innovative individual emergency detection system

based on IoT and edge intelligence. The edge devices, in this case, are mobile phones,

capturing their sensors’ data throughout the usage time. The intelligence models

run on edge servers.

In Economic data analytic AI technique on IoT edge devices for health monitoring

of agriculture machines [115], the authors provide a novel integration model for

agricultural machines using Edge AI. In their case, the edge devices are agriculture

machines (AgMs) producing data from interconnected sensors. Edge servers run in

distributed mobile devices which perform inferences using lightweight models.

In the article named Intelligent Edge Computing for IoT-Based Energy Man-

agement in Smart Cities [116], the authors present a design for an Edge-AI-based

energy management system. In their perspective, the edge devices are IoT sensors

distributed on the network. Mid-term edge servers provide intelligent services for

energy management.

Intelligent Search and Find System for Robotic Platform Based on Smart Edge

Computing Service [117] displays a novel edge service to provide intelligent task

division algorithms. The edge devices in this perspective are autonomous robots.

A base station contains a terminal that provides a self-design intelligence algorithm

and interfaces with an operator.

In the article named Intelligent Traffic Accident Detection System Based on Mo-

bile Edge Computing [118], the authors display a traffic accident detection system

based on Edge AI. The edge devices within this perspective are smartphones within

a mobile edge computing (MEC) network. Mobile edge servers provide the intelli-

21

gence algorithms as a service.

The authors of Low-Power HW Accelerator for AI Edge-Computing in Human

Activity Recognition Systems [119] propose an efficient hardware-accelerated system

for human activity recognition. The edge device in this context is self-developed

hardware to read inertial sensors and processes. The edge intelligence algorithms

are hardware accelerated hybrid neural networks.

In the article named pAElla: Edge AI-Based Real-Time Malware Detection in

Data Centers [120], the authors propose a lightweight and scalable solution to moni-

tor the presence of malware in data centers. The intelligence algorithms are designed

to run in the edge devices, which feed inferences to an edge server. The edge devices

are IoT computer-on-modules based on ARM processors.

The paper Passban IDS: An Intelligent Anomaly-Based Intrusion Detection Sys-

tem for IoT Edge Devices [121] displays a novel IoT intrusion detection system

(IDS) based on smart edge computing. The edge devices in this context are IoT

gateways. Machine learning models on these gateways provide predictions of poten-

tially hazardous packages.

Real-Time Apple Detection System Using Embedded Systems With Hardware Ac-

celerators: An Edge AI Application [122] presents a novel system to detect apples

in orchards based on Edge AI devices. For edge devices, the authors propose several

solutions based on embedded computers. These computers run intelligent models

to detect the apples directly in frames taken from the orchard.

The paper Towards the edge intelligence: Robot assistant for the detection and

classification of human emotions [108] provides a novel method to detect and classify

human emotions using edge computing. The edge devices, in this case, are a wearable

sensor and an Edge AI camera. The intelligence models run on the edge devices,

which also feed an assistant robot with information.

With Innovative Vineyards Environmental Monitoring System Using Deep Edge

AI [123], the authors present a solution to monitor vineyards using edge devices

with AI capability. Edge devices are computing nodes capable of running AI mod-

els and communicating using LoRaWAN. After acquiring data and predicting, the

information is gathered and sent to a central prediction system.

The authors of AI-doscopist: a real-time deep-learning-based algorithm for local-

izing polyps in colonoscopy videos with edge computing devices [124] proposed an

algorithm to localize polyps in colonoscopy videos through edge devices. The edge

intelligence model uses convolutional neural networks to recognize situations of in-

terest in colonoscopy exam videos. Due to the nature of the models, we analyze that

a cloudlet architecture is more suitable for this application.

The researchers responsible forWearable IoT Smart-Log Patch: An Edge Computing-

Based Bayesian Deep Learning Network System for Multi-Access Physical Monitor-

22

ing System [125] proposes a system to monitor physical activities based on wearable

patches and Edge AI. The edge devices are IoT smart-log patches that gather data

from sensing the users’ physical conditions and activities. Intelligence models run

on local mobile devices or computer applications.

The authors of Smart Video Surveillance System Based on Edge Computing [126]

provide an innovative surveillance system based on Edge AI. Edge devices are intel-

ligent cameras capable of running AI models. Intelligence models run on specialized

edge hardware that enables running AI models.

In the research named Wearable Edge AI Applications for Ecological Environ-

ments [51], the authors provided a novel method to identify diseases in plants and

evaluate the spread within canopies. The edge devices, in this case, are smart hel-

mets with IoT capabilities. The intelligence models run on edge servers from a

mobile edge computing perspective.

The authors of Deep Learning Approach at the Edge to Detect Iron Ore Type [127]

display a new system based on intelligent sensors to monitor ore types in conveyor

belts. The edge devices, in this case, are sensors integrated into the industrial plant

with AI capabilities. The intelligence models run within the smart sensors, enabling

instant actuation given the test results.

Green Citrus Detection and Counting in Orchards Based on YOLOv5-CS and AI

Edge System [128] displays a new method to detect green citrus in orchards based

on Edge AI. The edge device in this proposal is an AI-capable edge computer with

a camera to capture images. The models run on the edge device, recognizing green

citrus among the orchard.

In An Edge Intelligence Empowered Recommender System Enabling Cultural Her-

itage Applications [129], the authors present a new recommendation system based

on user information and Edge AI. Edge intelligence allows personalized recommen-

dations based on the users’ inputs. The edge devices in this perspective are mobile

phones.

In the work A semi-supervised learning approach for network anomaly detection

in fog computing [130], the authors propose using a Support Vector Machine (SVM)

through semi-supervised learning to detect anomalies in the network data flow. The

intelligence model, in this case, is a One-Class Support Vector Machine (OCSVM).

The semi-supervised learning happens in edge servers, forming a Fog Computing

infrastructure.

2.2.2 Preliminary Analyses

After studying the works in the literature, we provide an initial overview of some

information extracted from the collected data. This information aims to surround

23

Figure 2.2: Number of application papers per year. The first applications in this
context were proposed in 2017, but the it was established in 2019.

the main common aspects of the studied works. Initially, we provide an overview

of how many papers were found each year. Figure 2.2 displays the results of this

analysis.

From this result, we can initially state that the preliminary works that apply

Edge AI concepts came from 2017. Nevertheless, the data indicate that the concept

was actually established in 2019. After this year, the number of novel proposed

applications is consistent and increased in 2021. Some Edge AI papers were already

found in the first quarter of 2022.

Figure 2.3: Contributions of each category of edge computing to the curated appli-
ances. The majority of works apply “Mobile edge computing”.

24

A second relevant analysis regards the edge computing classification. This sec-

tion classified the works among “Mobile edge computing”, “Fog computing”, and

“Cloudlets”. Of the 54 curated articles, 38 applications used Mobile edge comput-

ing, 12 used Cloudlets, and four applied Fog computing. Figure 2.3 displays the

classification data analysis in proportions.

Figure 2.4: Location of the AI algorithms. The analysis display that appliances can
deploy models on edge devices or edge servers.

Another feasible study is whether the appliances run the models in the edge

devices or edge servers, according to our preliminary classification. A few more

works deployed AI models on edge servers than edge devices. Nonetheless, the data

is almost balanced, displaying circa 57% of the works with AI deployed on edge

servers and 43% on edge devices. In this case, the two works that could run on

both devices and servers were classified as “Edge Device”. Figure 2.4 displays these

results.

Finally, we assess the models used in the studied applications. After inspect-

ing the works initially, we decided to classify the applications among the following

classes: CNNs, LSTMs, DNNs, and Others/Unspecified. The three initial

classes represent the most models which were individually identified in the papers

found in the literature, while the last one treats the exceptions. If a system employs

more than one algorithm, all models contribute individually to the count. The re-

sults, displayed in Figure 2.5, show that CNNs are the most popular models among

Edge AI applications. Also, many authors did not specify the machine learning

models applied, focusing their papers on the edge computing architecture. DNNs

and LSTMs had relevant individual contributions to these numbers.

25

Figure 2.5: AI models identified in the articles. The three individual categories that
contributed the most are CNNs, LSTMs, and DNNs. Many authors identify their
appliances generically as “Machine Learning”

2.3 Edge Computing and AI taxonomies analysis

After analyzing several applications, the next stage in this research is to understand

how the foundation areas are organized. For this matter, we provide a study of the

taxonomies in both edge computing and AI means. After this stage, we expect to

extract enough information to propose an Edge AI taxonomy.

2.3.1 Edge Computing Taxonomies

Initially, we explored a few works regarding edge computing taxonomies. Finding

general information in edge computing taxonomies was not easy, as most texts are

focused on single areas or applications. For instance, Beck et al. [131] focus on

examining the taxonomy of mobile edge computing solutions. While his work is

extensive, it refers to one single of the three main areas of Edge Computing. Thus,

this work does not provide a general view of the area.

Regarding a general view of edge computing, Ahmed et al. [132] display a com-

prehensive taxonomy of information that defines edge computing. An essential as-

pect of this taxonomy within the context of this work is that the authors also

evaluate the same computing paradigms as presented by Khan et al. [2], which were

one of the bases of this study. The authors also generally classify the technologies

among edge devices and edge servers, later using their taxonomy to evaluate the

most critical enabling technologies for edge computing.

Dolui and Datta [133] also use the same three paradigms to classify edge com-

puting applications. These three paradigms work as a baseline to understand the

26

nodes’ organization, nodes location, software architecture, context awareness, geo-

graphical proximity, access, and communication. This result reinforces the usage of

these three paradigms as the general line to classify edge computing applications.

The analysis of these studies, combined with the previous evaluations, leads to

the conclusion that a set of technologies based on edge computing should be initially

evaluated according to the three computing paradigms that compose the area. The

separation among cloudlets, fog computing, and mobile edge computing allows a

general classification of the solutions, leading further to the AI classification.

2.3.2 AI Algorithms Taxonomies

The ways of classifying AI are broader than edge computing. For instance, Sheth et

al. [134] classify AI according to the learning paradigm (supervised learning, unsu-

pervised learning, reinforcement learning). While we understand that this will later

be important to evaluate Edge AI techniques, we search for a broader classification

within this work. Another example of this specificity happens in Baltrušaitis, Ahuja,

and Morency [135]. These authors create a taxonomy of specific deep learning rele-

vant within the Multimodal Machine Learning context.

Similarly, Talbi [136] divides AI works according to the algorithms. They provide

this classification in the context of evaluating how these algorithms can support

metaheuristics. From this work, we understand that using the algorithm paradigms

to classify these works is an interesting way of approaching the problem. Still, the

way to perform this classification depends on the objective of the algorithms. After

searching and evaluating works, we understand that the taxonomy within the AI

context should consider the specificity of the desired tasks and concepts.

2.4 Edge AI Taxonomy

Given the knowledge built up to this point, we extracted enough information to

propose a new taxonomy to classify Edge AI works and applications. Initially, we

start with the edge computing domain, classifying the application among its classes.

Then, we evaluate the application according to the AI domain.

The reviews indicate that the classification among the three main classes is

adopted for the edge computing traits in both application works and taxonomies.

Thus, the first layer of the Edge AI taxonomy evaluates if the works belong to mobile

edge computing, fog computing or cloudlets domains. This separation is efficient for

dividing edge computing works while separating among edge devices or edge servers

only makes sense within mobile edge computing domain.

In the AI computing features, we initially observed several ways to separate AI

27

Figure 2.6: Classification of the works from Section 2.2 according to the proposed
taxonomy. Each gray square is a single work evaluated in this section of the work.

algorithms. Thus, interpreting the data obtained in Section 2.2 was the critical

aspect of defining this division. In Figure 2.5, we observe that most works use

CNNs, LSTMs, or DNNs as the basis of the application. These models belong to

the deep learning domain. A similar proportion of works employ other machine

learning models or paradigms to employ AI on edge. Thus, we defined two classes:

deep learning, containing the applications that employ algorithms belonging to the

deep learning domain, and machine learning, encompassing the applications that

employ other methods and paradigms.

In Figure 2.6, we display the reclassification of the works presented in Section

2.2 according to the proposed taxonomy. We manually evaluated each work in this

section according to the proposed divisions. If the works employ methods from more

than one domain, including deep learning, we consider them to belong to the deep

28

learning classes.

What we observe in this case is that the proportions indicate by Figures 2.3, 2.4,

and 2.5 were reflected in this taxonomy. Most of the works from Edge AI belong to

the mobile edge computing domain. Also, most employ algorithms belonging to the

deep learning domain. The fewest amount of applications was found regarding the

fog computing domain, while a reasonable amount was found regarding the cloudlets

domain, with a more balanced division between deep learning and machine learning.

Finally, we organized a taxonomic table of the displayed works for a better

understanding. In Table 2.1, we compiled the results displayed through Figure 2.6.

This information complements what we presented previously, working as a catalog

to find works related to each area.

Table 2.1: Taxonomic table compiling the collected information from papers.

Paper Title Edge Computing Paradigm AI Paradigm
Energy efficient for UAV-enabled mobile edge computing networks: Intelligent task prediction and offloading [85] Mobile Edge Computing Deep Learning
Real-time strawberry detection using deep neural networks on embedded system (rtsd-net): An edge AI application [86] Mobile Edge Computing Deep Learning
Edge computing and artificial intelligence for real-time poultry monitoring [87] Mobile Edge Computing Deep Learning
Edge AI-IoT pivot irrigation, plant diseases, and pests identification [88] Mobile Edge Computing Deep Learning
Edge Intelligence-Assisted Smoke Detection in Foggy Surveillance Environments [91] Mobile Edge Computing Deep Learning
Deep-Learning-Based Visual Odometry Models for Mobile Robotics [70] Mobile Edge Computing Deep Learning
Conveyor Belt Longitudinal Rip Detection Implementation with Edge AI [92] Mobile Edge Computing Deep Learning
Edge Deep Learning Applied to Granulometric Analysis on Quasi-particles from the Hybrid Pelletized Sinter (HPS) Process [73] Mobile Edge Computing Deep Learning
Towards AI-Based Traffic Counting System with Edge Computing [97] Mobile Edge Computing Deep Learning
Edge AI-Based Automated Detection and Classification of Road Anomalies in VANET Using Deep Learning [98] Mobile Edge Computing Deep Learning
AI on edge device for laser chip defect detection [101] Mobile Edge Computing Deep Learning
An AI-edge Platform with Multimodal Wearable Physiological Signals Monitoring Sensors for Affective Computing Applications [102] Mobile Edge Computing Deep Learning
Implementation of Pavement Defect Detection System on Edge Computing Platform [104] Mobile Edge Computing Deep Learning
Edge-AI-Based Real-Time Automated License Plate Recognition System [105] Mobile Edge Computing Deep Learning
Blockchain-Based Trust Edge Knowledge Inference of Multi-Robot Systems for Collaborative Tasks [107] Mobile Edge Computing Deep Learning
Development and Validation of an EEG-Based Real-Time Emotion Recognition System Using Edge AI Computing Platform
With Convolutional Neural Network System-on-Chip Design [110]

Mobile Edge Computing Deep Learning

Distributed Deep Learning Model for Intelligent Video Surveillance Systems with Edge Computing [111] Mobile Edge Computing Deep Learning
AI-Aided Individual Emergency Detection System in Edge-Internet of Things Environments [114] Mobile Edge Computing Deep Learning
Intelligent Traffic Accident Detection System Based on Mobile Edge Computing [118] Mobile Edge Computing Deep Learning
pAElla: Edge AI-Based Real-Time Malware Detection in Data Centers [120] Mobile Edge Computing Deep Learning
Towards the edge intelligence: Robot assistant for the detection and classification of human emotions [108] Mobile Edge Computing Deep Learning
Wearable IoT Smart-Log Patch: An Edge Computing-Based Bayesian Deep Learning Network System
for Multi Access Physical Monitoring System [125]

Mobile Edge Computing Deep Learning

Smart Video Surveillance System Based on Edge Computing [126] Mobile Edge Computing Deep Learning
Wearable Edge AI Applications for Ecological Environments [51] Mobile Edge Computing Deep Learning
Deep Learning Approach at the Edge to Detect Iron Ore Type [127] Mobile Edge Computing Deep Learning
Green Citrus Detection and Counting in Orchards Based on YOLOv5-CS and AI Edge System [128] Mobile Edge Computing Deep Learning
Edge computing and artificial intelligence for landslides monitoring [89] Mobile Edge Computing Machine Learning
IDiSSC: Edge-computing-based Intelligent Diagnosis Support System for Citrus Inspection [53] Mobile Edge Computing Machine Learning
A Lossless Data-Hiding based IoT Data Authenticity Model in Edge-AI for Connected Living [94] Mobile Edge Computing Machine Learning
Intelligent and Smart Irrigation System Using Edge Computing and IoT [99] Mobile Edge Computing Machine Learning
A Wireless Multi-Channel Capacitive Sensor System for Efficient Glove-Based Gesture Recognition With AI at the Edge [106] Mobile Edge Computing Machine Learning
Economic data analytic AI technique on IoT edge devices for health monitoring of agriculture machines [115] Mobile Edge Computing Machine Learning
Intelligent Search and Find System for Robotic Platform Based on Smart Edge Computing Service [117] Mobile Edge Computing Machine Learning
Low-Power HW Accelerator for AI Edge-Computing in Human Activity Recognition Systems [119] Mobile Edge Computing Machine Learning
Passban IDS: An Intelligent Anomaly-Based Intrusion Detection System for IoT Edge Devices [121] Mobile Edge Computing Machine Learning
Real-Time Apple Detection System Using Embedded Systems With Hardware Accelerators: An Edge AI Application [122] Mobile Edge Computing Machine Learning
Innovative Vineyards Environmental Monitoring System Using Deep Edge AI [123] Mobile Edge Computing Machine Learning
An Edge Intelligence Empowered Recommender System Enabling Cultural Heritage Applications [129] Mobile Edge Computing Machine Learning
Edge AI in smart farming IoT: CNNs at the edge and fog computing with LoRa [90] Fog Computing Deep Learning
AI at the Edge for Sign Language Learning Support [100] Fog Computing Deep Learning
Edge-AI in LoRa-based Health Monitoring: Fall Detection System with Fog Computing and LSTM Recurrent Neural Networks [112] Fog Computing Deep Learning
A semi-supervised learning approach for network anomaly detection in fog computing [130] Fog Computing Machine Learning
iRobot-Factory: An intelligent robot factory based on cognitive manufacturing and edge computing [82] Cloudlets Deep Learning
AI-enabled emotion-aware robot: The fusion of smart clothing, edge clouds and robotics [83] Cloudlets Deep Learning
An edge AI-enabled IoT healthcare monitoring system for smart cities [84] Cloudlets Deep Learning
A New Deep Learning-Based Food Recognition System for Dietary Assessment on An Edge Computing Service Infrastructure [103] Cloudlets Deep Learning
Deep Learning Models for Magnetic Cardiography Edge Sensors Implementing Noise Processing and Diagnostics [108] Cloudlets Deep Learning
Intelligent Edge Computing for IoT-Based Energy Management in Smart Cities [116] Cloudlets Deep Learning
AI-doscopist: a real-time deep-learning-based algorithm for localising polyps in colonoscopy videos with edge computing devices [124] Cloudlets Deep Learning
Investigating the Spread of Coronavirus Disease via Edge-AI and Air Pollution Correlation [93] Cloudlets Machine Learning
Edge Computing AI-IoT Integrated Energy Efficient Intelligent Transportation System for Smart Cities [95] Cloudlets Machine Learning
National Sports AI Health Management Service System Based on Edge Computing [96] Cloudlets Machine Learning
Blockchain-Based Trust Edge Knowledge Inference of Multi-Robot Systems for Collaborative Tasks [107] Cloudlets Machine Learning
Edge artificial intelligence for industrial internet of things applications: an industrial edge intelligence solution [113] Cloudlets Machine Learning

2.5 Final Remarks

Edge computing and artificial intelligence initially had conflicting requirements. As

AI required more processing throughout time, edge computing developed mainly

29

over hardware miniaturization and increased mobility. Nevertheless, a recent trend

displayed increasing applications applying both concepts together, especially in mo-

bile edge computing. Although other research papers survey functional aspects [137],

applications for specific areas [138], or even specific technologies [139], the area lacks

a general conceptualization and taxonomy.

This trend had several names up to this moment, but every one of them had

similar premises of uniting edge computing with AI algorithms. Moreover, a signif-

icant number of papers describing applications in this context were published from

2019 on. To define this area, we started from the fundamental areas behind the

appliances: edge computing and AI. We named this novel concept Edge AI, one of

the names used to describe these appliances in the literature.

Edge computing is divided into three main areas: cloudlets, fog computing,

and mobile edge computing. Cloudlets refer to resourceful infrastructures built to

provide AI closer to the end-user. Fog computing regards the distribution among

heterogeneous devices and the virtualization of cloud-like services. Mobile edge

computing describes more mobile and isolated infrastructure, where less powerful

devices and more restricted resources are employed to provide AI.

AI can be divided in many ways. Mainly, it refers to machine learning processes

where algorithms learn to solve a task from provided data. The more modern

applications of machine learning are described in the literature as deep learning,

having several specific algorithms in this domain. Within edge computing, AI can

run in single-edge devices or as a service in edge servers. The first mode is only

referred to in the mobile edge computing domain.

This information helped us create a taxonomy to classify applications described

in papers from the literature. The works can belong to three edge domains: cloudlets,

fog computing, and mobile edge computing. The first layer evaluates the edge com-

puting classification. The second layer divides the AI among the deep learning

domain or belonging to any other paradigm of AI.

Finally, some of the main future trends regarding Edge AI integrate concepts like

Blockchain, 5G, 6G, and Federated Learning [78, 134, 140–142]. Future works can

explore these aspects as the ground for further investigation. Also, as mobile edge

computing contains the most developed area among these domains within Edge AI,

it requires further investigations and classifications on its own, possibly as a “Mobile

Edge AI” concept.

30

Chapter 3

Wearable Edge AI

Figure 3.1: Original Hardware and Software co-design process, presented in [4]

This chapter discusses the creation of the Wearable Edge AI concept. Our dis-

cussion begins with an understanding of how cooperative wearable systems work.

Then, we review the hardware/software co-design process. Finally, we assess the

wearable edge AI concept, surrounding its constraints and its creation and valida-

31

tion processes.

Our concept starts from the wearable systems perspective. Thus, it is required to

understand the design process behind them. As an inheritance from their embedded

systems’ origin, wearable devices and systems usually follow a process known as

hardware and software co-design [4], exemplified in Figure 3.1.

As displayed, a series of steps are required to produce these solutions. Initially,

there are two general steps to start projecting these appliances:

� Requirements definition: This stage involves collecting, assessing, and ex-

amining the system requirements. This is achieved by conducting a thorough

analysis of the stakeholders’ needs;

� General architecture proposal: During this stage, professionals utilize the

data collected from the previous step to create a preliminary outline of the

proposal. This initial blueprint necessitates defining the limitations for both

software and hardware to strategize the flow of information.

Following these preliminary stages, there are several simultaneous activities re-

lated to the software and hardware characteristics. These steps occur concurrently

since their outcomes are interdependent. They are:

� Hardware:

– Hardware components selection: The initial step in the hardware

phase is to list the necessary hardware components required to execute

the proposed tasks and functions.

– Prototype planning and design: Hardware components act as in-

put data for devising and developing the final prototype. During this

stage, connections between components are specified, and if required, the

Printed Circuit Board (PCB) layout is outlined;

– Prototype development: This phase involves the production of the

wearable device. The primary Central Processing Unit (CPU) and hard-

ware peripheral components are physically linked, potentially employing

the final version of the PCBs created in the previous stage. Finally, the

components can be attached to the garment;

– Device tests/validation: Multiple rounds of on-site hardware testing

and validation are conducted to authenticate the connections established

with each component. If any issues arise during this stage, they can be

rectified or altered in a new development round.

� Software:

32

– Software design: The previously stated requirements can also serve

as a guide for devising the relevant software. This phase entails defin-

ing functionalities and how internal modules will communicate with one

another;

– Software implementation: The design created earlier can now be uti-

lized as a point of reference for precisely coding the software. Typically,

specific and lightweight programming languages/frameworks can be em-

ployed during this stage, depending on the requirements of the entire

solution;

– Software tests/validation: This module is responsible for testing and

verifying whether the resultant software adheres to the previously stated

requirements. If the solution fails to meet the necessary requirements

or does not pass the validation tests, a new development round can be

initiated.

The remaining blocks are used by both contexts:

� Hardware/software integration: This stage involves integrating the pre-

viously developed hardware and software components. This is a crucial step

since both sections were separately developed until this point. Basic and com-

plex functionalities can be assessed to determine whether they produce the

desired output.

� In-field deployment/validation: This marks the final stage in the design

of wearable systems. The wearable device, which now incorporates integrated

hardware and software modules, is deployed and authenticated through field

sessions. This moment is also utilized in numerous research projects to collect

and retrieve empirical data.

3.1 Cooperative Wearable Systems

The Wearable Edge AI concept originates from the recognition that wearable sys-

tems do not function as isolated processing units. In Chapter 1, we highlighted that

Wearable Computing systems can be incorporated into cyber-physical applications.

Augimeri et al. [143] and Fortino et al. [144] present four distinct propositions

for collaborative body sensors. In two of these propositions, data collected from a

single user provides information to one or several stations. In the other two, data

collected from multiple users is utilized to feed one or several stations. Similarly,

to comprehend the methods of collaborating using wearable devices, we categorize

Cooperative Wearable Systems into two scenarios:

33

1. Single-User Cooperative Wearable Systems,

2. Multiple-User Cooperative Wearable Systems.

The first type happens when the same user utilizes multiple wearable devices

to compose a system, feeding one or multiple applications in base stations. The

second type occurs when many users wear the same equipment, with post-processed

data and flexibility gained in the final appliances in individual or various consumer

stations.

Single-User Cooperative Wearable Systems

Wearable compositions are crucial for monitoring both the user and the context

of the environment. Mihovska and Sarkar [145] introduce a vital concept for this

context: Human-Centric Sensing. According to these researchers, the Internet of

Things (IoT) and connectivity of modern devices provide the necessary tools to

establish cooperative systems around the user. These systems can monitor both

user signals and the surrounding environment.

Zhang et al. [146] proposed a cooperative environment based on a glove-shaped

pressure sensor and an armband to enable gesture recognition for Human-Computer

Interaction devices. They conducted a series of tests to verify the recognition accu-

racy of their system.

Peng and Peng [147] assert that Body-Area Networks have become a critical tool

for creating innovative healthcare solutions using collaborative wearable devices.

They proposed a cooperative communication strategy to integrate multiple devices

in a Wireless Body-Area Network (WBAN) and validated their proposal through

simulations.

Nguyen-Huu et al. [148] present a combination of a wearable device and smart-

phone working together to monitor daily activities in an indoor environment. Their

system utilizes both an armband and a smartphone to gather sensor data, process

and recognize activities, and transmit this information to a web server for further

analysis. They validated their system through performance evaluations on their

activity recognition and lifelogging algorithms.

Most of the proposed systems and architectures employ wearable devices as IoT

nodes in a Wireless Body-Area Network, and in some instances, smartphones serve

as connection gateways. Finally, these works follow the same systematic process,

beginning with requirement analysis, architecture proposal, implementation, and

validation.

34

Multiple-User Cooperative Wearable Systems

Pimentel et al. [149] developed a system that monitors the stress levels of multiple

surgeons by using commercial wearable devices for vital signs monitoring, such as

ECG and actigraphy signals. The data gathered from these devices is sent to an

Android application that marks events, creates reports, and stores the data in a

database. The authors validated their proposal by conducting statistical studies on

the self-assessment tools present in the Android application.

In another study, Prakash and Ganesh [150] established a communication en-

vironment for cooperative health monitoring in hospitals using wearable devices.

They tested their proposal using network simulator applications to verify the packet

transmission performance.

Pham et al. [151] proposed a wearable-based system environment to monitor

older adults and patients with Parkinson’s disease. Their architecture was based on

IoT wearable devices with Inertial Measurement Units (IMUs) located on the user’s

lower limb. To validate their proposal, they tested their environment and system

with actual target users and compared the results with video recognition using

statistical analysis. These studies followed a similar systematic process, including

analyzing the context of use and system requirements, proposing an architecture,

assembling a prototype environment, and performing validation tests.

Even in a multi-user context, the current state-of-the-art works follow a system-

atic process in proposing wearable systems. This includes analyzing the context

of use and gathering system requirements, proposing an architecture, assembling a

prototype environment to test the proposal, and performing validation tests.

3.2 Wearable Edge AI

Field research environments usually lack the infrastructure required to integrate

Edge wearable devices with computer systems. Wearable Edge AI is a concept that

aims to provide services to ecological researchers and practitioners by offering local

services based on artificial intelligence applications. The concept enables embedded

devices to perform machine learning models that assist humans in the decision-

making process in real-time.

The growing interest in machine learning, deep learning, and other computational

intelligence applications has led to discussions on how to bring these algorithms to

the edge. According to Chen and Ran [152], the main challenges of using machine

and deep learning in this context are latency, scalability, and privacy. These tech-

nologies are typically used for Computer Vision and Natural Language Processing,

and relevant features in these applications include cost, reliability, latency, and pri-

35

vacy, as stated by Wang et al. [153].

An increasing number of wearable computing applications use edge computing

to provide insights based on machine learning. For instance, there are appliances in

health monitoring [125, 154, 155], ergonomics [156], activity tracking [157], and so

on. Most of these applications are user-centered and focus on monitoring the users’

conditions rather than the environment. Although there are many applications and

common features, the authors have yet to define Wearable Edge AI as a single topic.

Therefore, this work aims to formalize the constraints and design patterns for such

applications.

Considering these aspects, we produced an entry for the Wearable Edge AI con-

cept. It considers the aspects raised in this chapter and Chapter 2 as foundations.

We define Wearable Edge AI as:

� Wearable Edge AI is the set of methods that describes the design process and

validation of solutions that combine wearable computing, edge computing,

and machine learning concepts in developing novel appliances, systems, and

applications to solve real-world problems.

Although this concept is very similar to the one presented in Chapter 2, the

presence of wearable computing concepts and constraints is a crucial difference.

Wearable applications have constraints that are not included in edge computing by

itself. These devices are especially constrained in resources and capabilities, reduced

in size, but require the usage of machine and deep learning algorithms to perform

inferences.

3.2.1 Rethinking the hardware/software co-design for Edge

AI solutions

The co-design principle of hardware and software is crucial while designing new

solutions for embedded and wearable systems [158, 159]. This principle guides the

process of designing and validating parallel hardware and software aspects, which

later integrate into novel systems.

However, in this text, we suggest a new approach to this pattern. We believe

that architectural factors must also be validated parallelly during the design process

in edge computing and IoT approaches. To illustrate this, Figure 3.2 displays the

traditional and new diagrams for the co-design. While Figure 3.2a shows the tra-

ditional approach for the Hardware/Software (HW/SW) co-design pattern, Figure

3.2b explores a new branch for designing and validating the architecture in parallel

with hardware and software constraints.

36

(a) Co-design considering HW/SW
(b) New co-design approach

Figure 3.2: Co-design principle diagrams. The traditional approach does not con-
sider architectural aspects in parallel with the HW and SW design.

The traditional co-design approach typically begins with defining requirements

and proposing a general architecture. Then, the constraints are segregated between

hardware and software contexts, and the development of both aspects proceeds

in parallel. After validating both components, the solution is integrated. This

architecture is effective for designing single solutions for wearable and embedded

systems, regardless of their abstraction levels. However, when dealing with multiple

and variable architectures, this approach becomes fragile. If the validation after

integration fails due to architectural traits, the solution becomes obsolete. This

problem becomes even more critical when designing a Wearable Edge AI, where

such factors cannot be ignored.

Thus, we suggest that architecture validation should be a new branch after con-

text splitting. When designing new devices, identifying the essential aspects of

architectural design and validating these designs during the proposal process is cru-

37

cial. Finally, the integration must happen in parallel, and the last stage is deploying

and validating all systems together. In the architecture branch, represented by green

blocks in Figure 3.2b, there are three new stages:

� Architecture/Dataflow Design: In this stage, the proposal must identify how

the devices communicate within the network. In the context of IoT and Edge

Computing, devices communicate with each other providing services, insights,

and information. Integrating devices in the same WBAN/WPAN, or even

multiple devices with multiple WLAN users, requires a dataflow design.

� Architectural Development and Integration: After defining the roles of each

device within the network, as well as the integration protocols, the architecture

must be developed in parallel with the integration of hardware components and

individual software traits.

� Architecture Validation: Like the other branches, the architecture must also be

validated using formally-defined tests. This aspect enforces the design process

and identifies flaws in the development process that must be assessed.

As displayed, these conditions help assessing the possibility of creating solutions

combining the concepts of wearable computing, edge computing, and AI. We have

previously studied the development of an Edge AI concept. Now, we define Wearable

Edge AI as the set of methods that describes the design process and validation of

solutions that combine wearable computing and Edge AI concepts in developing

novel appliances, systems, and applications to solve real-world problems.

38

Chapter 4

Case Study - Wearable Edge AI

towards environmental studies

This chapter is dedicated to the evaluation of the case-studies developed towards our

first stakeholders. In the introductory section, we defined these target audience as

the researchers, students, professors, and practitioners within ecology. We developed

applications within three main branches: leaf damage estimation, diseases evaluation

and mapping, and ants distribution and couting estimation.

4.1 Leaf damage estimation

The first application in our context is the leaf damage estimation. This informa-

tion is important for the stakeholders related to the ecological field. For instance,

researchers use this variable as an indicator to analyze the ecosystem interactions

[160, 161], or even to analyze the impact of predators in crops [162, 163].

4.1.1 Requirements

The first step in this analysis is evaluating the requirements for the proposed method.

For this matter, we display a version of the co-design diagram presented in Figure

4.1, which is a simplification of the diagram presented in Figure 3.2b.

This representation displays the need to raise the constraints for the applica-

tion and classify them into the hardware, software or architectural domain. The

constraints identified for this matter are:

� The application must reconstruct the leaf shape using artificial intelligence

[Software].

� The application must have a mean to extract a single leaf image from the

environment [Hardware].

39

Figure 4.1: Simplified Co-design diagram.

� The application must move the captured image into an AI accelerated hard-

ware [Architecture].

� The image from the leaf must be converted into a mask using image processing

[Software].

Given these constraints, we proposed the usage of a conditional GAN using

the Tensorflow environment, allowing the integration with embedded AI accelerated

hardware. We also propose the means in which a user can extract a leaf image which

can input into such algorithm.

4.1.2 Method overview

Figure 4.2: Proposed Method and Work Overview

The primary process of our proposed method begins with a preprocessing step

that extracts a mask of the leaf area in the image, separating it from the background.

40

The segmented image is then fed into a Conditional GAN model trained to produce

an estimated original leaf shape. Lastly, we compare the output with the input

image to determine the estimated percentage of defoliation. Figure 4.2 provides a

visual representation of this method.

In addition, we employed the preprocessing method to create a database of masks

that includes the complete leaf shapes. These images were utilized to produce a

synthetic database that includes leaf masks with artificially induced damage. The

latter database was used to train the Conditional GAN method to obtain the test

model, utilizing the original masks database as the ground truth. Figure 4.2 also

illustrates this series of stages.

4.1.3 Datasets Description

In this study, we worked with two distinct databases. The first one, referred to as

FLAVIA henceforth, was introduced by Wu et al. [164]. This dataset comprises

1907 colored images of leaves from 33 distinct plant species, with a resolution of

1600x1200 pixels. We utilized this dataset to create the synthetic database and for

model training, validation, and testing purposes.

The second dataset we used is the Middle European Woods dataset presented

by Novotny and Suk [165]. We will refer to this dataset as MEW 2012 in the rest

of the paper. It consists of 9745 images of leaves from 153 different species, already

binarized and available in various resolutions. We employed this dataset to conduct

additional tests on the shape reconstruction and damage estimation process.

4.1.4 Preprocessing

As previously mentioned, the initial step in the data flow is preprocessing, which

aims to extract the image from the background. We employed this technique to

create a synthetic database that includes leaf masks with artificially induced dam-

age. Additionally, we utilized the preprocessing method to generate a database of

masks that includes the complete leaf shapes. The preprocessing stage comprises

six consecutive steps:

1. Convert to grayscale;

2. Insert paddings to turn the image into a square shape;

3. Reduce the size of the image to 400x400;

4. Enhance the contrast using a radiometric transformation;

5. Calculate the threshold using Otsu’s method;

41

6. Binarize the image;

The initial step involves converting the image colorspace to grayscale. We then

add padding to the image to shape it into a square. The padding is selected based on

the highest pixel value to improve binarization performance when using thresholding

algorithms. Following this, we employ a radiometric transformation to enhance

the image contrast, as per Equation 4.1. In this equation, Gi(x, y) ∈ [0, 1], and

Gi(x, y) ∈ R represent the normalized pixel values of the original image. It is

worth noting that Gf (x, y) ∈ [0, 1], and Gf (x, y) ∈ R represent the output process

parameters.

Gf (x, y) = Gi(x, y)
10. (4.1)

Following the contrast enhancement stage, we move on to binarization. To

achieve this, we utilized Otsu’s method [166] to identify the separation threshold

between the leaf and the background. This method works by minimizing the intra-

class variance function, as defined in Equation 4.2.

σ2
b (k) =

[µTω(k)− µ(k)]2

ω(k)(1− ω(k))
(4.2)

Where k is the highest number of all the possible threshold values and:

ω(k) =
k∑

i=1

p(i); (4.3)

µ(k) =
k∑

i=1

iṗ(i); (4.4)

µT =
L∑
i=1

iṗ(i). (4.5)

The values required for this method are obtained from the histogram, normalized

as a probability density function represented by p(i), for the L candidate threshold

values in the histogram. This approach provides a reliable estimation for the thresh-

old value required to segment the image from its background. In this equation, ω(k)

represents the class probability, µ(k) represents the class means, and µT represents

the global mean. The variable i represents all possible pixel values present in the

histogram. Assuming every possible value of k falls within the range of [0, 255] and

is a natural number, all possible values of i should be i ∈ [1, 255], i ∈ N.
We also used this method to prepare the synthetic database, which was employed

to train the conditional GAN method to obtain the test model using the original

masks database as the ground truth. During the synthetic dataset generation, we

42

removed internal holes to create ideal leaf images. Additionally, we developed a

novel method for creating randomly artificial damaged leaf images, which we used

to generate a dataset for training the conditional GAN.

4.1.5 Synthetic Dataset Generation

As previously mentioned, the preprocessing pipeline was utilized in the synthetic

dataset generation process. We employed this method to prepare the images from

the dataset for the application. In this section, we present the pipeline involved in

producing images with synthetic damage and the processes included in this pipeline.

Most leaves in the dataset are undamaged, while some may show slight damage

or light reflection spots. To better represent the ideal leaf shape, we selected the

largest contour recognized after binarization to create a complete leaf representation.

Using this technique, we generated 1907 masks corresponding to the 1907 images in

the dataset. To create a supervised learning dataset in the next stage, we needed to

introduce artificial measurable damage into the leaf masks.

In this stage, we discuss how we created artificial random damage on the leaves.

Similar to Da Silva et al. [167], we applied artificial damage techniques to gen-

erate a training dataset. We initially assumed that the leaf had a slightly higher

probability of having damage at its borders. Therefore, we created a 2-D proba-

bility distribution, g(x, y), centered on the (x0, y0) average center position of the x

and y coordinates of the binarized leaf mask image. Equation 4.6 represents this

2-dimensional Gaussian distribution centered at (x0, y0), with a standard deviation

of σ.

g(x, y) = e−
(x−x0)

2+(y−y0)
2

2σ̇2 . (4.6)

Furthermore, we created a probability function p(x, y), for the damage using

g(x, y) according to the following equation:

p(x, y) =
1− g(x, y)

2
+ P0. (4.7)

In this scenario, P0 represents the minimum probability offset. The probability

of damage beyond the leaf’s boundaries in the image must be zero. This condition

is achieved by multiplying the probability function by the leaf mask. During the

first stage of this study, we selected a baseline value of P0 = 0.3 and σ = 100, based

on practical tests conducted on the databases. In the second stage, we opted for

a baseline value of P0 = 0.6 and σ = 10000, to generate more damage on average.

Figure 4.3 illustrates the probability function for one of the leaves in our dataset.

The damage generated at a point follows a certain rule. Initially, we draw a

43

Figure 4.3: Example of damage probability density distribution. This function is
used to generate the artificial damage.

Figure 4.4: Illustration of the punctual artificial damage generation method [5].

circle with a diameter of 2D/3 for a given reference size of D. Subsequently, we

draw four circles with a diameter of D/3, centered at random points located over

a virtual circle with a diameter of 3D/5. Figure 4.4 depicts the punctual artificial

generation method.

The artificial damage generation algorithm selects several random coordinates

and checks the function to determine whether it should insert damage at that point.

If the answer is positive, it injects the loss at the spot by randomly selecting a

reference size.

To create the synthetic dataset, we generated 12 versions of each leaf with random

losses. We selected a pixel located at a coordinate (x, y) as a candidate for receiving

the artificial damage. Damage occurs only if the pixel is located within the leaf

boundaries. For the first four images, we ran the method with 100 coordinates. For

the fifth to eighth images, we executed the procedure with 200 coordinates. For

the final four images, we performed the process with 300 coordinates. The resulting

dataset consisted of 22884 shapes with varying levels of artificially generated damage.

44

4.1.6 Conditional GAN Architecture

Our implementation takes the work of Isola et al. [168] as a baseline. For this

matter, we applied a U-Net-based conditional GAN architecture. This network has

two main modules: a generator and a discriminator. At first, the generator takes

an input image and produces a predicted output. Then, the discriminator evaluates

the prediction.

In this work, the main architecture is based on a U-Net. U-Nets are generative

models of deep neural networks. Originally, this technique was proposed to perform

segmentation in biomedical images [169]. They are similar to Variational Autoen-

coders (VAEs) [170], and due to their generative capability, they can be used to

reconstruct images pixel-by-pixel. These networks are applied for recognition and

segmentation [171, 172] and for reconstruction [173, 174].

Generator

The generator’s architecture is based on an Encoder-Decoder network. For this

implementation, a U-Net was used, which has interconnected mirrored layers. The

encoder consists of 8 layers (256x256, 128x128, 64x64, 32x32, 16x16, 8x8, 4x4, 2x2),

with batch normalization in the intermediate layers. The output also has 8 layers

(1x1, 2x2, 4x4, 8x8, 16x16, 32x32, 64x64, 128x128), with batch normalization in the

intermediate layers.

Discriminator

On the other hand, the discriminator follows a PatchGAN architecture, which is

similar to the encoding section of an encoder-decoder network. In this implementa-

tion, the discriminator consists of 5 layers (256x256, 128x128, 64x64, 32x32, 31x31),

with batch normalization between the intermediate layers.

Training

The network uses a two-part training method. Initially, the discriminator is trained

based on the baseline answers. After that, the generator weights are updated based

on the baseline truth and the discriminator guess. The training algorithm was

performed for 20 epochs, with the first results being better than the ones presented

in the literature. However, to avoid overfitting, the network was trained for an

additional 5 epochs, which resulted in a significant improvement. As a result, the

error becomes much smaller, making it state-of-the-art on the proposed problem.

45

4.1.7 Damage Estimation

In the previous section, we discussed the network architecture and its training pro-

cess. In the preprocessing stage, the image is first converted to grayscale and then

subjected to a binarization process. The resulting image is then used as input for

the conditional GAN, which produces a mask that represents the predicted original

shape. Finally, to calculate the damage percentage, we use the following formula:

Pd = (1−
∑

i,j Imd(i, j)∑
i,j Im(i, j)

)× 100(%). (4.8)

Here, Pd represents the damage percentage,
∑

i,j Imd(i, j) represents the sum of

the binarized value (0 or 1) of each pixel of the damaged leaf image, and
∑

i,j Im(i, j)

represents the sum of the binarized value (0 or 1) of each pixel of the baseline image.

We used the original image mask as the baseline for calculating the ground truth

values of damage, while the model’s outputs were used to calculate the predicted

damage.

4.1.8 Evaluation Methods

In the previous section, we discussed the neural network used to estimate the orig-

inal shape of damaged leaves, as well as the image datasets and artificial damage

generation process used to create the synthetic dataset. In this section, we will focus

on the methods used to evaluate the prediction quality.

We started with 22884 original images and used the first 22833 for our analysis.

These images were randomly divided into three separate sets: 10% for validation,

10% for testing, and the remaining 80% for training the algorithm. In the second

stage, we repeated the process with modified parameters that allowed for more dam-

age. We also used the 22884 images to create a dataset with the same proportions.

After training the model, we performed a round of predictions on the MEW 2012

dataset. To speed up the generation process, we reduced the images to 256x256

pixels and randomly applied 10 to 40 damage coordinates with a probability of

P0 = 0.7, resulting in a total of 38980 images. Although the generation process

differed slightly, the images had to be resized to 400x400 pixels to be used with the

model.

Damage Estimation Evaluation

Similar to Da Silva et al. [167], we calculated the real defoliation percentage dr

and the estimated defoliation percentage de. These values were measured on both

the validation and test sets, as we generated the synthetic dataset from the ground

46

truth. We evaluated the Root Mean Square Error (RMSE), which is calculated

using the following equation:

RMSE =

√
1

n

∑
(de − dr)2. (4.9)

Furthermore, we conducted a series of quantitative and qualitative analyses based

on the prediction results.

Shape Reconstruction Evaluation

In the previous subsection, we discussed the evaluation method used for the damage

estimation process. In addition to analyzing the quality of the defoliation estima-

tion method, we also conducted a quantified evaluation of the image reconstruction

process. To do this, we employed the dice coefficient, which is a widely used method

for evaluating image similarity [175–179]. This measurement is used to compare

areas and can be easily applied using binarized images. The dice coefficient (DC)

is calculated for a pair of images (A and B) using the following equation:

DC =
2∥(A ∩B)∥
∥A∥+ ∥B∥

(4.10)

The resulting coefficient value is always in the range of [0, 1]. A high dice

coefficient value indicates that the images are highly similar. Therefore, we used

this factor to measure the success of the shape reconstruction process by calculating

the dice coefficient to compare the ground truth and model output images.

4.1.9 A Broader Evaluation on the Damage Estimation Re-

sults

In the previous section, we discussed the method used to evaluate the leaf damage

predictions, which involves estimating the original leaf shape using a Conditional

GAN. In this section, we provide a broader overview of the original and predicted

data to demonstrate the robustness of the proposed solution.

The first important set of results came from analyzing the RMSE values, which

were defined by equation 4.9. The validation dataset had an RMSE value of 0.92

(± 1.90), while the test dataset had a value of 0.92 (± 1.85). As we previously

mentioned, both the validation and test datasets had similar results for the RMSE

value. After the second training stage, the error values were even lower. The valida-

tion dataset had an RMSE value of 0.61 (± 0.99), and the test dataset had a value

of 0.52 (± 0.73). As previously shown, these results alone represent a significant

improvement over the state-of-the-art. Table 4.1 presents the results obtained.

47

Table 4.1: RMSE Results

Validation Set Test Set
Initial Round 0.92 (± 1.90) % 0.92 (± 1.85) %

Improved Round 0.61 (± 0.99) % 0.52 (± 0.73) %

Figure 4.5: Validation Set - Damage Distribution for the Initial and Improved
Rounds.

For the initial stage, the validation set comprised 2283 randomly selected images

from the original dataset. The estimated average damage on this set was 10.68 ±
6.34%, with a maximum damage value of 37.99%. The real average damage was 9.86

± 6.03%, with a maximum value of 35.31%. In the second stage, the validation set

contained 2288 randomly selected images from the original dataset. The estimated

average damage on this set was 23.88 ± 12.97%, with a maximum damage value of

65.59%. The real average damage was 23.84 ± 13.06%, with a maximum value of

65.76%. The distribution plots for this data are shown in Figure 4.5.

Additionally, we created a graph comparing the obtained data with the ground

truth for both the initial and improved stages. Figure 4.6 displays the results for

the validation dataset in both rounds.

Similarly, the test set comprised 2283 randomly selected images from the initial

set. The average estimated damage in this set was 10.66 ± 6.44%, with a maximum

value of 56.14%. The real damage distribution average and standard deviation were

9.84 ± 6.19%, with a maximum damage of 52.74%. In the second stage, the test

set contained 2289 images. The average estimated damage in this set was 23.61 ±
12.99%, with a maximum value of 63.49%. The real damage distribution average

and standard deviation were 23.68 ± 12.99%, with a maximum damage of 63.92%.

The boxplots with the distribution of this data are shown in Figure 4.7.

We also created a graph comparing the obtained data with the ground truth for

48

Figure 4.6: Validation damage estimation results for the Initial and Improved
Rounds

Figure 4.7: Test Set - Damage Distribution for the Initial Round

the test dataset in both the initial and improved stages. Figure 4.8 displays the

results. A qualitative analysis of the results indicates that the distributions of the

sets are similar, which reinforces the RMSE parameter results.

MEW 2012 Results

As previously mentioned, we also conducted predictions on another database con-

taining different species from the ones used during training. We selected MEW 2012,

which comprised 9745 images, and generated 38980 images with artificial random

damage for this purpose.

The average estimated damage in MEW 2012 set is 5.05%, with a standard

deviation of 4.43% and a maximum damage value of 37.90%. The real damage

distribution average and standard deviation were 3.93 ± 4.39%, with a maximum

49

Figure 4.8: Test set damage estimation results for the Initial Round

Figure 4.9: MEW 2012 set damage estimation results for the Initial and Improved
rounds

value of 41.87%. The RMSE for this prediction was 1.76 (± 3.02).

We also presented a graph comparing the obtained data with the ground truth.

Figure 4.9 displays the results for the MEW 2012 dataset. As this dataset contained

more species and samples, the distribution of predictions appeared wider during

qualitative analysis. However, the RMSE result confirms that the prediction quality

was similar, even with a dataset containing leaves from untrained species.

Shape Reconstruction results

To evaluate the shape reconstruction quality, we compared the network model’s

output with the ground truth initially generated or obtained from the datasets.

We began by evaluating the distributions of the validation and test datasets and

conducted a statistical analysis to determine if the predicted and original shapes

50

represented different populations based on their dice coefficient results distribution.

The population distributions are presented in Figures 4.10, 4.11, 4.12, 4.13, and

4.14.

Figure 4.10: Dice coefficient distribution for the validation set - Initial Round

Figure 4.11: Dice coefficient distribution for the validation set - Improved Round

51

Figure 4.12: Dice coefficient distribution for the test set - Initial Round

Figure 4.13: Dice coefficient distribution for the test set - Improved Round

In red, we plotted the dice coefficient comparing the damaged leaves with the

original shapes, while in blue, we plotted the dice coefficient comparing the recon-

structed leaves with the original shapes. The variances between the red and blue

52

Figure 4.14: Dice coefficient distribution for the MEW 2012 set

populations were different. Therefore, we chose to apply Welch’s t-test to compare

the populations [180]. For all studied cases, the p-value was lower than 2.2× 10−16,

indicating that the population means were not equal. In other words, the recon-

struction process produced different shapes that were not caused by random events.

Regarding the reconstructed data, the average dice coefficient value for the val-

idation set was 0.992 ± 0.008, while that for the test set was 0.993 ± 0.007. The

worst-case values were 0.869 for the validation set and 0.912 for the test set. Finally,

the average obtained from the MEW 2012 set was 0.988 ± 0.017.

4.1.10 Technical Evaluation: How to embed this solution?

In red, we plotted the dice coefficient comparing the damaged leaves with the origi-

nal shapes, while in blue, we plotted the dice coefficient comparing the reconstructed

leaves with the original shapes. The variances between the red and blue populations

were different. Therefore, we chose to apply Welch’s t-test to compare the popula-

tions [180]. For all studied cases, the p-value was lower than 2.2× 10−16, indicating

that the population means were not equal. In other words, the reconstruction pro-

cess produced different shapes that were not caused by random events.

Regarding the reconstructed data, the average dice coefficient value for the val-

idation set was 0.992 ± 0.008, while that for the test set was 0.993 ± 0.007. The

worst-case values were 0.869 for the validation set and 0.912 for the test set. Finally,

53

the average obtained from the MEW 2012 set was 0.988 ± 0.017.

1. Interest region identification;

2. Interest region segmentation;

3. Image binarization.

Figure 4.15: Complete segmentation pipeline proposal

The proposed pipeline is presented in Figure 4.15. The initial step in this process

involves identifying the area where the user intends to place the leaf. This step is

aided by the use of readily identifiable elements in the image, such as ArUco tags

[181]. These tags are easily integrated into popular Computer Vision libraries and

enable the identification of specific points.

Figure 4.16: Illustration of the usage of ArUco tags to segment a map area.

We propose the use of four tags that delimit a square to aid in this process. The

leaf should be positioned at the center of this square. This method helps to correct

perspective issues that may arise due to camera tilt. An illustration of the proposed

solution is presented in Figure 4.16.

To segment the region, the algorithm must identify the four tags and extract

the desired coordinates from each of them. Then, a perspective transformation is

54

Figure 4.17: Region segmentation process illustration

performed to convert the plane into a square. The expected results after this stage

are displayed in Figure 4.17.

After this stage, the algorithm obtains a square region with the leaf positioned

above the background. At this point, we directly apply Otsu’s binarization algorithm

to the obtained segment. The expected result is displayed in Figure 4.18.

Figure 4.18: Binarization process illustration

We tested this pipeline under two different conditions. The first condition was

a bench test. We produced the background according to the planned and provided

a mockup leaf to test the segmentation process. Then, we also performed a small

field test, in which we tried to capture and segment a leaf in the field using a camera

and submitting it to this same process. Figure 4.19 displays the results for both

tests. Our experiments displayed overall satisfactory results in both the bench and

the field tests. The algorithm was able to segment the leaf from the background

properly.

4.2 Evaluating and mapping diseases in forest canopies

The case study involves a triangulation approach, where three individual climbers

conducted a cylinder-transect investigation. This method is akin to the recommen-

dation made by Ribeiro, Basset, and Kitching [182] about density estimation. We

employed this approach to develop the Edge AI system for identifying leaf diseases.

The researchers initiate their approach by commencing at the highest point of the

canopy and progressively descend downwards. They collect leaf samples along hori-

55

Figure 4.19: Experiments displaying the results of the proposed process. These
experiments validate the usage of this technique to provide a mean to take this
appliance onto the field.

zontal transects that are spaced at predetermined intervals until they reach the last

stop. In this initial approach, to facilitate the division of data, we employ a backdrop

template for sampling. The final destination is typically situated approximately 3

meters above ground level. The proposed methodology is depicted in Figure 4.20.

Leaf conditions are highly significant markers of ecosystem health, as previously

mentioned. Garćıa-Guzman et al. [183] demonstrated that in Mexican wet forests,

the prevalence of diseased leaves can reach 65% in highly infected areas, while it is

only 2% in locations with low infection rates. Given this baseline, we anticipate that

the disease will be dispersed in both high and low infection locations whenever a

pathogen is present in a canopy. From this viewpoint, we simulate the transmission

of disease by utilizing a probability density function (PDF) that is centered on the

location with the largest percentage of infected individuals. Figure 4.21 depicts a

visual representation of a density gradient determined by a centered maximum.

We assume that the distribution is Gaussian in shape, extending across the

canopy. Therefore, the distribution can be represented by a probability density

function that follows a geometric function based on the Gaussian distribution. The

function is expressed in Equation 4.11. The function has the benefit of being able

to represent the spread of the disease with only five parameters. The variable p0

denotes the highest occurrence rate of the disease. The σ parameter, as always,

56

Figure 4.20: Illustration of the Cylinder-Transect study.

reflects the standard deviation. To simplify the analysis, we employed a uniform

standard deviation across all three spatial dimensions. The (x0, y0, z0) coordinates

represent the central point of the distribution. The objective of this work is not to

delve into the intricacies of the modeling process, but rather to present a case-study

that is straightforward and can be easily replicated.

P (x, y, z) = p0.e
− (x−x0)

2+(y−y0)
2+(z−z0)

2

2σ (4.11)

Several authors with prior experience in similar methodologies endorse the use of

Gaussian-based models for disease transmission modeling. Soubeyrand, Enjalbert,

and Sache [184] employed Gaussian-based modeling to simulate the circular diffusion

of airborne plant disease. Pokharel and Deardon [185] conducted mathematical

modeling of the transmission of infectious diseases using Gaussian distributions. In

the midst of the COVID-19 pandemic, Ketu and Mishra [186] utilized Gaussian-

based models to forecast the spread of the disease.

Despite the existence of similar methods in the literature, we have selected this

modeling approach over Gaussian random processes (GRPs) or Gaussian process

estimators (GPEs) due to its distinct essential features, as highlighted by some of

the writers. The authors Soubeyrand, Enjalbert, and Sache utilized GRPs in their

suggested model, as outlined in their publication [184]. The model involved the

application of circular functions in a two-dimensional space to generate a preliminary

representation. Our goal in this work is not to go into illness modeling. Therefore,

57

Figure 4.21: Example of a possible location for a disease spread. We model this
spread using a spatially-distributed probability density function (PDF).

we have chosen to develop a simplified model that relies on a single spatial function.

Pokharel and Deardon [185] suggest employing Gaussian process approximations to

construct emulators (GPEs) for a two-dimensional dynamic disease spread model.

The objective differs in that the authors aim to incorporate additional variables and

processes that are not the focus of this study.

Researchers employing the cylinder-transect approach in the canopy acquire the

spatial arrangement of damaged and healthy leaves using established coordinates.

While the depiction may appear uncomplicated, the process of doing a regression

from density points in three-dimensional space to a continuous-space function is not

straightforward. Therefore, we suggest employing a heuristic approach to acquire

the parameters that more accurately depict the original function.

4.2.1 Requirements

To begin this study, it is necessary to assess the prerequisites for the proposed

approach. To address this issue, we provide a modified version of the co-design

diagram shown in Figure 4.22, which is a simplified rendition of the diagram depicted

in Figure 3.2b.

This representation displays the need to raise the constraints for the applica-

tion and classify them into the hardware, software or architectural domain. The

constraints identified for this matter are:

� As this system needs to be taken into the field, it needs to work for hours

without a battery recharge or replacement. [Hardware].

58

Figure 4.22: Simplified Co-design diagram.

� It needs to be robust enough to take hits from branches and falling seeds or

nuts. [Hardware].

� As we propose a distributed system in a WBAN-Environment, both systems

need to communicate with an application, working as web server nodes [Ar-

chitecture].

� The communication needs to be efficient to stream the data through this local

network [Architecture].

� The integrated architecture must present a mean to classify the leaves into

diseased or healthy [Software].

In this case, we proposed a cooperative wearable system in which several users

can input gathered data into a local wireless server which provides the AI using

its hardware acceleration. This system is able to run both a traditional machine

learning method and a convolutional neural network, according to the available

resources.

4.2.2 General Architecture Proposal

The suggested method utilizes a wearable distributed system that operates in both

Wireless Body-Area Network (WBAN) and Wireless Local Area Networks (WLAN).

This system is designed to enable the extraction of information using techniques such

as Data Fusion, Image Processing, and Computer Vision. The provided diagram,

labeled as Figure 4.23, illustrates the suggested design for this system.

The initial component of this system is the tangible nucleus. Since we are sug-

gesting a wearable system, it is crucial that it is inconspicuous and does not cause

any interference or disturbance [187]. Consequently, we constructed the system us-

ing hands-free technology for the user. The helmet is the optimal choice for meeting

the wearable and research needs in terms of its physical core. The paper by Silva et

59

Figure 4.23: Proposed General Architecture. The smart helmets use the wearable
Edge AI server to provide machine learning inferences.

al. [188] addressed the limitations imposed by certain appliances. Our main focus

was to calculate the energy needs and usage for this particular system.

The subsequent component pertains to the fabrication of the sensor nodes that

are based on the Internet of Things (IoT) technology. Every node is a Computer-

on-Chip that has the ability to read sensor data, either single or numerous, process

the data beforehand, and transmit it via either WBAN or WLAN. The selected

sensors for enhancing environmental perception include a laser radar (LIDAR), a

9-Degree-of-Freedom Inertial Measurement Unit (9DoF IMU), and a conventional

camera.

The Computer-on-Chip must possess the capability to access the necessary in-

put/output ports from every sensor. Additionally, it is imperative that it possesses

the capability to establish a wireless connection within the immediate vicinity of the

body. Given the energy limitations of wearable systems, it is imperative that the

Computer-on-Chip incorporates a processor with low power consumption. There-

fore, ARM-based computer-on-chips are suitable solutions for this purpose.

Typically, the preferred devices to serve as primary applications for this system

are ARM-based Computer-on-Chips. These devices should include various I/O ports

to connect the necessary sensors, as well as a network card that can transmit the

data via a local wireless connection.

We choose the Wi-Fi network standard (IEEE 802.11) as the interface for our

WLAN/WBAN. The decision was made considering the simplicity of developing

web server solutions, the speed at which data can be transmitted, and the coverage

area for WBAN/WLAN. Furthermore, it relied on the wider bandwidth capacity to

ensure the quality of the connection, particularly while handling camera streaming.

Each sensor node functions as a local webserver within this network. The ap-

60

plication should explicitly request the sensor data from each node through the

WBAN/WLAN. The application executes a data fusion technique. augments re-

ality.

Hardware Specification

From the proposal, there are two main hardware element decisions: the Smart Hel-

met Hardware and the Edge AI Node Hardware. In order to develop the intelligent

helmet, we required a flexible and verified solution that includes a built-in camera.

Conversely, the stage of selecting Edge AI Node Hardware must effectively balance

performance and portability.

Smart Helmet Hardware This project is a progressive development of a wear-

able gadget designed for the purpose of studying and monitoring the ecological

environment. Additional publications were authored by members of the research

group, featuring findings that were previously examined. The articles [188, 189]

provide a detailed description of the hardware specification and its evaluation. The

reproduction of the previously described evaluation is not the topic of this effort.

Our objective is to include the suggested hardware into the Edge-AI architecture

within this context.

This section offers a concise overview of the constructed wearable device and

presents the necessary details and principles for the suggested integration. The

hardware that has been created is a helmet consisting of sensors and a data process-

ing unit. This tool was specifically designed for researchers and professionals who

utilize the climb tree approach to gather data on natural habitats.

(a) Assembled Wearable Device
(b) User wearing the device

Figure 4.24: Prototype Assembled

The wearable prototype is depicted in Figure 4.24. Figure 4.24a displays a three-

dimensional representation of the device, showing both the front and side views.

Figure 4.24b depicts a user wearing the device as seen from the rear. The hardware

61

is equipped with a LIDAR sensor that is attached to a processing unit for accurately

measuring the distance and estimating the 3D geometry of the objects being sensed.

A Raspberry Pi Zero W was selected as the device for processing unit data, with

power supplied by a 5V battery. During the development process, we took into

account both the specifications for the wearable device and the needs for its use.

We utilized this prototype to do specific operations within this domain. Having

already verified the sensing features of this system, our primary focus in this study

was to conduct tests specifically evaluating its computational capability. Subse-

quent experiments have demonstrated that this prototype is capable of doing cer-

tain intended tasks, but its capabilities are restricted when confronted with more

demanding processing requirements. Therefore, this viewpoint provides a rational

basis for supporting the proposed Edge-based design. In the subsequent part, we

will elaborate on the procedure of selecting the hardware for Edge Computing.

Edge AI server Node - Hardware selection and integration In addition

to the smart helmet, another crucial component of the overall system is the Edge

AI server node. Therefore, the hardware selection must take into account portable

embedded systems that can facilitate machine-to-machine communication for this

particular stage. Our case study focuses on implementing machine learning tech-

niques within the setting of WBAN/WLAN to develop a viewpoint on Wearable

Edge AI. This paper presents a comparison of the performance of four hardware

components that have the capability to provide this utility.

Figure 4.25: Edge AI service pipeline. In the proposed architecture, clients perform
part of the processing, while the AI pipeline is provided by the Edge AI server node.

Initially, we established a pipeline that separates the components which are pro-

cessed locally from those processed within the Edge AI server node. At first, the

local systems obtain and convert the image, transmitting the converted data to the

edge server. Within this server, the application initializes a trained machine learning

model and continuously receives encoded frames. It then proceeds to decode, pre-

process, and extract the pseudospectrum from these frames, thereafter evaluating

it. The assessment outcome is thereafter stored by the Edge AI server and returned

to the device for duplication. The diagram in Figure 4.25 illustrates the suggested

pipeline for the Edge AI server, which is designed to accommodate a solitary client.

62

We evaluated multiple devices for developing the solution. In the context of this

Wearable Edge AI solution, we evaluated the Raspberry Pi Zero W, Raspberry Pi

3B, Raspberry Pi 3B+, and Jetson Nano platforms as potential options for delivering

Edge AI functionality. These solutions are all commercially available ARM-based

computer-on-modules.

Edge AI Software

As stated in the introduction, the condition of leaves serves as crucial indicators of

the overall health of the ecosystem. Therefore, we opted to assess the limitations

of an Edge AI component that conducts leaf classifications into two categories:

”normal” and ”diseased.” This section delves into the implementation of Edge AI

software as demonstrated in the case study.

Figure 4.26: Sample of healthy and diseased leaf images obtained from the dataset.

Figure 4.27: Data processing pipeline and associated substages. For the image
extraction, the associated stages are the color space conversion and histogram ex-
traction.

To begin, it is essential to locate a dataset that contains comparable information

63

to the required dataset. After conducting thorough research, we have chosen to

utilize the dataset provided by Chouhan, Kaul, and Singh in their publication on

leaf diseases [190]. The authors provide a dataset consisting of 4,503 photos depicting

leaves exhibiting both healthy and diseased conditions. Out of this collection, there

are 2,278 photographs depicting healthy leaves, whereas 2,225 images show damaged

leaves. There are 12 distinct species represented by the leaves. Figure 4.26 showcases

photos of both healthy and diseased leaves extracted from the original dataset.

The designers of this database ensure a clear distinction between infected and

healthy leaves. Any variation in hue and texture is solely attributable to illness in

all instances. The photos had a pixel resolution of 6,000x4,000. In order to enhance

the test’s speed and align the resolution with that of commonly used cameras in

embedded systems, we reduced the resolution to 900x600 pixels. The improved

resolution is equivalent to 15% of the original size.

The data extraction and classification method adheres to a traditional pipeline.

Initially, we obtain the image and then proceed to extract a feature vector. Next,

we employ a machine learning model to categorize the image based on its attributes,

resulting in a binary classification outcome. The pipeline is depicted in Figure 4.27,

illustrating the substages linked to each primary stage.

Figure 4.28: Pseudospectrum extraction samples

Within this particular framework, our method to addressing this issue involves

the development of a pseudospectral analytic system [53]. In this process, the feature

vector is a pseudospectrum, which is obtained by extracting the histogram from the

Hue channel in the HSV color space. Ultimately, the histogram is divided by its

total sum, resulting in a probability density function (PDF) that represents the

distribution of colors. This PDF is then referred to as the pseudospectrum. Figure

64

4.28 illustrates several instances of the extraction of pseudospectra.

Figure 4.29: Neural network representation. The chosen model was a Multi-Layer
Perceptron (MLP). All layers are fully connected. The number beneath the blocks
represents the number of neurons in each layer.

Subsequently, a neural network is employed to categorize the leaf. In this in-

stance, we employed a conventional Multi-Layer Perceptron (MLP) model to carry

out the computations. Despite the model’s lack of novelty, we selected it due to

its simplicity, which results in improved performance on low-power devices in Edge

Computing. Despite its simplicity, the model has demonstrated intriguing outcomes

in the classification of citrus fruits [53]. Within this particular framework, we em-

ployed a network that received 256 inputs derived from the pseudospectrum. The

network’s hidden layers consisted of 128, 64, 32, 16, and 8 neurons, respectively.

The result yielded a binary categorization of either healthy or diseased. Figure 4.29

presents a concise representation of the network’s structure.

Figure 4.30: Loss function during the training process

The scikit-learn framework was employed to construct our model [191]. The

training was conducted using a backpropagation technique, employing a cross-entropy

65

loss function. For the purpose of training, we partitioned the original dataset of

photos into two distinct subsets. During the initial phase, we employed a random

selection process to choose 10% of the photos depicting both damaged and healthy

leaves from each species. These selected images were then used to create a test

dataset. The remaining 90% constituted a training set. Our system was trained us-

ing 90% of the photos from the training set, while the remaining 10% were used for

validation. The behavior of the cross-entropy loss during the training is depicted in

Figure 4.30. This training concludes when the cross-entropy loss value does not im-

prove by more than 10−5 for ten consecutive epochs, as determined by an arbitrary

convergence criteria.

In addition to this model, we also evaluated the feasibility of utilizing a convolu-

tional neural network (CNN) model for making predictions on the embedded hard-

ware. This method is more contemporary, although necessitates a greater amount

of computer capacity. Therefore, we put forward a test that assessed two aspects:

� How much improvement can a CNN obtain over an Computer Vision and MLP.

� How much performance the embedded system loses using this method over a

traditional approach.

We created a simple CNN model that approaches this process. Figure 4.31

displays an illustration of this model.

This model utilizes five 2D-convolutional layers in the feature extraction stage.

The layers have 16, 32, 64, 64, and 64 filters of size 3x3, respectively. Following each

convolutional layer, there is a further max pooling layer with a 2x2 size. Following

these phases, the output is compressed and sent through a dense layer consisting of

1024 neurons. So far, the convolutional and dense layers have employed a rectified

linear unit (ReLU) activation function. Ultimately, the result is a solitary neuron

that utilizes a sigmoid activation function. The loss function employed was the

cross-entropy. The function was trained for a total of 12 epochs, a value determined

empirically as the maximum number of epochs to prevent overfitting indications.

In addition, we conducted tests on this model based on the hardware and software

performance indicators in order to address the problems that were highlighted.

4.2.3 Validation Tests

Once we have put forth the hardware, software, and architectural components, it is

essential to set metrics to verify the effectiveness of each stage. Within this area, we

present the modeling and metrics utilized to assess each individual component. We

assessed the performance of the Edge AI server across different platforms, focusing

on the hardware components. We analyzed the metrics of the machine learning

66

Figure 4.31: Proposed CNN model. The convolutional layers have 3x3 filters, with
2x2 pooling. The output is a single value obtained from a sigmoid activation func-
tion.

Figure 4.32: Values for accuracy and loss functions in the CNN training process.

software predictions for the suggested application in order to evaluate its software

features. Regarding the design, we analyzed the timing limitations for numerous

clients linked to the Edge AI server, taking into account a Real-Time Quality of

Service (QoS) assessment.

Hardware Validation Tests

This appliance consists of two primary hardware components: a Smart-Helmet and

an Edge AI server node. The helmet was originally designed to provide versatile

applications in this field. Hence, the validation stage deems it imperative to validate

the newly introduced component: the Edge AI node.

In Figure 4.25, we delineated the specific functions carried out by both the

intelligent helmet and the Edge AI node. Initially, we must assess the hardware

67

components for each of the recommended solutions based on the distributor websites

associated with them. The available options include of the Raspberry Pi Zero W,

Raspberry Pi 3B, Raspberry Pi 3B+, and Jetson Nano. Table 4.2 presents the most

relevant aspects about each solution.

Table 4.2: Hardware Specifications for the Edge AI server node candidates.

Raspberry Pi Zero W Raspberry Pi 3B Raspberry Pi 3B+ Nvidia Jetson Nano

CPU
1x ARM11
@ 1GHz

4Ö ARM Cortex-A53
@ 1.2GHz

4Ö ARM Cortex-A53
@ 1.4GHz

4x ARM Cortex-A57
@ 1.43 GHz

RAM 512 MB 1GB 1GB 4GB
Storage MicroSD card MicroSD card MicroSD card MicroSD card
Nominal
Power

5V over microUSB
(max. 6W)

5V over microUSB
(max. 12.5W)

5V over microUSB
(max. 12.5W)

5V over P4 Jack Barrell
(max. 5W/20W modes)

Network
Platform

2.4GHz 802.11n 2.4GHz 802.11n
2.4GHz/5GHz
802.11b/g/n/ac

2.4GHz
802.11n
(over USB)

To conduct this test, we execute the tasks outlined in the pipeline depicted in

Figure 4.25 for every candidate. We assess the time delay required to complete all

internal phases for each solution, executing identical code to receive input from a

client, make predictions about the outcome (whether it is healthy or unhealthy), re-

turn the predictions, and store them in a text file. During the hardware evaluation,

we just focus on the latency of the steps that are executed locally. The components

of the system that rely on networking will be executed at a later time, taking into

account the characteristics of the architecture. Additionally, we conducted a com-

parison of the two software techniques by testing the ratio of average predictions per

second. This addresses one of the inquiries posed in the software proposal, namely

evaluating the efficacy of the model on the embedded hardware.

Software Validation Tests

The unique software being presented is a machine learning-based prediction system

that operates on an Edge AI server node. To address this issue, we utilized a

Multilayer Perceptron (MLP) neural network model to accurately forecast whether

leaf images exhibit signs of disease or are in a healthy state. Furthermore, we

conducted an evaluation of the same measures for the CNNmodel in order to validate

the enhancement in this characteristic by employing a more contemporary approach.

In order to successfully validate the program, it is imperative that we thoroughly

comprehend the performance of this machine learning model in relation to the spe-

cific data at hand. Therefore, we employ conventional machine learning metrics to

examine the data. We evaluate the confusion matrix, as well as the Precision, Recall,

and F1-Score metrics. The subsequent equations illustrate the formulas for various

measures. The above equations define the variables as follows: TP represents the

68

count of true positives, FP represents the count of false positives, TN represents

the count of true negatives, and FN represents the count of false negatives.

Precision =
TP

TP + FP
(4.12)

Recall =
TP

TP + FN
(4.13)

F1-Score = 2× Precision×Recall

Precision+Recall
(4.14)

Architecture Validation Tests

It is necessary to take into account characteristics that assess the individual and

overall performance of the proposed scenario for the validation tests of the architec-

ture. Therefore, we devised an experiment that was specifically designed as a Real-

Time Quality of Service (QoS) test, drawing inspiration from previous research on

IoT and Wireless Sensor Networks [72, 192], with the aim of assessing the real-time

constraint. This assessment assesses the proficiency in completing a series of tasks,

taking into account both individual and network-related circumstances.

At first, we consider duration as discrete intervals, as the setD = di, i ∈ N, where
di+1 − di = θ, and θ is a constant sampling time. The soft real-time deadline will

be represented by ϕ, where ϕ = k × θ, k ∈ N∗. Thereby, we establish the following

definitions:

Definition 1. Let D = di be the finite set of nodes performing IoT-dependant

tasks, where i ∈ N;

Definition 2. Let E = ei be the finite set of events that each node performs, where

i ∈ N;

Definition 3. Let L = lg,e be the length of time interval that the node g takes to

perform an event e during the execution, where g ∈ G and e ∈ E;

Definition 4. Let P = pi be the set of patterns of events to be observed in the

devices, where pi = Ei, Ei ⊂ E and i ∈ N. In this case, all client devices will

perform the same events in the same pattern;

Definition 5. Let O = oi be the finite set of observations of a certain pattern pi ∈ P

on each device;

69

The equation that represents the elapsed time λ to observe a particular pattern

pi ∈ P is:

λoi =
∑

lg,ek |∀ek ∈ oi, oi = Opi (4.15)

All client devices in the network composition will have the same ϕ soft real-time

deadline. Given this equation, let Ô be a subset of O, where λoi ≤ ϕ, ∀oi ∈ Ô.

Finally, given the sets O and Ô:

Definition 6. Let N be the number of elements on the set O;

Definition 7. Let Nh be the number of elements on the subset Ô;

The quality factor Qf will be represented by the following equation:

Qf =
Nh

N
(×100%) (4.16)

This result represents how often the nodes execute a pattern of events without

violating the soft real-time constraints. The clients represent the smart-helmets and

will send data to the Edge AI server node in parallel on each test.

Case Study Validation for Deployment

In order to verify the system in the case study, we employed a test that relied on the

probability distribution function outlined in Equation 4.11. The equation represents

the likelihood of encountering damaged leaves during a sample procedure near the

tree, as determined by the spatial coordinates. The function’s maximum value is

determined by the P0 value, and the spatial location of the disease’s epicenter is

given by the (x0, y0, z0) coordinate. The situation is depicted in Figure 4.21.

For this validation test, we examine a group of three climbers who collect leaf

samples at different heights inside certain areas of the canopy called transects. The

whereabouts of the three climbers are arbitrary but known. Additionally, the lo-

cations of the stops along the transect are known, enabling the mapping of their

positions as three-dimensional points during the procedure. The researchers should

be positioned within a random radius from the center of the tree trunk in the canopy

to achieve a more optimal spatial dispersion. The organization for a 5-meter-radius

and 9 stops is depicted in Figure 4.33.

We examined a procedure that allows for an arbitrary number of stops during the

ascent, in accordance with the requirements of the transect method. During each

stop, the researcher would collect samples of leaf images. The system autonomously

categorizes the sampled leaves as either healthy or unhealthy based on the acquired

methodology. Consequently, for every (x, y, z) coordinate at which a researcher

70

Figure 4.33: Sampling process illustration

employs the helmet and a backdrop template to sample the leaves, the system is

capable of computing the proportion of unhealthy entities.

For climbers to take tiny goods to the canopy, we suggest using a background

template. This template is a sturdy object with identification tags placed along its

edges. This suggestion enables the algorithm to circumvent any influence from the

background during the sampling procedure. We created a preliminary examination

to showcase this problem utilizing the wearable camera. The prototype captures

the image, detects specific tags within the backdrop template, applies a four-point

transformation to isolate the region of interest, and utilizes Otsu’s binarization tech-

nique to segment the image. The pipeline utilized in this investigation is depicted

in Figure 4.34.

Using this data, the system does a regression analysis to fit the probability den-

sity function (PDF) outlined in Equation 4.11. To address this issue, it is necessary

to acquire the parameters contained in the tuple T = (p0, σ, x0, y0, z0). We opted to

employ an Evolutionary Algorithm for the execution of this task, whereby the tuple

candidates are regarded as the genotype and the mean squared error serves as the

fitness function. The decision was made considering three primary factors:

� Ease of use: it is easier to perform regression for a smooth parametric arbitrary

three-dimensional distribution function with an evolutionary algorithm than

71

Figure 4.34: Demonstration of the segmentation process. The prototype used a USB
camera to capture the data, which can be processed by the prototype itself or in the
Edge AI server node.

designing an interpolation based in various parameters and kernel functions;

� Flexibility: the same process can be used to obtain a regression to any para-

metric model by just changing the input parameters on the same algorithm;

� Robustness: The regression algorithm displayed robust results, even with a

change on its parameters.

In this case, the climbers would make nine stops, collecting 200 leaves at each

stop. The system autonomously categorizes every leaf, transmitting data regard-

ing each position and the compressed image of the leaf. To simulate the sampling

process, we randomly selected 100 photos from the original dataset. Our selection

approach utilizes a random number and evaluates its compatibility with the proba-

bility density function (PDF) defined by Equation 4.11 using arbitrary parameters.

The value of p0 was selected as 0.65, taking into account the highest occurrence of

sick leaves observed in the study conducted by Garćıa-Guzman et al. [183]. Fur-

thermore, we established the coordinates of the tree stem and ground as the origin

(0, 0, 0) and deliberately chose (2,−2, 8) as the epicenter of the sickness. Ultimately,

the value of our standard deviation (σ) was 5. Therefore, the ultimate random PDF

for this exam is:

P (x, y, z) = 0.65.e−
(x−2)2+(y+2)2+(z−8)2

10 (4.17)

Ultimately, the system categorizes and archives the data relative to the image.

Our intention is to utilize the saved data to conduct an analysis that will yield the

original PDF values through the implementation of an evolutionary algorithm. The

Edge AI node is capable of conducting this analysis to offer on-site insights derived

72

from the collected data. The goal is to approximate the original values of Equation

4.17 as accurately as possible. Figure 4.35 illustrates the spatial distribution of

the disease in the given arbitrary function. The likelihood of encountering diseased

leaves at this position increases as the red circle becomes larger and more vibrant

in color. The brown stick denotes the location of the primary tree trunk.

Figure 4.35: Arbitrary PDF display. The larger and more colorful red dots have a
bigger probability density. The brown cylinder represents the main tree trunk.

4.2.4 Results

The preceding part provided a comprehensive overview of the hardware, software,

and architecture components utilized in the proposed case study. In addition, we

presented the assessment criteria employed to validate each branch of the co-design

reviewed pattern. Ultimately, we deliberated on the verifications required for an

application in the given case study. This section presents the results received from

experiments conducted on the proposed elements.

Hardware Validation Tests

We present the hardware specifications for the Edge AI server node. All candidates

are COTS computer-on-modules. To validate the hardware candidate, we assessed

the candidates’ performance in executing the internal Edge AI tasks. The pipeline

73

for the proposed test is illustrated in Figure 4.36. The internal duties for the Edge AI

server are categorized into three stages: (i) preprocessing and extracting the feature

vector, (ii) predicting the leaf condition, and (iii) storing the prediction data.

Figure 4.36: Pipeline for the hardware validation test.

We conducted the tests on all the candidates listed in Table 4.2. We conducted

tests on the Jetson Nano in both the 5W and 20W power modes. We executed the

subsequent pipeline on all 437 photos from the test set. The hardware candidates

and configurations will be referred to as follows: Zero W (Raspberry Pi Zero W), 3B

(Raspberry Pi 3B), 3B+ (Raspberry Pi 3B+), Jetson 5W (Jetson Nano operating

in 5W mode), and Jetson 20W (Jetson Nano operating in 20W mode).

The Zero W was evaluated as it serves as the computer in the helmet prototype.

The 3B and 3B+ models were evaluated due to their lower pricing compared to the

Jetson Nano, although having similar processor configurations. Using the Jetson

5W, our goal is to compare the candidate with the highest cost but with limited

hardware capabilities. In this economic operation mode, the operating system dis-

ables half of the CPU cores to conserve power. Ultimately, our objective was to

confirm the disparity in performance between the priciest gear in the most powerful

operational state and the performance of the other contenders.

Figure 4.37: Latency results for the first stage.

Initially, we assessed the outcomes for Stage 1. During this stage, the hardware

74

does preprocessing on the image by converting its color space from RGB to HSV.

Next, it retrieves the pseudospectrum from the Hue channel. The latency evaluation

findings from the first stage are presented in Figure 4.37. The Zero W device

completed the first stage in 107.61± 2.53 ms. The 3B device took 15.34± 0.28 ms

to perform this task. The 3B+ device took 29.69± 0.13 ms to complete this stage.

The Jetson 5W device took 11.47± 0.87 ms to perform this part, while the Jetson

20W device took 9.32± 0.81 ms.

Figure 4.38: Latency results for the second stage.

Then, we assessed the results for the Stage 2. This stage corresponds to the

prediction of the leaf condition using the model. Figure 4.38 presents the results

obtained from the evaluation of the latency from the second stage. Zero W took

15.62± 0.98 ms to perform the first stage, 3B took 3.01± 0.07 ms to perform this

task, 3B+ took 5.66 ± 0.10 ms to perform this stage, Jetson 5W took 2.52 ± 0.14

ms to perform this part, and Jetson 20W took 1.71± 0.09 ms.

Figure 4.39: Latency results for the third stage.

75

At last, we analyzed the outcomes pertaining to Stage 3. This stage pertains to

the retention of the information acquired from the preceding stages. The latency

evaluation results from the second stage are depicted in Figure 4.39. The Zero W

required 0.07 ± 0.05 milliseconds to complete the initial stage. The 3B took 0.02

± 0.04 milliseconds to accomplish this task. The 3B+ required 0.03 ± 0.05 mil-

liseconds to perform this stage. The Jetson 5W took 0.02 ± 0.04 milliseconds to

complete this part, whereas the Jetson 20W took 0.01 ± 0.03 milliseconds. The

observed discrepancies in this instance arose due to the time interval of this partic-

ular stage being shorter than the minimum recorded value, resulting in numerous

measurements being conducted within an infinitesimally little timeframe.

All of the suggested gear is capable of executing the intended task. Therefore, the

decision is made by assessing the performance, which may be subsequently compared

to the project cost. Based on the test findings, it is evident that the Jetson Nano

outperformed the Raspberry Pi 3B and 3B+ even when operating in power saving

mode. The Raspberry Pi Zero W has the least amount of computational capacity,

resulting in the poorest overall performance. Despite the similarities in hardware

specs, the Raspberry Pi 3B outperformed the Raspberry Pi 3B+ and exhibited a

performance level similar to the Jetson Nano operating in the 5W mode. The graph

labeled as Figure 4.40 illustrates the mean anticipated rate of predictions per second

for each platform.

Figure 4.40: Average expected predictions per second ratio on each platform. The
number in blue displays the expected ratio.

As anticipated, the performance of the Zero W was exceedingly poor. This sup-

ports the initial architectural idea to include an additional hardware component to

handle the more demanding processing activities. Another anticipated outcome was

the attainment of the highest level of performance using Jetson 20W. A notable

finding is that, despite having a potentially superior processor, 3B exhibited sig-

76

nificantly better performance than 3B+. Another significant finding is that despite

disabling two out of the four cores, the Jetson 5W exhibited higher performance

compared to the 3B and 3B+ models operating with all four cores and consuming

over twice the amount of power. Given its ability to execute at a high level while

operating under a power constraint, the Jetson 5W is an excellent choice for field

processing. Based on these findings, we conclude that 3B and Jetson 5W are the

primary contenders for fulfilling this application, as they exhibit the most favorable

balance between performance and power consumption.

Ultimately, we assessed the ratio of average predictions per second by executing

the CNN and MLP pipelines. The sole distinction in the CNN pipeline, as depicted

in Figure 4.36, is the absence of a feature extraction procedure, which is not neces-

sary for the CNN. Therefore, this stage alone encompasses the alteration of input

data to be provided to the model. The tests were conducted on the primary hard-

ware options, namely Jetson 5W, Jetson 20W, and pi3B. The findings achieved for

the predictions per second in the proposed setups were as follows:

� The average predictions per second ratio in pi3B was 54 ± 1 for the MLP

pipeline and 5± 0 for the CNN pipeline;

� The average predictions per second ratio in Jetson 5W was 71±5 for the MLP

pipeline and 10± 0 for the CNN pipeline;

� The average predictions per second ratio in Jetson 20W was 91 ± 7 for the

MLP pipeline and 15± 0 for the CNN pipeline;

Figure 4.41 also displays these results in the respective cited order. This data

indicates that even in case of improvements on the software results, the CNNmodel is

not adequate for time-restrictive tasks in the proposed configurations. This model is

suitable to perform a later review of in-field captured results, but not to be integrated

into a distributed constrained environment within the context of these tests.

Software Validation Tests

The software validation tests in the previous section incorporate conventional ML

metrics. Within this particular framework, we assessed the metrics of Precision,

Recall, and F1-Score.

To ensure simplicity, the validation set is randomly selected from the training

data only once. It contains 10% of the total photos from the training data. The

findings for the validation set are shown in Table 4.3. The findings indicate that the

system successfully detected the sick leaves in 90% of the instances. Additionally,

the Precision and Recall exhibit equilibrium, leading to a well-balanced F1-Score.

77

Figure 4.41: MLP and CNN performance comparison test results.

This outcome suggests that the number of incorrect positive and negative results is

almost equal. The confusion matrix obtained from this stage is displayed in Table

4.4.

Table 4.3: Metric results for the validation dataset. This set was obtained separating
10% of the training data for validation.

Global Accuracy: 90%
Precision Recall F1-Score Support

healthy 0.89 0.90 0.90 198
diseased 0.90 0.90 0.90 209

Table 4.4: Confusion Matrix for the validation data

Healthy Diseased
Healthy 178 20
Diseased 21 188

Additionally, we computed the global mean and the conventional metrics for the

test dataset. Previously, the test set was partitioned by extracting 10% of the photos

from the original dataset. The acquired results for the validation set are shown in

Table 4.5, while the confusion matrix for this stage is displayed in Table 4.6. Once

again, the results indicate that the system was able to accurately detect the sick

leaves in approximately 90% of the cases. Despite a slight disparity, the Precision

and Recall exhibit equilibrium, leading to a harmonized F1-Score. This outcome

validates the practicality of the suggested method within the specified framework.

Based on these stages, we can infer that the method is valid for the intended

purpose. It accurately distinguishes between diseased and healthy leaves with an

78

Table 4.5: Metric results for the test dataset. This set previously separated, taking
10% of all images.

Global Accuracy: 91%
Precision Recall F1-Score Support

healthy 0.93 0.88 0.91 217
diseased 0.89 0.93 0.91 220

Table 4.6: Confusion Matrix for the test data

Healthy Diseased
Healthy 192 25
Diseased 15 205

approximate accuracy of 90%, and the outcomes are well-balanced. The following

tests must verify the architectural characteristics of this solution. In addition, we

conducted identical predictions taking into account the CNN. In this case, we utilized

the identical test set to acquire the prediction outcomes.

Table 4.7: Metric results for the test dataset - CNN results. This set is the same
previously separated for the MLP.

Global Accuracy: 96%
Precision Recall F1-Score Support

healthy 0.96 0.95 0.96 217
diseased 0.95 0.96 0.96 220

Table 4.8: Confusion Matrix for the test data - CNN results

Healthy Diseased
Healthy 207 10
Diseased 9 211

As expected, the CNN performed better than the MLP. The results exhibit

a 5% enhancement in precision compared to the previous results. This outcome

reinforces the necessity of utilizing this approach in future investigations instead of

the MLP model. From the standpoint of leveraging greater processing capacity for

data analysis, the Convolutional Neural Network (CNN) is a more favorable model

compared to the Multilayer Perceptron (MLP).

Architecture Validation Tests

The architecture validation test assesses the capacity to execute a task while adher-

ing to a soft real-time limitation. It refers to a performance assessment that offers

a comprehensive perspective of the scalability of the suggested architecture. In this

case, we employed the Jetson Nano as an Edge AI server to execute the pipeline

79

illustrated in Figure 4.25. We designed a version of this system for the client that

gives latency statistics for the steps marked in Figure 4.42.

Figure 4.42: Stages considered in the architectural validation test.

All clients have access to a uniform set of events. The number of nodes executing

the tasks is equivalent to the number of devices carrying out the IoT-dependent

operations. This experiment involves augmenting the client count and assessing its

impact on the soft real-time restriction.

Thus, it is necessary to initially assess the real-time criteria in relation to the

pipeline depicted in Figure 4.42. Therefore, we conducted the test taking into ac-

count the latency of the procedures for a solitary customer. Additionally, the test

takes into account a series of finite discrete time intervals. Within this framework,

we have designated the smallest time interval as 1 millisecond. The delay for each

step in a single-client test is shown in Figure 4.43. In order to establish the soft

real-time constraint (ϕ), we assessed the minimum quantity of blocks required to

deliver the service to a single client with a 100% level of quality (Qf = 1.0), along

with an extra 10% allowance for loosening the criterion. We established the value

of ϕ as 90 milliseconds using this approach.

Once ϕ was defined, we conducted multiple iterations of the test with 2 to 9

clients, all of whom were assigned the same assignment. The simulations were con-

ducted on a computer machine that was linked to the WLAN network, serving as the

Edge Server. During each test, every instance executed the identical test described

in Figure 4.42, measuring the duration of each desired occurrence. Ultimately, we

calculated the average and standard deviation of the quality factor, taking into ac-

count all the nodes that were part of the analysis. The test result is shown in Figure

4.44. This outcome demonstrates that the performance of the Edge-AI service dete-

riorates as the number of customers increases, while adhering to a specific real-time

limitation. However, the system maintains a high level of quality despite having a

80

Figure 4.43: Latency for each of the steps presented in Figure 4.42

small number of connected clients.

Figure 4.44: Quality Factor test result

Ultimately, we must ascertain whether the degradation in quality was a result of

server overload or if other factors had an impact on the simulation program. In this

regard, we quantified the mean latency of each stage while progressively increasing

the number of nodes. Although steps one and two are contingent on the specific

device being used, step three is vulnerable to potential network congestion, and the

success of step four hinges on the efficiency of the Edge AI node. The findings for

this analysis are displayed in Figures 4.45, 4.46, 4.47, and 4.48.

As anticipated, the latency in the initial two stages remained unaffected by the

growing number of customers. These steps rely solely on the client carrying out its

tasks. The third step introduces the initial action that relies on the network. The

growing clientele may pose a challenge in the communication process. The findings

indicate that this excessive load leads to an increase in delay for this particular

81

stage, albeit the effect on the ultimate outcome is negligible (about 2 milliseconds).

Ultimately, stage 4 reveals that the excessive burden on the Edge AI node is the pri-

mary element contributing to a decline in quality as the number of clients increases.

This level is associated with both networking and the process of machine learning

inference.

Figure 4.45: Latency test results for step 1

Figure 4.46: Latency test results for step 2

Case Study Validation for Deployment

We additionally conducted a validation phase for the entire solution. To address this

issue, we created a simulation based on a case study appliance to test the proposed

approach. Within this application, a trio of researchers employ the cylinder approach

to sample 200 leaves at various predetermined heights. The Edge AI server node use

predictive algorithms to determine the status of each leaf and subsequently records

82

Figure 4.47: Latency test results for step 3

Figure 4.48: Latency test results for step 4

this information alongside the corresponding researcher coordinates. The researchers

are positioned within a circular area with a diameter of 5 meters around the tree

trunk in this device. Figure 4.49 illustrates the arrangement of various devices in

relation to the tree trunk.

We utilized Equation 4.17 as the reference point for randomly choosing leaves

from the sets of infected and healthy samples. Initially, the probability baseline was

determined by computing the (x, y, z) coordinate of each researcher at the given

position. Subsequently, the computer creates a random number within the interval

of [0, 1) for each of the 200 samples. If the value is below the baseline probability,

the algorithm will choose a diseased leaf. Alternatively, it chooses a nutritious one.

After this process, we performed a test with the trained model. The test program

uses each sample to estimate the leaf conditions for every device and location. Using

this dataset, the application computes the proportion of infected leaves, resulting

83

Figure 4.49: Upper view of the case study organization

Figure 4.50: Case Study sampling distribution. The larger and more colorful red
dots have a bigger percentage of diseased leaves. The brown cylinder represents the
main tree trunk.

in a distribution sample. The outcomes of the sampling procedure are depicted in

Figure 4.50, taking into account the organization shown in Figure 2.1. As depicted

in Figure 4.35, there is a positive correlation between the size and color intensity of

the red dots and the prevalence of diseased leaves.

Finally, we used an evolutionary algorithm to perform a regression to the para-

metric PDF presented in Equation 4.11 using the sampled data. Some features of

84

Figure 4.51: Estimated PDF display. The larger and more colorful red dots have a
bigger probability density. The brown cylinder represents the main tree trunk.

this algorithm are:

� Each individual genotype is a T = (p0, σ, x0, y0, z0) tuple;

� The population has 100 individuals;

� Each round generates 70 offspring (30% elitism);

� Each round has a complementary local search in half the population;

� The algorithm stops with a convergence criteria and RMSE lower than 0.05

(5%);

To understand how good would a prediction be, we ran the model 20 times, and

evaluated the average value for each paramenter of the T = (p0, σ, x0, y0, z0) obtained

from the best individual of the population. The average responses obtained from

this experiment are:

� p0 = 0.65± 0.03. The original value was 0.65.

� σ = 12± 0.86. The original value was 5.

� x0 = 1.96± 0.21. The original value was 2.

� y0 = −1.52± 0.35. The original value was −2.

85

� z0 = 8.1± 0.16. The original value was 8.

The estimated spatial distribution of the disease based on these factors is shown

in Figure 4.51. The obtained values closely align with the anticipated outcomes.

The distance between the predicted epicenter of the disease and the original PDF

is 0.48 meters. The greatest predicted percentage closely approximates the original

value. The variability of the predicted model is greater than that of the original

module. The variation in results can be attributed to the inherent uncertainty of

the leaf categorization model, which is approximately 10%. Despite the prevailing

ambiguity, the model yielded a reliable estimation for the parameters of disease

propagation, based on the collected data. We conducted experiments by manip-

ulating the algorithm’s parameters to determine if the resulting outcomes would

be altered. The findings of our study indicate that variations in population size,

number of offspring, and maximum epochs had a negligible effect on the outcomes.

This outcome demonstrates the high level of resilience in the process of acquiring

the model parameters.

4.3 Ant distribution and counting estimation

Comprehending the actions of groups of ants is a crucial obstacle in the field of

ecology. Helanterä et al. [193] assert that unicolonial ant populations are the largest

cooperative units in nature. According to them, these species are able to construct

extensive, interconnected nests. Furthermore, the authors assert that researchers

in this domain can generate valuable data by understanding the dynamics of these

colonies.

McGlynn [194] states that insect colonies are mobile entities, moving nests

through their lifetime. The authors assert that understanding the factors that in-

fluence the mobility of the researched species requires knowledge of several aspects,

such as its genetics, life-history evolution, and the effect of competition. Specifically,

the authors assert that ant migration patterns are often unclear.

Regarding the methods of understanding the migration patterns of ant colonies,

Hakkala et al. [195] state that reliable data capture of the colony motion is needed.

Furthermore, they assert that by integrating this data with environmental informa-

tion, it is feasible to understand how the setting influenced their migration. Tech-

nology solutions serve as a method to improve data collection and develop creative

solutions for this issue.

Majer and Heterick [196] also evaluate the subject of devising experiments to

achieve this objective. According to the authors, prolonged observation is crucial

for doing research on invertebrates. This element also ensures that the development

86

of innovative technology instruments aimed at this objective has a favorable impact

on researchers in this field.

This study investigates the development of an innovative instrument that en-

ables researchers to assess the dynamics within ant colonies. Our anticipation is to

utilize the developed technology to derive data pertaining to quantities and distri-

bution. Our objective was to develop an automated system capable of quantifying

the number of ants in the solution. The solution also enables an assessment of the

approximate distribution of the ants inside the scene.

4.3.1 Requirements

The first step in this analysis is evaluating the requirements for the proposed method.

For this matter, we display a version of the co-design diagram presented in Figure

4.52, which is a simplification of the diagram presented in Figure 3.2b.

Figure 4.52: Simplified Co-design diagram.

This picture illustrates the necessity of increasing the limitations for the applica-

tion and categorizing them into the domains of hardware, software, or architecture.

The limits identified for this matter are as follows:

� This system must use lower-processing CNNs to match embedded edge server

devices [Hardware].

� This system must be able to approach how many ants are present in a scene

and estimate a spatial distribution. [Software].

� The application must use similar validated tools to allow its integration into

a cooperative schema [Architecture].

In order to address this issue, we decided to conduct experiments using various

Convolutional Neural Networks (CNNs) that have limited memory and processing

requirements. The purpose of these experiments is to take a partially quantitative

approach to assessing the significance and dispersion of ants. A crucial element of

this concept is the attainment of the hardware restriction through a software design.

87

4.3.2 Methods overview

In the preceding sections, we evaluated the significance and originality of the pro-

posed solution. There is no previous example in the literature of a similar solution

being produced. Within this part, we delve into the intricacies of the suggested

resolution. We thoroughly examine the offered solution in the beginning. Next,

we will examine the dataset generation tool. In addition, we evaluate the training

process of the backbone, providing specific information about the method used for

training. Ultimately, we present the assessment criteria for each phase.

General solution

The proposed solution tries to estimate the number of ants present in each area of

the image. For this matter, the employed algorithm has four main steps to estimate

the number of ants from a picture. The steps involved in this algorithm are:

1. Transform the image size to 1024x1024;

2. Divide the image into a grid of squares of size 128x128;

3. Evaluate semi-quantitatively how many ants are present in each square;

4. Submit the results to an approximation formula for estimation;

Initially, it is necessary to resize the image dimensions to 1024x1024 pixels. This

stage facilitates the assessment of diverse images, given that our dataset comprises

photos with varying resolutions. By taking this action, we standardize the quantity

of assessed areas for every image, which then leads to the next phase. During this

stage, the image is partitioned into areas measuring 128x128 pixels each. This first

processing facilitates the generation of 64 assessment zones on each image. The

deep learning model evaluates each region separately and classifies it into one of ten

classes that represent quantity bands ranging from 0 to 45 ants per region. Following

this evaluation, we utilize the model’s output for each segment to reconstruct the

image, taking into account the density of each area, and subsequently carry out the

counting process. The diagram labeled as Figure 4.53 provides a comprehensive

representation of the entirety of the suggested solution.

This study is a novel and inventive approach to this task, as previously men-

tioned. Hence, several steps are necessary to accomplish this activity. We require

an initial dataset generated by scholars in the field of ecology. The organization

and structuring of this dataset necessitate the use of a computational tool. Subse-

quently, some necessary measures must be taken to train the AI, which encompass

the selection of a backbone model for the CNN. Ultimately, it is necessary to set

certain criteria to assess the proposed job.

88

Figure 4.53: Proposed system overview

Dot map generation

As previously said, this is an unresolved issue without an accessible dataset. Conse-

quently, we developed a tool with the purpose of producing a well-organized dataset.

Similarly to the dataset used by Wan et al. [197], we chose to create a dot map

representing the presence of individual ants on each part of the image. We devel-

oped a Guided User Interface (GUI) to do the task. Figure 4.54 depicts a diagram

illustrating the workflow of a software.

The program consists of three primary screens. The first screen is the primary

interface where the user sets up the input and output directories. Within this

display, there exist two inputs for selecting a path. The initial parameter accepts

the directory path where the user want to locate the photos for counting. The

second parameter specifies the desired file path for the structured CSV file that will

contain the output of the markings’ information. The dataset is stored in a file called

”result.csv” in the output directory. The initial screen arrangement is depicted in

Figure 4.55. Upon completing the software configuration, the user is required to

initiate the program by pressing the ”start” button.

The second window is the counting screen, where users place a dot on each unit

they wish to mark. This display features multiple commands. Users are required to

select the desired location on the screen to place their dot. The software will record

the coordinates and display a red dot at each marked location. To remove the most

recent marking, users should click the ”Undo” option. Once the marks on the image

89

Figure 4.54: Dataset generation software diagram

Figure 4.55: Initial Screen

are completed, users may simply click the ”Next” button. This action will prompt

the program to save the markings onto the disk and load the subsequent image. The

screen is depicted in Figure 4.56.

90

Figure 4.56: Counting Screen

The end screen, in which the program warns the user they have marked all images

and finishes the execution. It only gives the option to end the execution. Figure

4.57 shows how this screen is configured.

Figure 4.57: Ending Screen

A total of 134 photos were tagged by the laboratory members using this tool,

resulting in the creation of dot maps for both sparse and dense scenes of ant colonies.

The image with the minimum number of ants has only one, while the image with

91

the maximum number of ants contains a total of 460. The boxplot in Figure 4.58

illustrates the distribution of the number of ants per image, ranging from sparse to

dense scenes.

Figure 4.58: Number of Ants per Image Distribution

By utilizing structured annotations, we transformed every image into the 1024x1024

format, accurately mapping the markings to their respective coordinates. As a re-

sult of this phase, each image was able to produce 64 zones that included different

quantities of ants. In order to generate a semi-quantitative representation that is

appropriate for the purpose, we categorized them into 10 distinct classes. The initial

class is designated for areas devoid of ants. Each class corresponds to a group of ants

ranging from 1 to 5, 6 to 10, 11 to 15, and so on. The final class reflects the highest

number of ants per region, which is 45. Any zone with more than 45 ants would be

limited to this maximum number. The semi-quantitative classification convolutional

neural network was trained using 8576 frames generated from 134 annotated photos.

Data augmentation

Following our preliminary findings, we conducted an investigation into implementing

a data augmentation process to validate the capabilities of the model. In this case,

we implemented a rotational rule during the process of creating the dataset. This

rule was applied after dividing the original image, as explained in the following

manner:

1. Store original segment;

2. Perform first rotation (+90º);

3. Store rotated segment;

92

Figure 4.59: Data Augmentation Process Example

4. Perform second rotation (+90º);

5. Store rotated segment;

6. Perform third rotation (+90º);

7. Store rotated segment;

Following this procedure, we get a dataset that has four times the quantity of

photos. By allowing ants to move unrestricted within the space, this action also

generates a dataset that is more comprehensive, considering the constraints of the

initial data. Figure 4.59 illustrates an instance of this procedure.

AI model training and counting system

As previously said, we initiated this phase with a total of 8576 photos of locations

that needed to be categorized into ten distinct classes. The challenge was executed

using a convolutional neural network (CNN) as the computational framework. For

testing reasons, we examined two high-performance convolutional neural networks

(CNNs) as the main frameworks for this strategy. Two models are mentioned: the

MobileNet [198] and the EfficientNet V2-B0 [199]. Both models are lightweight

convolutional neural networks (CNNs), which are well-suited for executing compu-

tationally intensive tasks and can be easily integrated into embedded systems. The

training gear is equipped with an i5-9600K central processing unit (CPU) and has

a total of 32 gigabytes (GB) of random access memory (RAM). Additionally, it is

equipped with an NVidia GeForce RTX 2060 Super graphics card, which provides

GPU acceleration specifically for machine learning tasks.

The model consists of an input layer, a backbone without the final classification

layer, a dense layer with 32 neurons and linear activation function, and a final dense

93

classification layer with 10 neurons and ”softmax” activation function. Both dense

layers employ L1 kernel regularization with a λ factor of 0.01.

Out of the initial 8576 photos, we allocated 80% for training, 10% for validation,

and 10% for testing. Due to the imbalanced nature of the dataset, we employed class

weights as a means to improve the classification accuracy for the underrepresented

classes. To prevent the weights from becoming excessively high or low, we utilized

the square root of the initial balanced class weights. We utilized the Adam loss

function during the training process.

Figure 4.60: MobileNet Training Graph

The training commenced with an initial learning rate of 1×10−4, which was then

decreased to 10% of its original value upon identifying plateaus lasting 5 epochs.

Ultimately, the algorithm will terminate prematurely upon encountering a period

of 15 consecutive epochs where the validation loss remains constant. The graph in

Figure 4.60 illustrates the loss functions and accuracy achieved during the training

of MobileNet. The functionalities for the EfficientNet V2-B0 are depicted in Figure

4.61. Both figures demonstrate that the architectural design and training measures

effectively prevented overfitting. The accuracy achieved in the validation set was

verified when evaluating the data using the test set.

Once the CNNs have been trained, the counting system evaluates the output

of these networks for each region in the image in order to carry out the counting

process. The classification model produces a number ranging from 0 to 9 as its

output, determined by the argmax function, which identifies the class with the

highest probability of classification. Denoting Ci as the classification integer derived

94

Figure 4.61: EfficientNet Training Graph

from the i-th region of an image in the dataset, the quantity of ants Ni in that region

is:

� Ni = 0, if Ci = 0;

� Ni = 1, if Ci = 1;

� Ni = 4× Ci, if 2 ≤ Ci ≤ 6;

� Ni = 5× Ci, if Ci > 6.

The number of ants per image A, considering each i region on the image, is given

by the equation:

A =
i∑

Ni (4.18)

Evaluation Metrics

Once the techniques for forecasting the quantity of ants in each segment of the

dataset have been determined, it is necessary to develop assessment criteria for

each phase of the process. Our primary emphasis is on two crucial components of

the algorithm: region categorization and counting. The task of area classification

involves categorizing regions based on their characteristics. Counting is classified as

a regression problem.

95

As stated, the first stage is a classification problem. For this matter, we used

the traditional machine-learning metrics towards classification: Precision, Recall,

and F1-Score. They are defined by the True Positive (TP), False Positive (FP),

and False Negative (FN) samples from each class. The equations which define each

metric are:

Precision =
TP

TP + FP
(4.19)

Recall =
TP

TP + FN
(4.20)

F1-Score = 2× Precision×Recall

Precision+Recall
(4.21)

In addition to these metrics, we also assessed the global average and the confusion

matrix as quantitative and qualitative measures of the model’s performance.

In addition to defining the measurements for the classification problem, it is

necessary to specify the metrics for the regression. Usually, the coefficient of de-

termination R2 serves as a measure of the accuracy of regressions. The coefficient

is derived using the residual sum of squares (SSr) and the total sum of squares

(SSt). Optimally, the count would approximate the function f(x) = x, where f(x)

represents the number of ants detected by the AI, and x represents the true value.

The residual sum of squares can be defined as the sum of the squared differences

between the ground truth xn and the model output f̂n(xn) for the n-th image. The

equation that represents the residual sum of squares (SSr) is:

SSr =
n∑
(f̂n(xn)− xn) (4.22)

Similarly, the total sum of squares can be calculated from the mean output

value f̂ and all f̂n(xn) values obtained as the model outputs. The equation which

represents the SSt is:

SSt =
n∑
(f̂n(xn)− f̂) (4.23)

The equation gives the coefficient of determination R2:

R2 = 1− SSr

SSt

(4.24)

96

We conducted 10 iterations for each backbone to assess the coefficient of deter-

mination and see whether there are any statistically significant variations between

the models. We conducted a comparison between the average error, the standard

deviation of the error, and the median of the error for both backbones. Ultimately,

we conducted a comparison of the duration required for each prediction on the en-

tire dataset utilizing both Convolutional Neural Networks (CNNs). We conducted

a statistical analysis utilizing the paired t-Test to assess the differences.

4.3.3 Experimental Results

Figure 4.62: Application output example

Once the metrics for evaluating the system were established, we proceeded to

train and test it using the proposed algorithm. The preliminary assessment is derived

from the underlying convolutional neural networks (CNNs). Figure 4.62 displays

the output of a program. As mentioned earlier, we assess it both quantitatively,

using standard metrics of classification algorithms, and qualitatively, by utilizing

the confusion matrix as a reference point.

The initial assessment is based on quantitative measures. The categorization

metrics for the experiments testing the MobileNet as the backbone are summarized

in Table 4.9. The overall accuracy was approximately 86%. The measurements

indicate a decline in the model’s accuracy while predicting classes with increased

density. The presence of samples of this size is lower, which accounts for these

results.

Given that the issue arises from a somewhat quantitative approach, it is im-

perative to assess the impact of any inaccuracies by employing a more qualitative

97

Table 4.9: MobileNet classification metrics

Precision Recall F1-score Support
0 0.92 0.96 0.94 584
1 0.81 0.70 0.75 202
2 0.56 0.67 0.61 36
3 0.58 0.50 0.54 14
4 0.40 0.67 0.50 3
5 0.50 0.29 0.36 7
6 0.17 0.25 0.20 4
7 0.25 0.25 0.25 4
8 0.60 0.43 0.50 7
9 0.50 0.67 0.57 3
Accuracy 86%
Macro avg. 0.53 0.54 0.52 864
Weighted avg. 0.86 0.86 0.86 864

Figure 4.63: Confusion Matrix for the MobileNet

method. In this context, we assess the confusion matrix as a valuable source of in-

formation. The confusion matrix obtained utilizing the MobileNet as the backbone

is depicted in Figure 4.63. As indicated by the graphic, the majority of errors occur

either above or below a single category, leading to errors that are confined within a

range of five units.

These first findings indicate that the proposed method is capable of achieving a

satisfactory estimation for completing the primary counting tasks. Furthermore, it

implies the ability to accurately determine the density of ants in any specific region.

Subsequently, the EfficientNet V2-B0 will be assessed using identical measures.

The overall accuracy in this instance was 88%. The findings achieved from training

98

Table 4.10: EfficientNet V2-B0 classification metrics

Precision Recall F1-score support
0 0.94 0.96 0.95 584
1 0.84 0.78 0.81 202
2 0.72 0.72 0.72 36
3 0.64 0.50 0.56 14
4 0.14 0.33 0.20 3
5 0.12 0.14 0.13 7
6 0.12 0.25 0.17 4
7 0.00 0.00 0.00 4
8 0.50 0.43 0.46 7
9 0.50 0.33 0.40 3
Accuracy 88%
Macro avg. 0.45 0.45 0.44 864
Weighted avg. 0.88 0.88 0.88 864

Figure 4.64: Confusion Matrix for the EfficientNet V2-B0

this network are displayed in Table 4.10. Despite having a higher global average,

it first exhibits certain problems with certain classes. Similar to the previous situ-

ation, the majority of problems are connected to the classes that have the lowest

representation.

Furthermore, the similarities and variances underscore the necessity for an addi-

tional qualitative assessment utilizing the confusion matrix. The confusion matrix

evaluating the test set is shown in Figure 4.64. Once again, it is observed that the

majority of errors occur in classes that are similar to the right classification, suggest-

ing that this tool can be effectively utilized in the counting process. The subsequent

procedures aim to assess the performance of these techniques in the specific setting

of the counting application.

99

As indicated in the previous section, the counting task has resemblance to a

regression problem. However, we are aware of the desired function that we wanted

the data to conform to. Thus, we formulated our metrics, as presented in the

previous section, taking into account the coefficient of determination for this optimal

fitting function.

We conducted ten iterations of training and testing using the identical dataset,

with each backbone being employed for separation. The objective of this experiment

is to assess the functionality of both systems during a counting stage and determine

if there are any statistically significant disparities between the use of each backbone

model.

At first, we assessed the metrics by utilizing MobileNet as the underlying frame-

work. The results obtained from these tests are shown in Table 4.11. The results

demonstrate consistency, as indicated by an average error of approximately ten ants.

The median error is approximately eight ants. The mean coefficient of determina-

tion was 0.9783, which remained constant over all ten iterations, with a standard

deviation of roughly 10−3. This outcome demonstrates the tool’s capability to ac-

curately count objects in situations that range from having few to many objects.

The scatter plot from the most recent run is shown in Figure 4.65. The majority of

points converge towards the optimal count, as denoted by the red indicator.

Table 4.11: Counting metrics for the MobileNet

Median error Mean error SD error R2

8 10.34 10.36 0.9774
8 10.61 10.61 0.9773

7.5 9.91 9.91 0.9797
7.5 10.61 10.69 0.9777
7.5 10.56 10.72 0.9766
7.5 10.17 10.23 0.9778
7 9.86 9.83 0.9799

7.5 10.00 10.22 0.9785
7 9.94 10.23 0.9787

7.5 10.17 10.43 0.9792
Average 7.5 10.22 10.32 0.9783

We further examined the metrics derived from utilizing the EfficientNet V2-B0 as

the underlying framework. The results from the second series of testing are presented

in Table 4.12. The data additionally exhibit consistent behavior, suggesting that

substituting the backbone also yielded a viable solution. The mean coefficient of

determination was 0.9792 and remained constant over all ten runs, with a standard

deviation of roughly 10−3. The mean error was approximately 10 ants, and the

median error was approximately seven ants.

Initially, the findings appear to be comparable to the prior tests, with a few of

them showing a slight enhancement in the second set. Upon evaluating the data, it

was found that this improvement did not exhibit statistical significance. The sole

100

Figure 4.65: Scatter plot from the counting samples for the MobileNet. The red line
indicates the ground truth.

outcome that showed a statistically meaningful enhancement was the coefficient of

determination R2, with a p-value of 0.065 when compared to the baseline using a

paired t-Test. Additionally, we present the scatter plot of the most recent execution

in Figure 4.66. The graphic indicates that the outcomes closely resemble those of

the previous model.

Table 4.12: Counting metrics for the EfficientNet V2-B0

Median error Mean error SD error R2

7 10.05 10.12 0.9798
7 10.33 10.85 0.9779
7 9.91 9.50 0.9811
8 10.34 10.56 0.9777
7 10.14 10.24 0.9789

8.5 10.34 10.68 0.9783
7 9.62 10.09 0.9798

7.5 9.92 10.19 0.9793
8 10.20 9.91 0.9799

7.5 9.82 10.08 0.9795
Average 7.45 10.07 10.22 0.9792

The most recent analysis conducted in this particular situation was the immedi-

ate and continuous understanding of the situation. This investigation is conducted

by assessing the time intervals required to count each image. We utilized a dataset

including 134 photos and conducted the evaluation using both models.

The mean duration for doing all measurements using MobileNet as the under-

lying framework was 0.410 ± 0.118 seconds. The application, which utilized the

EfficientNet V2-B0 as its backbone, had an average execution time of 0.474± 0.122

101

Figure 4.66: Scatter plot from the counting samples for the EfficientNet V2-B0. The
red line indicates the ground truth.

seconds. The paired t-test demonstrated a statistically significant difference between

these times (p ¡ 0.05).

The findings suggest that the program, utilizing the EfficientNet V2-B0 model

as its core, has the capability to make around 182278 predictions within a 24-hour

period. Additionally, the program has the capability to execute 210731 predic-

tions every day utilizing MobileNet as its core architecture, without any noticeable

degradation in quality. When utilizing this technology for real-time sampling, it is

imperative to take these limitations into account.

The conclusive findings from the series of experiments provide initial proof that

a system employing this methodology is viable for the tasks of counting and predict-

ing density. Both the assessment of the model and the ultimate tally demonstrate

encouraging results, bolstering the advancement of this technology. The same algo-

rithms can be applied in future applications to accomplish counting jobs in dense

and sparse environments inside various contexts.

Results after data augmentation

Following the original set of tests, we conducted the studies again using the expanded

dataset. We assessed the training outcomes and counting outcomes using identical

indicators. The validation and test datasets consist of 3430 photos, whereas the

training dataset has 27445 images. Firstly, we examine the training outcomes for

each network utilizing the supplemented dataset.

The accuracy and loss function during the training of both approaches are de-

102

Figure 4.67: Boxplots indicating the time per using each backbone

Figure 4.68: Training information using the augmented dataset. On the left, we
display the results for the MobileNet. On the right, we display the results for the
EfficientNet-V2B0.

picted in Figure 4.68. The resultant outcome was comparable to the initial findings.

This material demonstrates the strength and effectiveness of the proposed methods.

Subsequently, it is vital to comprehend the caliber of the prognostications.

Confusion matrices for the validation and test sets utilizing the MobileNet are

shown in Figures 4.69 and 4.70. This provides additional evidence to corroborate the

initial conclusions. Similar outcomes may be witnessed with the EfficientNet-V2B0,

as depicted in Figures 4.71 and 4.72.

Finally, we also evaluated the counting process. We also obtained results with

a coefficient of determination of circa 0.98 for both models. Figures 4.73 and 4.74

103

Figure 4.69: Confusion Matrix for the validation set using the MobileNet backbone

Figure 4.70: Confusion Matrix for the test set using the MobileNet backbone

display the results for the counting process using the MobileNet and EfficientNet-

V2B0 as backbones.

This set of resutls present another collection of evidences of the process ro-

104

Figure 4.71: Confusion Matrix for the validation set using the EfficientNet backbone

Figure 4.72: Confusion Matrix for the test set using the EfficientNet backbone

bustness. Although it does not solve the dataset limitation, it enforces the early

conclusions obtained in previous tests.

105

Figure 4.73: Counting graph for using the MobileNet backbone

Figure 4.74: Counting graph for using the EfficientNet backbone

106

Chapter 5

Wearable Edge AI towards

healthcare applications

In this chapter, we evaluate the applications developed towards our second stake-

holders. We defined them as researchers, physiologists, medical practitioners, pa-

tients and people which require health monitoring appliances. We also developed

cyber-physical applications within three branches: physical condition monitoring,

smart wearable systems in the context of COVID-19, and wearable-based human

activity recognition.

5.1 Physical condition monitoring in field

The first approach in this context was applying the Wearable Edge AI context to

monitor workers’ conditions during field activities. This application relates to the

healthcare monitoring section, but interfaces with the first interests. This happens

as this study was developed as an integration from both stakeholder groups.

5.1.1 Requirements

The first step in this analysis is evaluating the requirements for the proposed method.

For this matter, we display a version of the co-design diagram presented in Figure

5.1, which is a simplification of the diagram presented in Figure 3.2b.

This representation displays the need to raise the constraints for the applica-

tion and classify them into the hardware, software or architectural domain. The

constraints identified for this matter are:

� This solution must gather data from the users and sense environmental con-

ditions that can affect them [Hardware].

� This solution must be integrated to personal protection equipment [Hardware].

107

Figure 5.1: Simplified Co-design diagram.

� The wearable devices must be able to communicate with mobile applications

which will interpret their data [Architecture].

� The communication needs to be efficient to stream the data through this local

network [Architecture].

� Data obtained from the applications must be processed in real-time [Software].

In this case, we proposed a cooperative wearable system in which several users

wear the proposed solution, which by itself serves for multiple purposes. In this

case, often the answer for a constraint comes from the evaluation and development

of others.

5.1.2 Context Overview

Figure 5.2: Wearable Device Prototype, proposed in [6].

108

The system is built upon a prototype suggested by Amorim et al. [6], as il-

lustrated in Figure 5.2. We have not suggested any modifications to the hardware

configuration as our goal is not to verify the device in isolation, but rather to assess

the implementation of several devices. The sensors were previously employed in

close proximity and evaluated during the prototype development phase.

We investigate the earlier proposal and validation of this solution. The develop-

ment of innovative technologies necessitates a methodical procedure. In this context,

we adhere to the notion of Multiple-User Cooperative Wearable Systems, which in-

volves investigating the utilization of a single device across many applications.

Therefore, we utilize the understanding provided by the current sensors to outline

innovative applications that can leverage this data to produce fresh insights. This

study examines the progression of this system towards a Continuous Writing System

(CWS), and more particularly, a French-English CWS (FR-CWS). This procedure

adheres to the established protocols for the development and verification of wearable

devices and systems. Moreover, we provide a hypothesis in which this system is

capable of serving many devices.

This subsection provides the background in which we implement the suggested

remedy. Initially, our wearable device gathers pertinent data from both the per-

son and the immediate surroundings. Initially, this wearable device was specifically

developed to provide assistance to workers in the open-sky mining sector [6]. There-

fore, this study examines a more extensive hypothetical situation in the field of

forest studies. The creation process was informed by typical functions seen in wear-

able gadgets and field research. Under such circumstances, a team with expertise

in multiple disciplines collects diverse information from the gadget. The individuals

comprising this team are:

1. A medic, monitoring the team’s health [200, 201];

2. A biologist/ecologist, measuring sensor values for his research [202–204];

3. A physiologist, studying the physical effort in each kind of task [205–207];

4. A navigator, cross-checking the global position with physical or virtual maps

[208–210].

Every member of this group wears identical safety field research equipment and

has access to the collective data of the entire team’s gear. Furthermore, every

member is provided with a Smartphone application that is tailored to their specific

professional responsibilities, along with specially-designed features. This architec-

ture aims to utilize the adaptable nature of the data generated by the device to cater

to many topics using the same wearable, as a distinguishing feature of a multi-user

Context-Aware System (CWS).

109

5.1.3 Wearable computing requirements

This subsection provides a concise summary of the prerequisites for the specific

circumstances in which this wearable system operates. The initial set of criteria is

derived from the prevalent characteristics of wearable devices:

� The device must not block the user’s common movements;

� It must provide information from sensors;

� It must detect context changes.

Moreover, the integration of new equipment in field research necessitates the

development of innovative AHPs. Therefore, it is preferable to integrate the wearable

system with widely-used protective equipment. Utilizing these gadgets hinders the

need for implanting a new safety device. Therefore, we selected a safety vest as the

reference point for our suggested approach, using it as a case study.

From now on, the team will be designated as M for the medic, E for the ecologist,

P for the physiologist, and N for the navigator. In order to meet the requirements

of the interdisciplinary team, this gadget must be equipped with sensors that offer:

� Body temperature and humidity (M, P);

� Heart rate and blood oxygenation (M, P);

� Environmental luminosity, temperature and humidity (M, P, E);

� Global Position and Altitude (E, N);

� Muscular Effort (P);

� Body Motion (M, P);

� Safety lights (M, E, N, P).

Each professional can obtain the required information from all the crew members,

in an application designed with the specifications from each of them. This feature

comes with the flexibility of CWS.

5.1.4 Device Architecture Description

In the preceding section, we outlined the prerequisites for the suggested CWS.

Within this section, we will outline the structure and characteristics of the pro-

totype utilized in this particular scenario. The diagram in Figure 5.3 illustrates the

primary components of this prototype.

110

Figure 5.3: Proposed device architecture.

As mentioned, this device was previously presented by Amorim et al. [6]. It has

sensors to monitor both the user and some environmental variables. These sensors

are:

� User Sensors:

– Temperature/Humidity Sensor—This sensor monitors the tempera-

ture and humidity internally. This sensor connects reading digital data

from a GPIO pin;

– IMU Sensor—This sensor monitors the user’s body motion. It commu-

nicates using the I2C bus;

– EMG Sensor—This sensor monitors the muscular effort from the user.

It transmits the measured data using GPIO monitoring;

– ECG Sensor—This sensor monitors the heart rate and blood oxygena-

tion. It communicates using the I2C bus.

� Environmental Sensors:

– Temperature/Humidity Sensor—This sensor monitors the tempera-

ture and humidity externally. This sensor connects reading digital data

from a GPIO pin;

– GPS Sensor—This sensor gathers the global position data and transmits

it to the computer board through the MCU. The MCU uses a serial

connection to communicate with this board;

– Luminosity Sensor - This sensor gathers luminosity data and trans-

mits it to the computer board through the MCU. The MCU uses I2C

connection to communicate with this sensor.

111

In addition, the vest offers the possibility of activation. The MCU can utilize

the brightness sensor to trigger the activation of safety lights in the event that it

detects a dimly lit environment. To enhance comprehension of the arrangement of

sensors in this device, Figure 5.4 depicts the spatial positioning of its components. As

mentioned in the introduction of this section, this device underwent prior testing and

validation in [6]. The safety vest accommodates all the elements without obstructing

or causing discomfort to the user.

Figure 5.4: Wearable device illustration.

To have a more comprehensive understanding of the system’s capabilities, it is

crucial to chart the data acquisition time for each sensor. This information is also

utilized to generate the simulated devices during the validation phase. In relation to

this issue, we have condensed the duration of the procurement process for each sensor

that is included in the prototype created by Amorim et al. [6]. The summary is

presented in Table 5.1. Furthermore, we anticipate that the consuming applications

will engage in additional post-processing of the data obtained from the sensors.

Thus, the provided sampling times take into account the shortest interval necessary

to obtain this essential information.

Table 5.1: Sampling time ratio for each sensor.

Variable Sensor Sampling time

User

Temperature and Humidity AM2302 (DHT22) [211] 2 s
IMU MPU6050 [212] 0.125 ms
EMG Myoware System Sampling Rate [213] (∼5 µs)
ECG MAX30100 [214] 1 ms

Environmental
Temperature and Humidity AM2302 (DHT22) [211] 2s
GPS FGPMMOPA6H [215] 0.1 s
Luminosity TSL2561 [216] 2.5 µs

112

This analysis used the provided information from the sensors and the computer-

on-chip datasheets [211–216]. Finally, we consider that all sensors were properly

calibrated in a previous assembly stage with the correct methods. For a broader

comprehension, we also present the general characteristic of the calibration process

for each sensor. The AM2302 sensor needs a chemical process in a closed chamber

for calibration, as it is an hygrometer–thermometer [217]. The MPU-6050 is a 6-DoF

IMU, which requires a 3-axis motion and spinning movements [218]. As an EMG

sensor, Myoware must be calibrated before the usage, considering reference levels

of contraction signals [219]. As a GPS module, FGPMMOPA6H requires a factory

calibration according to its antenna [220]. TSL2561 is a lux meter, and therefore

must also be previously calibrated with its response curve [221]. Finally, MAX30100

is a pulse-oximeter, and thus requires factory calibration with the light wavelength

response [222].

5.1.5 System Architecture

In the previous subsection, we outlined the key characteristics of the wearable devices

that would form part of this system. Here, we introduce the suggested architecture

for CWS. The architecture was derived from the collaboration of a multidisciplinary

team. The crew consists of a medic (M), an ecologist (E), a physiologist (P), and a

navigator (N), as previously stated.

This system adheres to the principle of Multiple-User Collaborative Writing Sys-

tem (CWS). In this particular setting, numerous individuals utilize a shared gadget.

The increase in flexibility occurs at the application level, where the data obtained

from the wearable devices will undergo post-processing.

Figure 5.5 depicts the integration of the CWS architecture. Each crew member

possesses an application that collects data from the sensors over wireless communica-

tion protocols, as previously stated. The applications extract pertinent information

for each individual involved in the process from the comprehensive dataset.

Wearable devices in contemporary applications can be regarded as Internet of

Things (IoT) nodes, as evidenced by several studies [223–228]. Therefore, within

the framework of this study, each wearable device is also represented as an Internet

of Things (IoT) node that forms a Fog-Radio Cloud Wireless System (FR-CWS)

architecture. Every crew member has the ability to utilize a smartphone that is

connected to the network or a gateway in order to access and get data from each

wearable device.

Every crew member application requires a specific sampling interval based on

their professional specialty. However, the sampling rate must take into account

both the interval at which the sensor readings are taken and the inherent delay in

113

communication, which is common in this type of system. Prior to proceeding, it is

crucial to comprehend the communication alternatives for constructing a wireless

network. Mahmoud and Mohamad [229] categorize the network protocols for the

Internet of Things (IoT) based on the communication range. They use the following

terminology:

� Proximity (up to 10 m);

� Wireless Personal Area Network (WPAN) (up to 100 m);

� Wireless Local Area Network (WLAN) (Up to 1,000 m);

� Wireless Neighborhood Area Network (WNAN) (up to 10 km);

� Wireless Wide Area Network (WWAN) (up to 100 km).

Figure 5.5: Field research cooperative wearable system architecture.

According to the conjectured scenario, we desire that the users have access to

each other data in distances within the ranges of WLAN andWPAN. For this matter,

this work also provides some examples of technologies in use in these scenarios. Table

5.2 presents these options.

Table 5.2: WPAN and WLAN connectivity technologies.

Range Technologies

WPAN up to 100 m
bluetooth LE, ZigBee, Thread (6LoWPAM), Z-Wave, ANT+,
WirelessHART, ISA100.11a (6LoWPAM), EnOcean, ...

WLAN up to 1,000 m 802.11a/b/n/ac, 802.11af, 802.11ah & 802.11p

In a test scenario, we use the WLAN as connection mean, as it is enough to

manage the information exchange for a crew working in proximity.

114

5.1.6 Evaluation Methods

Given that the proposed system operates as a dispersed device network, a crucial

element of its architecture pertains to its communication limitations. In order to

verify the effectiveness of this approach as a collaborative multi-node system, it

is necessary to assess the practicality of the suggested system. Furthermore, it is

vital to comprehend the constraints associated with the data accessibility within

this network prior to formulating any algorithmic suggestion. Therefore, in this

assessment, we establish a mathematical framework grounded in Quality-of-Service

(QoS), akin to the models proposed by Boukerche and Samarah [230] and Silva

and Oliveira [192]. This Quality of Service (QoS) test assesses the availability of

information, taking into account the time restrictions that need to be considered

when developing consuming applications.

At first, we assume that the transmission time is divided in equally-sized times-

lots, represented by the set T = {t1, t2, t3, ..., tm}, where ti+1 − ti = λ for 1 < i ≤ m.

Definition 8. Let D = {d1, d2, d3, ..., dn} be the set of n wearable devices present

in the network.

Definition 9. Let pj = dr...ds be a data acquisition pattern, where each di element

is a device from D (di ∈ D).

Definition 10. Let P = {p1, p2, p3, ..., pk} be a set of k desired observation patterns.

Definition 11. Let F (pa, x) be the number of observations of a pa pattern within

an x number of timeslots.

Definition 12. Let F (pa) be the total number of observations of a pa pattern in

the whole test period.

The quality parameter Qs(pi, k) for a pattern pi ∈ P expected in a k number of

timeslots is defined by the following equation:

Qs(pi, k) =
F (pi, k)

F (pi)
. (5.1)

Each wearable device in our scenario will be emulated by utilizing a Raspberry

Pi Zero W single-board computer connected to the network. The selection of these

devices was based on their role as primary hardware nodes in the original prototype

created by Amorim et al. [6].

Professionals may desire to receive communications from individual members,

pairs of members, trios of members, or the entire crew in any given situation. If

we define our pattern set P as the set of all permutations of arrangements from the

elements of D according to this rule, then the size of our full pattern set is denoted

by S:

115

S = P (4, 1) + P (4, 2) + P (4, 3) + P (4, 4),

S =
4!

3!
+

4!

2!
+

4!

1!
+

4!

0!
,

S = 64.

Consequently, we conducted 30 simultaneous tests for each device, aiming to

acquire identical results, for every conceivable combination of P . During each test,

the consumer applications simultaneously attempt to retrieve data from each sensor

based on the potential message patterns of P . Every consumer application is created

as a universal client within the network, capable of connecting to each node through

the network gateway and retrieving its sensor data. Furthermore, during each test,

the consumer applications will endeavor to collect identical data. Throughout the

entire process, the wearable devices will be readily accessible, as they are a necessary

component of both wearable technology and the Internet of Things.

Upon completion of the testing, we conduct a thorough analysis of the data to

assess the quality elements as per the specified timing requirements. The string

holding the simulated data will be released at regular intervals of 4.2 seconds for

simulation purposes.

5.1.7 Results

In the previous part, we introduced the validation test set for the suggested case-

study. Here, we examine the developed modules and practical features of the imple-

mented tests. The test set being proposed is a simulated representation of the real

network environment. To address this issue, we created a server application on four

distinct computer-on-chip nodes, which are interconnected by a WLAN network.

Furthermore, we set up four distinct computers as clients to retrieve data from the

server nodes.

The client nodes have the capability to execute a single query at any given

time. This prevents a single application from causing the sensor nodes to become

unresponsive after they are connected. As previously stated, every client application

operates using identical code, and each sensor node carries out the same server

function. The devices are disseminated throughout the local wireless network, as

depicted in Figure 5.5.

We also said that the test encompasses every potential query case for each mes-

sage. The evaluation approach takes into account the equation 5.1, which calculates

the quality factor for a time frame consisting of k timeslots. According to the in-

formation provided in Table 5.1, it takes approximately 4.2 seconds to collect data

116

from all sensors. Therefore, we opted to examine the discrete-time slots in intervals

of λ = 1s. Furthermore, the quality factor must take into account the quantity of

queries in a pattern, as each question will require a minimum of five timeslots to be

resolved. Consequently, once the k factor has been determined, the analysis employs

the subsequent equation to compute the precise kl factor, where n represents the

quantity of queries in the pj pattern, pj ∈ P :

kl = n.k.

Furthermore, as previously stated, there exist a total of 64 distinct patterns when

examining the individual combinations of each device di from the set D. Hence, we

gathered the durations for acquiring each pattern pj ∈ P that consists of a distinct

arrangement of devices.

Each of the four client devices performed this method 30 times, simultaneously

and concurrently retrieving data from the server nodes. Ultimately, we examined

the data by taking into account various values of k, commencing with k = 5. The

results obtained from the tests are displayed in Figure 5.6.

The purpose of this study is to comprehend the limitations of the proposed

architecture and its components. The QoS factor represents a proportion of the

overall occurrences of a pattern. Consequently, we display the outcomes in the form

of percentages.

The QoS tests reveal that a minimum of nine timeslots, equivalent to nine sec-

onds, is required to ensure the full delivery of patterns. As previously stated, a

minimum of five slots is required to generate and transfer the data. Therefore, it is

essential for each study application to take into account the utilization of acquisition

rates ranging from 5 to 9 seconds per device.

The results show that the average QoS factor for k = 5 is 77.8%. The mean

quality of service (QoS) factor for a given value of k = 6 is 95.0%. The mean quality

of service (QoS) factor for a given value of k = 7 is 99.4%. The mean Quality of

Service (QoS) factor for a value of k = 8 is 99.9%. The quality factor is 100% when

the value of k is 9. As anticipated, decreasing the value of k in the analysis leads to

a deterioration in the quality factor outcome. This occurs as a result of the delay in

sensor acquisition and the simultaneous use of the network. The graph labeled as

Figure 5.7 illustrates the trend of the average factor for each value of k.

Another conclusion from this result is that the gain is small starting from k = 7.

Increasing the number of timeslots from k = 5 to k = 6 elevates the average quality

factor by 17.1%. Increasing from k = 6 to k = 7 increases the quality factor in

4.4%. Increasing from k = 7 to k = 8 raises the quality factor only by 0.5%.

Finally, increasing from k = 8 to k = 9 only elevates the quality factor by 0.1%.

117

Figure 5.6: Results of the QoS tests on each device.

The initial inference drawn from these test results confirms the validation of the

network architecture. The test demonstrates the ability to simultaneously query

wearable node devices for messages in an IoT-like application using wearable devices,

even with the anticipated delay in sensor readings. This outcome validates the

practicality of developing a Field Research Cooperative Wearable System within

the specific case study. Moreover, when developing applications to utilize the data

from the wearable nodes, it is important to take into account the timing limitations

specified by the QoS test. Typically, the devices should aim to achieve an acquisition

rate of approximately 7 seconds per node. Within the context of this text, employing

a 7-second capture rate ensures a Quality of Service (QoS) factor of 99.4%.

118

Figure 5.7: QoS average factor for each k value.

5.2 Smart wearable systems in the context of COVID-

19

Due to advancements in hardware downsizing, the integration of Graphics Process-

ing Units (GPUs), and the incorporation of Artificial Intelligence (AI) capabilities in

System On Chip (SoC), wearable computers can now be categorized as edge comput-

ing devices as well (Chen, 2017). This viewpoint suggests improved and adaptable

electronics and modular Computers-on-Chips. These devices have the capability to

achieve greater involvement in local processing operations [232]. In addition, due to

their advanced networking capabilities, they are capable of transmitting data with

a greater level of abstraction to applications that are based on edge servers or cloud

platforms [233].

Context-awareness is a crucial element in wearable computing [234]. Upon initial

examination, this information pertains to the identification of alterations in the envi-

ronmental circumstances within pervasive applications (Surve, 2017). Furthermore,

an integral aspect of context-awareness is the monitoring of the user’s conditions,

sometimes referred to as user-awareness.

Kliger and Silberzweig [237] state that COVID-19 is a viral illness caused by a

newly discovered strain of coronavirus. The primary recognized symptoms include

fever, cough, myalgia, and weariness. According to Prachand et al. (2020), a sig-

nificant issue in combating the pandemic is the healthcare personnel’ susceptibility

to contamination hazards. However, Kliger and Silberzweig [237] state that face

masks and face shields are included in the list of recommended personal protection

equipment (PPE) used by healthcare professionals to prevent contamination.

119

5.2.1 Requirements

The first step in this analysis is evaluating the requirements for the proposed method.

For this matter, we display a version of the co-design diagram presented in Figure

5.8, which is a simplification of the diagram presented in Figure 3.2b.

Figure 5.8: Simplified Co-design diagram.

This representation displays the need to raise the constraints for the applica-

tion and classify them into the hardware, software or architectural domain. The

constraints identified for this matter are:

� This solution must gather data from the users and sense gather information

using external markers [Hardware].

� This solution must be integrated to personal protection equipment [Hardware].

� The wearable devices must have low current consumption for an increased

autonomy [Hardware].

� The integration of data from multiple devices must happen within and edge

server [Architecture].

� The communication needs to be efficient to stream the data through this local

network [Architecture].

� Data obtained from the applications must be processed in real-time [Software].

In this section of our work, we propose the architecture for a novel wearable ap-

pliance to help the professionals in the frontline of the COVID-19 engagement. The

proposed appliance has two main goals. The first one is to gather information from

environment signals using a camera as a smart sensor. The other one is to moni-

tor the medical professionals’ health conditions using internal measurement sensors.

We also prototyped a version of the proposed architecture to test its feasibility and

features.

120

5.2.2 Architecture Proposal

Here, we utilize this knowledge to suggest a new advanced structure for the wearable

device. We choose the protective face shield as the foundation for this architecture

development. This item is a safety face shield that has been modified to include a

Head-Up Display (HUD). This viewpoint advocates for the implementation of an

additional protective barrier, as advised by the World Health Organization (WHO),

to safeguard against direct contamination [239]. Moreover, the suggested appli-

ance aims to offer context-awareness, taking into account both the environmental

conditions and the user’s awareness.

Figure 5.9: Schematic View of the Proposed Prototype

The suggested design consists of three main components: an environmental sens-

ing element, a health monitoring sensor, and a heads-up display (HUD) interface.

The integration of all these parts is achieved by the utilization of an integrated

computer-on-module, which is powered by a battery. Figure 5.9 depicts a schematic

representation of the arrangement of elements. To perceive the surroundings, we

suggest use a camera. Initially, this sensor enables remote access to the medical

records of patients.

The internal application utilizes a QR-Code to identify the patient and presents

the most pertinent information via the Heads-Up Display (HUD). To detect the

user’s health status, we suggest utilizing a pulse-oximetry and temperature sensor.

This module offers data regarding users’ temperature, blood oxygenation, and pulse

conditions over the course of usage.

The user awareness interface is an integrated heads-up display (HUD). The device

utilizes a compact Organic Light-Emitting Diode (OLED) screen with a partially

reflective surface and a lens to create the intended transparent look. Due to the com-

pact size of the display, it can only accommodate a restricted amount of information.

These pieces integrate with an ARM-based single-core computer-on-module. This

board possesses wireless networking capabilities for seamless integration with the

local network. This functionality enables the transfer of the user’s data and the

121

retrieval of information regarding patients that are kept in the local servers.

5.2.3 Prototyping and Validation Tests

This section presents the produced prototype to validate this idea and the tests used

to evaluate its performance.

Prototype Description

Figure 5.10: Pulse-Oxymeter and Temperature Sensor Placement

Initially, we commenced the production of the prototype by utilizing a 3D-printed

face shield foundation. Volunteers utilize this basis to fabricate face shield masks.

Upon this foundation, we established all the essential components required to de-

velop the suggested application. The computer-on-module utilized was a Raspberry

Pi Zero W. The solution is equipped with a solitary ARMv7 processing core, which

is integrated within a Broadcom BCM2835 chipset. This CPU has a clock frequency

of up to 1GHz. The device is equipped with 512MB of RAM and a wireless board

that supports an 802.11 b/g/n WLAN connection, Bluetooth 4.1, and BLE pro-

tocols. We utilized a plastic enclosure to organize the computer-on-module and

established connections to the remaining components via cables. The total weight

of the solution, including the battery, is around 200g.

We employed a MAX30100 pulse-oximeter to detect and monitor the patients’

health status. This sensor supplies data necessary for computing the users’ heart

rate, blood oxygen saturation, and body temperature. The device is powered by

a 3.3V output generated from the computer-on-module and communicates through

an I2C/SMBus serial link. The positioning of this sensor in the prototype is seen

in Figure 5.10. We employed a Raspicam V2 module1 to perceive the surroundings.

This device features an 8-megapixel picture resolution, with video formats of 1080p,

1https://www.raspberrypi.org/documentation/hardware/camera/

122

https://www.raspberrypi.org/documentation/hardware/camera/

Figure 5.11: HUD See-through Display

720p, and 480p. It can be accessed using the V4L2 Linux driver. The device

offers a horizontal field-of-view of 62.2 degrees and a vertical field-of-view of 48.8

degrees. This device establishes a connection with the central computer through the

utilization of the MIPI camera serial interface.

The user interface is a Heads-Up Display (HUD) that presents information di-

rectly in front of the user’s right eye. In this example, we utilized a 96x64 pixels

OLED display2 enclosed within a 3D-printed casing. This module utilizes an SPI

serial interface for communication. A semi-reflexive membrane was employed to

form the reflexive surface, positioned in front of an acrylic layer. We positioned a

lens with the accurately computed focal length to exhibit the information at the

precise distance. Figure 5.11 illustrates the information that may be accessed using

this particular model of the transparent display.

Figure 5.12: Data Flow for the Proposed Prototype

The computer-on-module consistently collects data from its sensors. Utilizing its

wireless functionalities, it transmits this data to a server for storage and retrieves

specific information based on the observed data. Ultimately, it generates the feed-

back frame of the HUD screen based on the received response and the data from

2https://img.filipeflop.com/files/download/Datasheet_SSD1331.pdf

123

https://img.filipeflop.com/files/download/Datasheet_SSD1331.pdf

the sensors. Figure 5.12 illustrates the flow of data within the systems, based on

the information depicted in this section.

Validation Tests

Here, we introduce the test set that was utilized to validate the proposed solution. In

order to evaluate the system, we will conduct tests on several elements. A wearable

appliance refers to a gadget that has limited energy resources available to it [228,

240]. Furthermore, the utilization of processing power is a significant limitation

in this particular situation [241]. Additionally, we aim to verify some functioning

features of the system. Therefore, our test set takes into account:

1. A current consumption profiling test, to observe how the proposed device

behaves due to processing charge;

2. A full battery discharge test, for probing the energy constraint and auton-

omy;

3. A functional validation test, to observe how the system reads the provided

data.

In the initial two tests, we employed a data collecting device to deliver instanta-

neous data on consumption by utilizing a sensor and a microcontroller. The sensor

utilized was an INA219 current consumption sensor, whereas the microcontroller

employed was an Arduino Uno. The configuration for this probe is shown in Figure

5.13.

To obtain a singular output result, we calculate the mean measurement of 20

samples taken at an approximate rate of 100 samples per second. The ultimate

sampling rate for acquiring a singular value was roughly 4.5 samples per second.

Figure 5.13: Current Consumption Probe Configuration

In the current consumption profiling test, we observe how the system con-

sumes energy in different stages of its functioning. For this matter, we performed a

124

current consumption test considering various stages of the system functioning. We

performed a 210-second run using a 5V power source. In this experiment, the device

runs the following states in the approximate time intervals:

1. Device off – 0s-10s;

2. Boot – 10s-65s;

3. SSH enabled – Idle – 65s-110s;

4. Run application – 110s-180s;

5. SSH enabled – Idle – 180s-200s;

6. Device off – 200s-210s.

Using this metric, we anticipate examining the present consumption of the many

potential states of the system. Furthermore, we anticipate gaining a more com-

prehensive understanding of the system’s energy limitations. In order to enhance

understanding, we also conduct the subsequent test as described.

During the full battery discharge test, we anticipate examining two distinct

facets. Initially, our objective is to assess the level of autonomy of the system

based on a certain power source. Additionally, we aim to assess the consistency

of consumption during the entire duration of execution. This assessment takes into

account both quantitative and qualitative characteristics. The current consumption,

without significant increases, primarily demonstrates the resilience of the behavior.

Furthermore, it is imperative to ascertain the level of autonomy exhibited by this

system, taking into account the various constraints that have been mentioned.

Additionally, we do a functional validation test. Through an analysis of the

system’s essential components, we assess its practicality and explore potential extra

features. We evaluate sensing technologies that are capable of detecting both user-

awareness and environment-awareness. Our analysis focuses on the extraction and

transmission of information to an external edge server appliance. We facilitate the

utilization of Edge AI to assess the characteristics of the provided data within this

device.

5.2.4 Validation Tests Results

In this section, we present the results for these tests and preliminary discussions and

conclusions.

125

Current Consumption Profiling Test

The first proposed experiment is the current consumption profiling test. In this

scope, we want to describe the functioning of the system throughout different stages.

For this matter, we divided the test time into six stages: Device off (1), Boot (2),

SSH enabled - Idle (3), Run application (4), SSH enabled - Idle (5), and Device off

(6). This test represents roughly a “symmetrical” startup, execution, and shutdown

from the prototype. Figure 5.14 displays the results obtained from this experiment.

Figure 5.14: Current Consumption Profiling Test Result

In red, we display the probe readings when the system was off (Stages 1 and

6). These results display some noise but roughly represent the “zero-state” of this

system. In orange, we display the current consumption results in the system boot

(Stage 2). In this case, it is possible to see that the reading values increase until

reaching a stable state.

In yellow, we display the results for the “SSH enabled - Idle” stages (3 and

5). In these intervals, the system was on, and the ssh connection was established.

Nonetheless, the application was not running yet, configuring an idle state. At the

connection establishment, we observe some instability in the current consumption,

which reaches a stable state right after.

Finally, in green, we display the current consumption result for the application

run time. In this case, the device starts the application, acquiring and transmitting

data. In this case, the prototype is consuming the fully required resources. From

126

the data, it is possible to see that the current increases during the system start-

up, reaching a stable state after some seconds. The system also displays a slope

decrease on the current, reaching a stable level in the shutdown’s idle state. Table

5.3 displays the average current consumption for each stage.

Table 5.3: Profiling Test Results

Current (mA)
min. max. avg.

Stage 1 3 86 45.53 ± 22.27
Stage 2 56 529 331.4 ± 86.6
Stage 3 232 565 384.4 ± 65.8
Stage 4 744 927 831.4 ± 32.6
Stage 5 268 444 359.5 ± 45.0
Stage 6 3 73 40.63 ± 14.0

Full Battery Discharge Test

Following the analysis of the current consumption for each stage, we proceeded to

conduct a discharge test. For this experiment, we utilize a compact battery as a

potential power source for the device and assess its duration and mean electrical

usage. Figure 5.15 exhibits the measurement outcomes during the entire duration

of the test.

Figure 5.15: Discharge Test Result

For this test, we utilized a 4000 mAH power bank with a low weight as the

primary battery for the system. The mean current during the test was 779.3 ±
58.7 mA, with a recorded maximum of 939 mA. The prototype exhibited consistent

127

performance throughout the whole test, indicating a high level of robustness for this

device. Additionally, the autonomy was approximately 6 hours of continuous opera-

tion. These results support the findings of the profiling test, confirming the viability

of the solution and its predictable behavior. This information also enables the choice

of a suitable power source based on the current needs of healthcare personnel.

Functional Validation Test

Ultimately, we conducted a functional validation of the prototype to assess its via-

bility in a situation that closely resembles the context of the end user. The intended

appliance aims to retrieve two distinct types of information. Our objective is to uti-

lize a camera to perceive data from the surroundings and employ a built-in sensor

to retrieve information from the user.

Initially, we assessed the practicality of the external sensor. At first, it functions

solely as a detector for a QR code to access information from other advanced sensors.

Therefore, our hypothesis regards the wearable camera as a sensor that extracts

images. The system obtains and transmits frames to an edge computing server for

processing.

To address this issue, we incorporated a streamer program into the device. There-

fore, the edge computing server has the capability to promptly establish a connection

with the wearable device, get a single frame, and analyze it in order to locate a QR

code containing an identifying query. Consequently, we created a straightforward

program capable of extracting data from the wearable device and analyzing it for a

QR code. The ultimate outcome for this example is depicted in Figure 5.16.

Figure 5.16: QR Code Acquisition Validation

Following the validation of the external data collecting procedure, it was neces-

sary to also validate the acquisition of the user’s health conditions data. For our

prototype, we utilized the MAX30100, a device that offers data on temperature and

pulse-oximetry. This application utilizes a wearable device to compute the blood

oxygen saturation (SpO2) data by analyzing measurements obtained from infrared

128

and red light emitting diode (LED) pulses. Hemoglobin exhibits differential ab-

sorption of red and infrared light depending on the presence or absence of oxygen.

Figure 5.17 depicts the sampling readings of the probe sensor, which were taken at

a rate of around 23 samples per second for a duration of approximately 15 seconds.

The blue line represents the measurements of the infrared pulses, while the red line

represents the measurements of the red light pulses.

Figure 5.17: MAX30100 Probe Readings

Figure 5.18: SpO2 Readings Obtained from the Computer-on-Module

Usually, the data can be analyzed by considering the AC components that have

been adjusted for the DC components [242]. The computer-on-module processes the

readings as SpO2. Figure 5.18 displays the data obtained from the computer-on-

module. The pulse information can be acquired by simply enumerating the number

of crests within a designated time interval. The collected data can be subsequently

assessed on the edge computing server appliance using machine learning techniques

to examine the temporal sequences.

The analyses conducted on the prototype ensure the functional and non-functional

validation of every part of the proposed architecture. We conducted a functional

129

analysis to confirm that the prototype can be successfully integrated into the pro-

posed appliance by verifying its key components. Non-functional analysis involves

identifying the limitations that must be met for the proposed system to operate

effectively.

5.2.5 Edge Computing - Architecture Proposal

Typically, edge devices are used in a wireless network environment to carry out

cooperative duties, which is commonly linked to the Internet of Things (IoT) con-

cept [243]. Therefore, the initial determination in this suggestion for the system’s

architecture is the networking environment. Given the need for rapid adaptation

and deployment of structures like mobile field hospitals [244], an optimal approach

would be to utilize a portable solution for swiftly establishing a management frame-

work. The solution’s network type is a Wireless Local Area Network (WLAN), as

determined by the required connectivity ranges [229]. The main planned design is

depicted in Figure 5.19.

Figure 5.19: Overview of the proposed architecture

The WLAN-server functions as a nearby edge computing facility that serves as an

access point for wearable devices and computer connections. This module collects

data from all the sensor nodes in the network, conducts processing activities to

extract information and insights, and delivers high-level feedback through wearable,

mobile, and computer terminal interfaces. This option enhances the capabilities of

130

the Internet of Things appliances [245], enabling to reach higher-level insights from

the acquired data.

Health sensors, in this particular context, refer to wearable devices that are worn

by healthcare practitioners. Our solution involves sensor nodes consisting of sensors

connected to single-core computer-on-modules, which are powered by power banks.

They carry out basic processing duties such as collecting data, preparing it for anal-

ysis, and facilitating two-way communication to transmit the collected information

and receive responses. Medical practitioners and facilities administrators can utilize

computer stations and mobile devices as interfaces as well.

Edge Computing Devices Description

Figure 5.20: Face shield HUD Prototype.

We created a wearable gadget, specifically a prototype of the face shield HUD,

for this project. We have already constructed and verified this prototype [52] as an

obligatory safety apparatus in numerous healthcare establishments. The prototype

that was created is shown in Figure 5.20.

The primary goal of this wearable gadget is to track and assess the user’s health

status and provide remote data retrieval. Using this device, we evaluate many

aspects of the proposed solution. The primary pertinent part of the solution is the

computer module. Wearable devices typically have limitations in terms of battery

consumption and cost. Therefore, the initial choice is to utilize a solitary-core ARM-

based computer-on-module as a foundation for creating the solution. A crucial

component of the computer-on-module is a network board that has the capability

to connect to a WLAN.

Another important aspect to take into account is the arrangement of the sen-

sor. Historically, one of the primary advantages of wearable devices is enhancing

the user’s knowledge of their immediate surroundings and personal well-being [246].

131

This prototype is equipped with two distinct sensors. The first device is a pulse-

oximeter and temperature sensor, which collects data on the user’s health state.

Another sensor present is a camera, which is used to gather data from the surround-

ing environment.

Within the healthcare facility, the camera may retrieve data from patients’ med-

ical records by utilizing QR codes. Lastly, the feedback interface is the final part of

it. In this regard, we have suggested the implementation of a head-up display (HUD)

to furnish the user with comprehensive information. A Heads-Up Display (HUD) is

an optically transparent display that presents information directly within the user’s

line of sight [247]. Augmented reality enhances usability and context awareness by

allowing hands-free interaction and presenting information in the user’s visual field.

Figure 5.21: Overview of the elements of the produced prototype

The prototype’s elements are depicted in Figure 5.21. In Figure 1, the primary

mount is visible, featuring the camera positioned at the front and the HUD located

below. In 2, we can see the rearview, displaying the box containing the computer-

on-module, the HUD system, and the monitoring sensors’ location. Within 3, the

perspective from the HUD showcases an array of high-level data intended for the

user’s perusal. Ultimately, in 4, the positioning of the health monitoring sensors

and a portion of the wiring is visible.

Terminal and Mobile Interfaces

Another component of the suggested architecture is the management interfaces.

These applications assist facility managers in the decision-making process. This

technology facilitates the surveillance and identification of initial indications of pol-

132

Figure 5.22: Proposed Interfaces Illustration

lution in healthcare practitioners [248]. The instances of real-time monitoring of

healthcare workers’ situations are depicted in Figure 5.22.

Edge Computer Server

Figure 5.23: Edge Computing Server Node

The network edge consists of devices that manage computational operations in

edge computing. The edge device must be engineered to efficiently handle such

activities and meet requirements such as reliability. The integration of IoT compo-

nents into the system occurs via an edge computer server. This device carries out

two distinct functions inside this system. The initial component serves as a con-

duit for receiving, storing, and disseminating data from the wearable devices and

the management terminal interfaces. The second objective is to input the obtained

data into information extraction algorithms. In order to accomplish this goal, we

suggested utilizing a portable device known as an edge computer server, which pos-

sesses the specified hardware prerequisites depicted in Figure 5.23. The depicted

image showcases a Raspberry Pi4 model equipped with 4GB of RAM, 64GB of stor-

133

age, and WiFi capabilities. The tests conducted with this gadget demonstrated a

level of autonomy of approximately 12 hours under conditions of intensive usage.

System Integration

In order to comprehend the operation of this system, we moreover furnish an exami-

nation of the data flow. The diagram in Figure 5.12 illustrates the key components of

this architecture and depicts the flow of data. This depiction facilitates comprehen-

sion of the anticipated conduct of each constituent in accordance with its individual

elements. Additionally, it is beneficial to analyze the temporal limitations associated

with each stage of the procedure.

The suggested architecture consists of three distinct sorts of elements. The initial

component is the wearable edge computing device, exemplified by the faceshield

HUD. This component collects data from the sensors and performs initial processing

to transform the data into meaningful information.

The focal component is the Edge AI Computer/WLAN Server. This component

serves as a central hub for data processing in an embedded edge computer, while

also overseeing the network connections. In addition to serving as an access point

on a computer, it is also capable of executing parallel data fusion and analysis ac-

tivities. This method yields comprehensive data for the other components of the

design. Lastly, the management interface serves as the final component in this ar-

rangement. The generic interface block in Figure 5.12 represents this element. Both

mobile devices and computer terminals consist of essential components including

user inputs, WLAN connectivity, processing, and output.

5.2.6 Experimental Tests

A relevant aspect of distributed architectures is networking performance. This fea-

ture directly affects the quality of the provided services in IoT-based systems, having

consequences in the system’s real-time capabilities [249]. Thus, the experimental

setup evaluates the timing constraints for the data flow and processing.

Real-Time as Quality-of-Service

To evaluate these aspects, we perform a QoS-based timing constraint test. The

experiment was designed as a QoS formalization, presented on similar studies con-

cerning IoT and Wireless Sensor Networks [192] to evaluate soft real-time constraints

as network timing constraints.

At first, we divide the experiment time in discrete intervals, as the set T =

ti, i ∈ N, where ti+1 − ti = θ, where θ is a constant sampling time. The soft real-

134

time deadline will be represented by ϕ, where ϕ = k×θ, k ∈ N∗. From these primary

statements, we establish the following definitions:

Definition 13. Let D = di be the finite set of nodes consuming and producing data

from the middleware node, where i ∈ N;

Definition 14. Let E = ei be the finite set of events that each node performs,

where i ∈ N;

Definition 15. Let L = ld,e be the length of time interval that the node d takes to

perform an event e, where d ∈ D and e ∈ E;

Definition 16. Let P = pi be the set of patterns of events to be observed in the

devices, where pi = Ei, Ei ⊂ E and i ∈ N;

Definition 17. Let O = oi be the finite set of observations of a certain pattern

pi ∈ P on the devices;

The equation that represents the elapsed time λ to observe a particular pattern

pi ∈ P is:

λoi =
∑

ld,ek |∀ek ∈ oi, oi = Opi (5.2)

In this case, each device in the network composition can have its single ϕi soft

real-time deadline. Given this equation, let Ô be a subset of O, where λoi ≤ ϕi,

∀oi ∈ Ô. Finally, given the sets O and Ô:

Definition 18. Let N be the number of elements on the set O;

Definition 19. Let Nh be the number of elements on the subset Ô;

The following equation will represent the quality factor Qf :

Qf =
Nh

N
(×100%) (5.3)

The nodes will try to gather or update data from the server node in parallel on

each test. This result represents how often the nodes execute a pattern of events

without violating the soft real-time constraints. This perspective allows experiment-

ing on how increasing the number of devices producing and consuming data affects

the network quality factor.

The proposed experiment is divided in 3 stages:

� Stage 1: Defining the soft real-time constraint;

135

� Stage 2: Evaluating the effect of stressing the system by increasing the num-

ber of edge devices;

� Stage 3: Evaluating the effect of stressing the system by increasing the num-

ber of client interfaces.

During Stage 1, we execute a simplified version of the appliance, which includes

a single element from each class depicted in Figure 5.12. To determine the minimum

ϕi soft real-time constraint, we utilize the provided data to achieve a quality factor

of 0.95 (95%). This limitation will serve as a benchmark for assessing the system’s

performance while scaling up the number of devices, with a block length of θ = 2

ms. Furthermore, we utilize this data to assess the intrinsic timing restrictions of

each device for the purpose of simulation.

During Stage 2, we utilize the limitations established in the initial stage to

assess the performance of the system as the quantity of edge devices is augmented.

The computer-on-module boards will be utilized to replicate the behavior of various

devices, as done in the production of the prototype. The timing for each job on the

simulated device is derived from the assessment conducted in the previous stage.

In Stage 3, we assess the impact of increasing the quantity of terminal interfaces.

To address this issue, we create many simulated terminals as separate processes on

a machine that is linked to the network.

These stages serve as a means of validating the proposed architecture and pro-

viding an overview of the limitations when it comes to scaling up the number of

devices and customers in this system.

Server Behavior Evaluation

For the second experiment, we consider the influence of patients and medical pro-

fessionals in the environment. Also, in this case, we evaluate the timing aspect.

We evaluate how the overload of patients and medical devices in the network influ-

ence the server capability of answering requests. For this matter, we consider the

dataflow presented in Figure 5.24.

In this instance, we replicated the actions of numerous customers that generated

and utilized data from the edge server. The patient appliance is regarded as a

sensor for measuring temperature and pulse-oximeter readings, and it has the same

temporal constraints as in the previous stage.

From this standpoint, the solution has five distinct groups of elements. The

primary and pivotal component is the edge computing server. The system operates

an application that receives connections from several customers, storing their data

and providing it for requests from management apps in the wireless local area net-

work. The management clients consist of the second and third aspects. The patient

136

Figure 5.24: Data Flow for the Experimental Setup on the Second Test

management client retrieves data from a specific patient by using their name as an

identifier. The key worker management client collects data from all professionals

employed at the facility. Ultimately, the fourth and fifth aspects represent the oc-

currences specifically tailored for clients in the healthcare device industry. They

operate in a similar manner, as they both necessitate data collection from identical

sensors.

In order to assess the efficacy of this system within the network, we conducted an

analysis of two distinct situations. Initially, we augmented the quantity of instances

for the face shield device from 5 to 50, while maintaining a consistent count of 20

patient instances. Next, we conducted a second test scenario in which we augmented

the quantity of patient device instances from 5 to 50, while maintaining a consistent

number of 20 face shield device instances. In all cases, we ran one instance of the

patient management client and another instance of the key workers’ management

client.

The parameter for this response is the server’s response time, which is measured

throughout the entire execution. In this regard, we assessed the mean response time

and the rolling average during program execution. We conducted both tests for

around 600 seconds, modifying the payload on the variable that induces stress in

the test every 60 seconds.

5.2.7 Results

Devices Internal Constraints Evaluation

Firstly, we assess the inherent timing restrictions of the device. This stage represents

the initial phase in establishing a validation environment that closely replicates

137

the conditions encountered in real-world scenarios. In this context, we provide a

description of both the server apps and the clients, which include terminal and

wearable devices. Furthermore, we empirically ascertain the temporal limitations in

the prototype in order to establish authentic simulation environments.

Let us begin by discussing the server program. The server stores the latest data

from all the clients in its memory for the experimental group, and then transmits the

entire information to the asking terminal clients. Additionally, the server monitors

the temporal limitations for experimental reasons.

In order to facilitate the connecting of several clients, we have created a server

that utilizes multiple threads. Each thread is tasked with managing a solitary client.

The application utilizes two essential processes: capturing the most recent health

data from each wearable client and recording it in the log file’s handler. The algo-

rithm executed by each thread managing a single client connection is illustrated in

Figure 5.25. The crucial sessions are highlighted in red blocks.

Figure 5.25: Edge Server Node Algorithm

The processes commence with the handlers responsible for the creation of con-

nections and information management. The client address and port information

serve as indices for the client data stored in memory. This device caters to two cate-

gories of users: terminal clients and wearable clients. Messages of terminal requests

are identified by “type == 1”, and messages from the wearable clients are identified

by “type == 0”.

The threads store the customers’ information in a unified data structure. Hence,

138

the initial crucial segment involves engaging in reading and writing inside this frame-

work. The data received from the clients is analyzed and kept. Terminals receive

data from all available clients in response to requests. Ultimately, the threads utilize

the identical log file. Therefore, it is likewise a second crucial segment.

Figure 5.26: Visualization Prototype Application Example

The initial type of client is the terminal client. This client consists of two primary

stages: (i) retrieving data from the server, and (ii) processing the data and presenting

it on a screen using a background template and the collected information. The

background and an example of a card made using simulated information are depicted

in Figure 5.26. Ultimately, the threads utilize the identical log file. Therefore, it is

likewise a second crucial segment.

The wearable client is responsible for three distinct tasks: (i) retrieving data

from the sensors, (ii) transmitting data to the server and receiving the server’s re-

sponse, and (iii) analyzing the data and presenting a visual representation on the

OLED display. Tasks (i) and (iii) are internal, however task (ii) relies on network

connectivity. In order to ascertain the necessary timing specifications for executing

this application, we conducted tasks (i) and (iii) on the prototype depicted in Fig-

ure 5.20 for a duration of 120 seconds, while monitoring the durations required to

complete both internal operations. The results obtained, on average, show that:

� Task (i) takes an average time of 2.25 ± 0.10 ms;

� Task (iii) takes an average time of 11.8 ± 14.3 ms.

With this data, we created an application to emulate the client’s behavior for the

stress tests (Stages 2 and 3). The prototype also uses the application to determine

the real-time constraint in Stage 1.

139

Stage 1: Real-Time Constraints Definition

In order to establish the real-time limitations, we assess the timing specifications of

the tasks executed by each device inside the framework of this test. In this case, we

utilize the definition of the quality factor. In this stage, we assess the basic setup by

running only one piece from each class on the desired hardware. The server operates

on a Raspberry Pi 3 Model B, the interface operates on a desktop computer, and

the wearable application operates on an embedded Raspberry Pi Zero W, which is

attached to the prototype face shield.

During the initial phase, our objective is to determine the soft real-time con-

straint ϕ. The experiment period is partitioned into discrete-time intervals of θ =

2 ms. To address this issue, we set a desired quality factor of Qf = 0.95. Next, we

determine the minimal number of time blocks required to meet the desired restric-

tion, which is a multiple of the number of blocks k needed to achieve the desired

aim. For every class of device, we define a distinct limitation that corresponds to

its specific set of functions.

Table 5.4: Real Time Constraint Definition Results

Average time (ms) Requirement (k)
WEARABLE 27.6 ± 27.4 37 blocks
INTERFACE 27.7 ± 33.3 33 blocks
SERVER 54.4 ± 50.4 65 blocks

In the subsequent phases, we employ the limitations outlined in Table 5.4 to

assess the impact of exerting additional pressure on the system through an increased

number of clients and interfaces. The stress tests are still being conducted on the

Raspberry Pi 3 Model B server. The interface appliance is operated by one computer,

while another computer executes many instances of simulated client applications.

Stage 2: Stressing the System with more Wearable Edge Devices

The primary goal of the initial test is to ascertain the impact of augmenting the

quantity of wearable gadgets on network efficiency. We executed a range of 5 to 50

instances of the program that simulates the behavior of a wearable device on the

network for the purpose of this test. Throughout the entire duration of the test, we

ran a solitary interface application.

Initially, we derived the aggregate values for the quality factor based on the fixed

elements. Based on our comprehensive testing during the entire duration, the results

consistently indicate that:

� The quality factor for the interface was Qf = 0.989;

140

� The quality factor for the server was Qf = 0.937;

Figure 5.27: Quality Factor Test Results

The findings for the quality factor test are shown in Figure 5.27. The degrada-

tion in quality observed when scaling up the system was approximately 1%. This

phenomenon demonstrates that the system design is capable of collecting and con-

trolling data from different devices without violating the soft real-time limitation.

In addition, the other limitations encountered a minimal level of compromise, so

reinforcing this initial finding.

Stage 3: Stressing the System with more Terminal Devices

The purpose of this test is to examine the performance of data-intensive applications

in conditions of concurrent stress. For this instance, we altered the quantity of

emulated terminal devices. The terminal devices collect data from all connected

clients for the management applications. We ran the application multiple times,

ranging from 5 to 50 instances. Throughout the duration of the test, we simulated

20 wearable devices.

Initially, we derived the aggregate values for the quality factor based on the fixed

elements. Based on our comprehensive testing during the entire duration, the results

consistently indicate that:

� The quality factor for the wearable devices was Qf = 0.986± 0.001;

� The quality factor for the server was Qf = 0.885;

The findings for the quality factor test are shown in Figure 5.28. Expanding the

quantity of instances in this scenario greatly undermines the real-time capability

of this program. This trend is reinforced by the deterioration in the quality factor

141

Figure 5.28: Quality Factor Test Results

on the server. This outcome suggests that it is preferable to do extensive data

processing on the edge server whenever feasible, as transmitting substantial data

quantities can compromise the reliability of the architecture.

Server Behavior Evaluation

This final test assesses the impact of client overload on the system’s performance.

The findings obtained for the testing are shown in Figure 5.29. The moving average

results during the test are shown in gray. The red line represents the mean duration

for the system to handle a request and transmit the outcome.

We calculated a moving average by averaging 100 consecutive samples for both

tests. The average response time for a single sample in the initial test was 116.9±
19.11 milliseconds. The moving average indicates that the mean time is rather

stable during the execution, with a few exceptional numbers. The initial outcome

demonstrates the system’s stability, even under increased device load. The second

test yielded an average time limitation of 121.8 ± 73.28 ms. While the moving

average generally indicates a similar pattern to the first test, with stability around

the global average, it also identifies more outlier values, indicating a larger standard

deviation.

5.3 Wearable-based human activity recognition

Within this section, we will introduce the suggested framework and its various com-

ponents. Initially, it is imperative to comprehend the equipment implicated in the

project. Furthermore, it is crucial in this solution to comprehend the integration

process and the algorithm accountable for forecasting the actions. Our proposal in-

volves utilizing a minimalist wearable device and a recurrent neural network (namely,

142

Figure 5.29: Performance Test Results

LSTM) to carry out the classification task. Ultimately, we assess the incorporation

of cloudlets and mobile edge computing.

5.3.1 Requirements

To begin this study, it is necessary to assess the prerequisites for the proposed

approach. To address this issue, we provide a modified version of the co-design

diagram shown in Figure 5.30, which is a simplified rendition of the diagram depicted

in Figure 3.2b.

This representation displays the need to raise the constraints for the applica-

tion and classify them into the hardware, software or architectural domain. The

constraints identified for this matter are:

� This solution must gather data from the users with small scale sensors [Hard-

ware].

� The wearable devices must have low current consumption for an increased

autonomy [Hardware].

143

Figure 5.30: Simplified Co-design diagram.

� The integration of data from multiple devices must happen within and edge

server [Architecture].

� The communication needs to be efficient to stream the data through this local

network [Architecture].

� Data obtained from the applications must be processed in real-time [Software].

This solution shares comparable limitations with the preceding options. In this

instance, we suggested incorporating small-scale wearable devices with microcon-

troller units (MCUs) that have wireless capabilities. We suggested employing recur-

rent neural networks with a wearable server to carry out the specified task.

Edge Computing Architecture

The architecture of edge computing consists of two primary levels. Within the initial

stratum, uniform wearable gadgets generate data from individual users. The second

layer is equipped with an edge server that receives data from the sensors, forecasts

the current activity, and stores it in a database. Figure 5.31 depicts the layers of

the proposed architecture.

The wearable gadget in this design possesses a straightforward configuration.

The processing unit is a microcontroller (MCU) with the ability to communicate

wirelessly using Wi-Fi (IEEE 802.11). This choice is made to ensure minimal pro-

cessing power requirements throughout the development of this gadget. The sensor

of the device consists of a solitary 6-DoF IMU. The proposed system is powered by

a battery, serving as the final component in this idea. The schematic model of the

proposed solution is depicted in Figure 5.32.

For the second layer, we suggest employing an edge server to execute the Edge AI

algorithm. In this regard, we conducted experiments from two different viewpoints.

One approach involves utilizing a cloudlet architecture to carry out this task. In this

study, we conducted tests on the algorithm utilizing a desktop computer equipped

144

Figure 5.31: Architecture layers

Figure 5.32: Wearable device schematics proposal

with a six-core i5-9600K CPU running at a speed of 3.70GHz, an RTX 2060 super

GPU, and 32GB of RAM. We conducted tests on a mobile edge platform equipped

with a quad-core ARM A57 processor running at 1.43 GHz, a 128-core Maxwell

GPU, and 4GB of memory. The mobile edge platform utilized in this experiment is

depicted in Figure 5.33.

Considering this proposed architecture and experimental setup, we evaluated the

usage of a recurrent neural network exploring a theoretical data generation using

data from a public dataset. Furthermore, we evaluate the temporal constraints for

each edge server setup.

AI Model Proposal and Training

The gathered data consists of a collection of time series obtained from the sen-

sors. For this particular scenario, we employ a Long Short-Term Memory (LSTM)

model to forecast the behavior based on a collection of unprocessed time series data.

Therefore, we opted for a recurrent neural network design to forecast the actions.

145

Figure 5.33: Mobile edge computing platform

The first stage involved selecting a publicly available dataset that possessed

similar characteristics to the required dataset. We used the KU-HAR dataset [250]

as our initial foundation. The dataset comprises samples from 18 distinct activities

executed by a total of 90 people. The authors modified the data to achieve a

sampling rate of 100 Hz, which serves as a foundation for developing the MCU-

based wearable device. The data was partitioned using a sliding window of two

seconds, with a half-second overlap. 90% of the data was allocated for training,

while 5% each was allocated for validation and testing. Ultimately, the training set

consisted of 108976 samples, the validation set contained 6111 samples, and the test

set comprised 8313 samples. The table labeled as ”Table 5.5” presents the collection

of jobs outlined in this dataset.

We propose using a network with 128 LSTM cells in the first layer. Then the

next layer is a dense neural layer with 256 neurons. Finally, the output has 18 layers

with the “softmax” activation function, configuring a generative classification model.

This classification results from the output that generates the highest probability.

Figure 5.34 illustrates the proposed architecture.

The loss function was categorical cross-entropy. We trained the algorithm until

the loss convergence. We configure the convergence condition as no improvement

higher than 0.0001 for 15 epochs of training. We also reduced the learning rate as

the model reached 4-epoch-plateaus. Figure 5.35 displays the graphs for loss and

global accuracy during the training process.

Finally, we converted the model to the “tflite” format for embedding and test-

ing. After defining the edge computing architecture, proposing the algorithm, and

performing its training, the next step is establishing evaluation tools and metrics to

146

Table 5.5: Classes of activities in the KU-HAR dataset

Label Activity
0 Stand
1 Sit
2 Talk-sit
3 Talk-stand
4 Stand-sit
5 Lay
6 Lay-stand
7 Pick
8 Jump
9 Push-up
10 Sit-up
11 Walk
12 Walk-backwards
13 Walk-circle
14 Run
15 Stair-up
16 Stair-down
17 Table-tennis

Figure 5.34: LSTM illustration

understand the performance of the proposed system.

5.3.2 Evaluation Tests

With the previously established proposal of an edge computing architecture and

training of the proposed algorithm, we require the definition of tests and metrics

to evaluate the experimental aspects of this work. Initially, we propose a set of

metrics based on usual multi-class classification tasks. Then we propose evaluating

the proposed solution’s timing aspects in the cloudlet and mobile edge sets.

147

Figure 5.35: Training session result

Algorithm Evaluation

The problem stated in this case is a multi-class classification. To evaluate the

model, we initially employ the most traditional multi-class classification metrics for

AI. These metrics are precision (Pc), recall (Rc) and F1-Score (F1c), calculated for

each class c and defined by:

Pc =
TPc

TPc + FPc

, (5.4)

Rc =
TPc

TPc + FNc

, (5.5)

F1c = 2× Pc ×Rc

Pc +Rc

. (5.6)

These equations depend on the variables TPc (true positives for each class c),

FPc (false positives for each class c), and FNc (false negatives for the class c). We

also evaluate the global accuracy Ag, which can be calculated by the two forms

below with the same result:

Ag =
TP

TP + FN
, (5.7)

or

Ag =
TP

TP + FP
. (5.8)

In these equations, the variables TP , FN , and FP are the sums of the variables

they represent for each class, as displayed:

148

TP =
∑
c

TPc, (5.9)

FP =
∑
c

FPc, (5.10)

FN =
∑
c

FNc. (5.11)

These metrics help to understand the quality of the model’s predictions. In the

next stage, we also evaluate timing constraints regarding the two edge computing

perspectives.

Architecture Evaluation

Given an algorithm employing a solitary-queue prediction pipeline, it is necessary

for each user to receive a prediction from the system every 0.5 seconds. If the

worst-case situation occurs, the device will be faced with a complete queue that

needs to be resolved within a 0.5 second timeframe. This formulation indicates the

maximum number of devices that the edge server can process in an asymptotic limit.

In relation to this issue, we assess the asymptotic limit in the following manner:

Lt =
0.5

µt + 2σ
(5.12)

In this context, Lt represents the ultimate number of users that the edge server

can handle, µt denotes the average duration required for each prediction, and σ

represents the variability in the prediction timings. The function is intended to

encompass approximately 90% of the situations, taking into account the 2σ factor.

The limit is a theoretical limitation of the system, which is based on a soft real-time

constraint. It does not take outliers into account as critical circumstances. We also

assess the timing restrictions in a qualitative manner using the obtained data.

5.3.3 Results and Discussion

The next part provides the outcomes acquired from the conducted experiments. At

first, we evaluated the algorithm based on the predetermined metrics. Next, we

assess the theoretical temporal limitations. Lastly, we will analyze the acquired

outcomes and their consequences.

149

Algorithm Evaluation

In Figure 5.35 from the corresponding section, we presented the outcomes obtained

after training the algorithm. The graphs suggest that the training procedure oc-

curred without overfitting, based on qualitative analysis. Therefore, we assess the

specified indicators at this point.

We conducted an initial assessment of the data obtained from the validation set.

The results collected in this test are displayed in Table 5.6. The program achieved

an accuracy rate of over 90% in correctly identifying the appropriate classification

across most categories. Under the most unfavorable circumstances for this test, the

algorithm achieved a prediction accuracy of 79%. The overall precision rate reached

94.7% on a worldwide scale. The results shown here surpass the initial findings

reported by the dataset authors [250] (84.7%) and another study that references

the work of Abid and Nahid [251] (89.5%). These findings demonstrate that this

method is capable of performing the specified task to a significant degree. The

findings collected in this step are displayed in Figure 5.36 and Table 5.6.

Table 5.6: Classification Metrics for the Validation Set

Activity Precision Recall F1-Score Support
Stand 0.95 0.94 0.94 617
Sit 0.90 0.96 0.93 619
Talk-sit 0.93 0.88 0.91 499
Talk-stand 0.92 0.99 0.95 478
Stand-sit 0.98 0.99 0.99 657
Lay 0.99 0.97 0.98 477
Lay-stand 0.95 0.95 0.95 443
Pick 0.97 0.90 0.93 383
Jump 0.99 1.00 0.99 158
Push-up 1.00 0.92 0.96 151
Sit-up 0.99 0.98 0.99 449
Walk 0.92 1.00 0.96 235
Walk-backwards 0.94 0.92 0.93 130
Walk-circle 0.85 0.95 0.90 81
Run 0.80 0.95 0.87 84
Stair-up 0.92 0.79 0.85 278
Stair-down 0.95 0.94 0.95 249
Table-tennis 0.97 0.97 0.97 123
Macro Avg. 0.94 0.94 0.94 6111
Weighted Avg. 0.95 0.95 0.95 6111
Global accuracy: 94.7 %

Furthermore, we additionally verify the accuracy of the data obtained from the

test set. The metrics gathered in this stage are presented in Table 5.7. Once again,

the system accurately identified the correct classification with an accuracy rate of

90%. The lowest accuracy achieved by a single class in this situation was 83%. The

global average achieved a minimal drop in the validation set’s result, remaining at

150

Figure 5.36: Confusion Matrix for the Validation Set

93.7%. These results provide proof that the algorithm demonstrates satisfactory

generalization capabilities when making predictions on previously unknown data.

The results collected in this stage are displayed in Figure 5.37 and Table 5.7.

Both tests exhibit a minimum global accuracy of 94%. These findings validate the

viability of this algorithm as a predictive tool for determining the specific activity

being performed by users of wearable devices. It is essential to comprehend the

system’s behavior from both the cloudlet and mobile edge perspectives.

Architecture Evaluation

Upon assessing the method, we further examined the number of distinct persons

that may be analyzed by each modality of edge computing. We employed both

a cloudlet-like architecture and a mobile edge device to evaluate the system. We

conducted a test on both devices using the 8313 samples from the test set.

The preliminary experiments were carried out in the cloudlet test environment.

We conducted the test and recorded the duration of each forecast. The mean forecast

time was 6.7 milliseconds with a standard deviation of 0.2 milliseconds. Based on this

outcome, the cloudlet system can handle a maximum of 71 people, as determined by

151

Table 5.7: Classification Metrics for the Test Set

Activity Precision Recall F1-Score Support
Stand 0.91 0.90 0.91 735
Sit 0.92 0.83 0.87 732
Talk-sit 0.78 0.97 0.87 747
Talk-stand 0.97 0.96 0.96 774
Stand-sit 0.97 0.98 0.98 714
Lay 0.97 0.90 0.94 678
Lay-stand 0.96 0.99 0.97 623
Pick 0.98 0.97 0.98 450
Jump 1.00 1.00 1.00 211
Push-up 0.97 0.97 0.97 183
Sit-up 0.98 0.94 0.96 498
Walk 0.90 0.95 0.92 307
Walk-backwards 0.99 0.97 0.98 129
Walk-circle 0.88 0.88 0.88 127
Run 0.96 0.83 0.89 269
Stair-up 0.99 0.93 0.96 348
Stair-down 0.98 0.95 0.96 307
Table-tennis 0.95 0.98 0.97 481
Macro Avg. 0.95 0.94 0.94 8313
Weighted Avg. 0.94 0.94 0.94 8313
Global Average: 93.7 %

the measure defined in Equation 5.12. The distribution of these periods is depicted

in Figure 5.38.

Subsequently, we conducted timing tests on the mobile edge devices. Once again,

we conducted the test and recorded the duration for each forecast. The mean forecast

time was 42.3 ± 0.9 ms. Based on this outcome, the maximum number of users

that may be accommodated by the cloudlet system using this model is 11. The

distribution of these times is depicted in Figure 5.39.

Ultimately, we graphed the data for both tests in parallel to gain a visual un-

derstanding of their relationship. Figure 5.40 illustrates the comparison of various

tests. As seen, both the mean and standard deviation are greater in the mobile edge

device. This outcome is anticipated, given that the computational capacity of this

device is inferior to that of the cloudlet.

Discussion

During the initial round of tests, our goal was to assess the effectiveness of the

proposed method based on its machine-learning metrics. In this regard, we assessed

the Precision, Recall, and F1-Score metrics for each class, as well as the overall

average precision.

The experiments demonstrate the viability of this algorithm in executing this

task effectively. The method exhibited comparable performance on both the train

152

Figure 5.37: Confusion Matrix for the Test Set

Figure 5.38: Times measured from the Cloudlet

and validation sets, yielding satisfactory results that are in line with the latest ad-

vancements in the field. In addition, we offer a thorough analysis of these indicators,

addressing the lack of clarity found in most studies utilizing this dataset.

Subsequently, we assessed the asymptotic threshold for this program to run with-

153

Figure 5.39: Times measured from the Mobile Edge Device

Figure 5.40: Comparison from the measurements in both tests

out any loss of data, taking into account a soft real-time situation. We have estab-

lished a metric that quantifies the theoretical maximum limit, enhancing the ability

to make 97.8% of forecasts without any loss of data. Unsurprisingly, the cloudlet

infrastructure exhibited superior performance in comparison to the mobile edge de-

vice. However, employing mobile edge computing remains appropriate for limited

populations.

154

Chapter 6

Conclusions and Final Remarks

This work discusses how to combine wearable computing, edge computing, and AI

to define a new field of knowledge where these formerly antagonist methods can be

employed together, namely Wearable Edge AI. Then, we use this new field to create

new wearable technologies based on this concept. Thus, our main objective with

this work is to establish a Wearable Edge AI concept and define how to design and

create applications in this context.

With this text, we expect to understand how to create cooperative wearable

systems based on edge computing, considering real-time aspects. We also review the

HW/SW co-design process to evaluate architectural aspects. Finally, we performed

a series of case studies to evaluate aspects of the risen concepts and methods.

Wearable computing, which has a central role in this work, is a concept that

arose in the late 90s and early 2000s. In modern approaches, these applications use

hardware miniaturization and the IoT to increase the number of possible applications

within this perspective. Edge computing is another concept that uses the IoT to

develop and rise. It comes to solving issues that cloud computing struggles with,

such as real-time and low latency. This concept happens using proximity as a factor

and in perspectives that provide the services with powerful computing, emulate the

cloud services, or enhance the processing limits on mobile appliances. AI is a general

concept of machines that can learn to solve real-world problems. More recently, ML

applications have been pushed toward the clouds, given their requirement for high

computational power.

Although wearable and edge computing have requirements that diverge from AI,

an increasing number of authors are trying to combine these concepts to create novel

solutions. This uprising trend still needed to have a general definition. Our case

studies are some examples of how the proposed solutions seek to mesh the concepts

of machine learning and edge computing.

To establish the Wearable Edge AI concept, we started with the grounding knowl-

edge in edge computing and machine learning. Then, we defined Edge AI as the set

155

of methods that describes the design process and validation of solutions that com-

bine edge computing and machine learning concepts to develop novel appliances,

systems, and applications to solve real-world problems. Finally, we proposed a tax-

onomy method to classify Edge AI applications. The works are initially classified

according to their edge computing paradigm (cloudlets, fog computing, or mobile

edge computing) and then through an AI classification that divides them into “ma-

chine learning” and “deep learning” applications.

We continued by defining Edge AI and evaluating the concepts behind cooper-

ative wearable systems. Then, we evaluated the design process to consider novel

constraints based on the added edge computing process. Finally, we defined Wear-

able Edge AI as the set of methods that describes the design process and validation

of solutions that combine wearable computing and Edge AI concepts in developing

novel appliances, systems, and applications to solve real-world problems.

6.1 Theoretical Backbone

Figure 6.1: New co-design approach

156

Our design process definition is centered on the redefinition of the classical hard-

ware/software co-design process. This concept comes from the development of em-

bedded systems but required some updates to consider edge computing traits. Figure

6.1 displays the result of our evaluation.

This approach provided the means to propose solutions within the Wearable Edge

AI concept for the two stakeholders from this work. Our experiments display strong

evidence that this update provides a valuable tool for developing new solutions

combining the concepts of Edge Computing, Wearable Computing, and AI. In all

cases, we display how some of the constraints do not fit well within the hardware

or software constraints, being specifically analyzed as architectural traits. Each

application had a gain in evaluating the architectural traits in parallel with the

hardware and software design:

� Leaf damage estimation: In this case, the architectural traits helped se-

lecting the AI framework to develop the application. This appliance must be

feasible to run in embedded hardware with accelerated AI, as it has the most

computationally consuming algorithm within this context.

� Evaluating and mapping diseases in forest canopies: This application

requires the concepts of cooperative wearable systems as a baseline to work.

Integrating the wearable solutions within an Edge Server requires an evaluation

under the optic of architectural restraints.

� Ant distribution and counting estimation: In this work, the algorithm

design and backbone choices considered a constrained wearable edge AI envi-

ronment. The model has a smaller memory footprint, with the feasibility of

running in embedded edge servers.

� Physical condition monitoring in field: This application uses the cooper-

ative wearable systems baseline to provide information for a multidisciplinary

team. In this case, an understanding of the architecture is essential to design-

ing an application and understanding its limits.

� Smart wearable systems in the context of COVID-19: This applica-

tion design integrates several wearable devices within a local wireless network

environment. Therefore, the proposal and results depend on the definition of

architectural restrictions.

� Wearable-based human activity recognition: This application is another

example of using multiple wearable devices within an interconnected edge com-

puting architecture. Therefore, its capabilities also depend on the establish-

ment of architectural restrictions.

157

6.2 Lessons learned

In this work, we explored a set of case studies in which the concepts of Wearable Edge

AI apply. We have identified a set of lessons learned along this work. These lessons

come from the conceptualization of Edge AI up to the application development.

They are:

� Wearable Edge AI requires Mobile Edge AI. The constraints observed

in developing Wearable Edge AI applications are similar to those of Mobile

Edge AI. Nevertheless, these restrictions are increased by the nature of the

applications.

� Wearable Edge AI applications required a review of the Hardware/-

Software co-design. The original co-design process described how to create

embedded applications but was not enough to consider the integration of co-

operative devices within a network. Thus, this concept required a revision to

design Edge AI applications.

� Wearable Edge AI adds further constraints related to the architec-

ture. As its foundation is the Internet of Things (IoT), considering machine-

to-machine communication, these applications have another set of constraints

considering the architecture and machine-to-machine communication.

� AI and computer vision usually add computationally constrained

methods into Wearable Edge AI systems. Timing is an essential con-

straint within Wearable Edge AI. Algorithms must have performance and avoid

consuming too much computing resources during their functioning. Therefore,

costly algorithms such as image processing and AI profoundly impact the ap-

plications’ performance.

� Hardware, Software, and Architectural constraints often are com-

plementary. Some constraints come from hardware requirements but will be

surpassed by software decisions. A typical example in our cases was an edge

server’s processing and energetic constraint, which directly impacts the hard-

ware choice and architecture design. Therefore, the branches of the co-design

cannot be interpreted as isolated development stages.

6.3 Future Works

In future works, we suggest using this set of rules to create a Wearable Edge AI

development framework. This step consolidates the concepts raised within this text

158

into a set of tools to develop novel cyber-physical applications. Also, we encourage

other researchers to create more applications within the context of the presented

stakeholders, as we displayed some of their needs within this text.

159

Bibliography

[1] SHINDE, P. P., SHAH, S. “A review of machine learning and deep learning ap-

plications”. In: 2018 Fourth international conference on computing com-

munication control and automation (ICCUBEA), pp. 1–6. IEEE, 2018.

[2] KHAN, W. Z., AHMED, E., HAKAK, S., et al. “Edge computing: A survey”,

Future Generation Computer Systems, v. 97, pp. 219–235, 2019.

[3] SHI, W., DUSTDAR, S. “The promise of edge computing”, Computer, v. 49,

n. 5, pp. 78–81, 2016.

[4] SILVA, M. C., AMORIM, V. J., RIBEIRO, S. P., et al. “Field Research Co-

operative Wearable Systems: Challenges in Requirements, Design and

Validation”, Sensors, v. 19, n. 20, pp. 4417, 2019.

[5] SILVA, M., RIBEIRO., S., BIANCHI, A., et al. “An Improved Deep Learning

Application for Leaf Shape Reconstruction and Damage Estimation”. In:

Proceedings of the 23rd International Conference on Enterprise Informa-

tion Systems - Volume 1: ICEIS,, pp. 484–495. INSTICC, SciTePress,

2021. ISBN: 978-989-758-509-8. doi: 10.5220/0010444204840495.

[6] JP AMORIM, V., C SILVA, M., AR OLIVEIRA, R. “Software and Hardware

Requirements and Trade-Offs in Operating Systems for Wearables: A Tool

to Improve Devices’ Performance”, Sensors, v. 19, n. 8, pp. 1904, 2019.

[7] ZANERO, S. “Cyber-physical systems”, Computer, v. 50, n. 4, pp. 14–16, 2017.

[8] ALGULIYEV, R., IMAMVERDIYEV, Y., SUKHOSTAT, L. “Cyber-physical

systems and their security issues”, Computers in Industry, v. 100, pp. 212–

223, 2018.

[9] BAHETI, R., GILL, H. “Cyber-physical systems”, The impact of control tech-

nology, v. 12, n. 1, pp. 161–166, 2011.

[10] SHI, J., WAN, J., YAN, H., et al. “A survey of cyber-physical systems”. In:

2011 international conference on wireless communications and signal pro-

cessing (WCSP), pp. 1–6. IEEE, 2011.

160

[11] DERLER, P., LEE, E. A., VINCENTELLI, A. S. “Modeling cyber–physical

systems”, Proceedings of the IEEE, v. 100, n. 1, pp. 13–28, 2011.

[12] HAQUE, S. A., AZIZ, S. M., RAHMAN, M. “Review of cyber-physical system

in healthcare”, international journal of distributed sensor networks, v. 10,

n. 4, pp. 217415, 2014.

[13] MANN, S. “Wearable computing: A first step toward personal imaging”, Com-

puter, v. 30, n. 2, pp. 25–32, 1997.

[14] STARNER, T. “Human-powered wearable computing”, IBM systems Journal,

v. 35, n. 3.4, pp. 618–629, 1996.

[15] ROGGEN, D., MAGNENAT, S., WAIBEL, M., et al. “Wearable computing”,

IEEE Robotics & Automation Magazine, v. 18, n. 2, pp. 83–95, 2011.

[16] JHAJHARIA, S., PAL, S., VERMA, S. “Wearable computing and its ap-

plication”, International Journal of Computer Science and Information

Technologies, v. 5, n. 4, pp. 5700–5704, 2014.

[17] SOH, P. J., VANDENBOSCH, G. A., MERCURI, M., et al. “Wearable wireless

health monitoring: Current developments, challenges, and future trends”,

IEEE Microwave Magazine, v. 16, n. 4, pp. 55–70, 2015.

[18] RISLING, T. “Educating the nurses of 2025: Technology trends of the next

decade”, Nurse education in practice, v. 22, pp. 89–92, 2017.

[19] VOGENBERG, F. R., SANTILLI, J. “Healthcare trends for 2018”, American

Health & Drug Benefits, v. 11, n. 1, pp. 48, 2018.

[20] LIU, L., PENG, Y., LIU, M., et al. “Sensor-based human activity recognition

system with a multilayered model using time series shapelets”, Knowledge-

Based Systems, v. 90, pp. 138–152, 2015.

[21] ZHANG, Y., GRAVINA, R., LU, H., et al. “PEA: Parallel electrocardiogram-

based authentication for smart healthcare systems”, Journal of Network

and Computer Applications, v. 117, pp. 10–16, 2018.

[22] QIU, S., WANG, Z., ZHAO, H., et al. “Body sensor network based robust gait

analysis: Toward clinical and at home use”, IEEE Sensors Journal, 2018.

[23] PACE, P., ALOI, G., GRAVINA, R., et al. “An edge-based architecture to sup-

port efficient applications for healthcare industry 4.0”, IEEE Transactions

on Industrial Informatics, v. 15, n. 1, pp. 481–489, 2018.

161

[24] KAYA, T., LIU, G., HO, J., et al. “Wearable Sweat Sensors: Background and

Current Trends”, Electroanalysis, v. 31, n. 3, pp. 411–421, 2019.

[25] CAMOMILLA, V., BERGAMINI, E., FANTOZZI, S., et al. “Trends sup-

porting the in-field use of wearable inertial sensors for sport performance

evaluation: A systematic review”, Sensors, v. 18, n. 3, pp. 873, 2018.

[26] FU, Q.-K., HWANG, G.-J. “Trends in mobile technology-supported collabo-

rative learning: A systematic review of journal publications from 2007 to

2016”, Computers & Education, v. 119, pp. 129–143, 2018.

[27] CHANG, C.-Y., LAI, C.-L., HWANG, G.-J. “Trends and research issues of

mobile learning studies in nursing education: A review of academic pub-

lications from 1971 to 2016”, Computers & Education, v. 116, pp. 28–48,

2018.

[28] KONG, X. T., LUO, H., HUANG, G. Q., et al. “Industrial wearable system:

the human-centric empowering technology in Industry 4.0”, Journal of

Intelligent Manufacturing, pp. 1–17, 2018.

[29] RICE, M., MA, K.-T., TAY, H. H., et al. “Evaluating an augmented remote

assistance platform to support industrial applications”. In: 2018 IEEE

4th World Forum on Internet of Things (WF-IoT), pp. 592–597. IEEE,

2018.

[30] LI, Y., WANG, T., LI, L., et al. “Hand Gesture Recognition and Real-time

Game Control Based on A Wearable Band with 6-axis Sensors”. In: 2018

International Joint Conference on Neural Networks (IJCNN), pp. 1–6.

IEEE, 2018.

[31] HAGHI, M., THUROW, K., STOLL, R. “Wearable devices in medical internet

of things: scientific research and commercially available devices”, Health-

care informatics research, v. 23, n. 1, pp. 4–15, 2017.

[32] BHATT, C., DEY, N., ASHOUR, A. S. “Internet of things and big data tech-

nologies for next generation healthcare”, 2017.

[33] CONSTANT, N., BORTHAKUR, D., ABTAHI, M., et al. “Fog-assisted wiot: A

smart fog gateway for end-to-end analytics in wearable internet of things”,

arXiv preprint arXiv:1701.08680, 2017.

[34] KONG, X. T., YANG, X., HUANG, G. Q., et al. “The impact of indus-

trial wearable system on industry 4.0”. In: 2018 IEEE 15th International

162

Conference on Networking, Sensing and Control (ICNSC), pp. 1–6. IEEE,

2018.

[35] KOS, A., MILUTINOVIĆ, V., UMEK, A. “Challenges in wireless communica-

tion for connected sensors and wearable devices used in sport biofeedback

applications”, Future generation computer systems, v. 92, pp. 582–592,

2019.

[36] LI, J., PENG, Z., GAO, S., et al. “Smartphone-assisted energy efficient data

communication for wearable devices”, Computer Communications, v. 105,

pp. 33–43, 2017.

[37] VARGHESE, B., WANG, N., BARBHUIYA, S., et al. “Challenges and oppor-

tunities in edge computing”. In: 2016 IEEE international conference on

smart cloud (SmartCloud), pp. 20–26. IEEE, 2016.

[38] CAO, K., LIU, Y., MENG, G., et al. “An overview on edge computing re-

search”, IEEE access, v. 8, pp. 85714–85728, 2020.

[39] EL-SHORBAGY, A.-M. “5G Technology and the Future of Architecture”,

Procedia Computer Science, v. 182, pp. 121–131, 2021.

[40] JIANG, Y., LI, X., LUO, H., et al. “Quo vadis artificial intelligence?” Discover

Artificial Intelligence, v. 2, n. 1, pp. 4, 2022.

[41] MCCARTHY, J., OTHERS. “What is artificial intelligence”, 2007.

[42] EL NAQA, I., MURPHY, M. J. “What is machine learning?” In: machine

learning in radiation oncology, Springer, pp. 3–11, 2015.

[43] LECUN, Y., BENGIO, Y., HINTON, G. “Deep learning”, nature, v. 521, n.

7553, pp. 436–444, 2015.

[44] GUNNING, D., STEFIK, M., CHOI, J., et al. “XAI—Explainable artificial

intelligence”, Science Robotics, v. 4, n. 37, pp. eaay7120, 2019.

[45] LIU, Y., LIU, S., WANG, Y., et al. “A survey of stochastic computing neu-

ral networks for machine learning applications”, IEEE Transactions on

Neural Networks and Learning Systems, v. 32, n. 7, pp. 2809–2824, 2020.

[46] SZE, V., CHEN, Y.-H., EMER, J., et al. “Hardware for machine learning:

Challenges and opportunities”. In: 2017 IEEE Custom Integrated Circuits

Conference (CICC), pp. 1–8. IEEE, 2017.

163

[47] SILVA, M., FELISBERTO, B., BATISTA, M., et al. “An Automatic Ant

Counting and Distribution Estimation System Using Convolutional Neu-

ral Networks”. In: Proceedings of the 25th International Conference on

Enterprise Information Systems. SCITEPRESS - Science and Technol-

ogy Publications, 2023. doi: 10.5220/0011968900003467. Dispońıvel em:

<https://doi.org/10.5220/0011968900003467>.

[48] SILVA, M. C., BIANCHI, A. G. C., OLIVEIRA, R. A. R., et al. “Design-

ing a Multiple-User Wearable Edge AI system towards Human Activity

Recognition”. In: 2022 XII Brazilian Symposium on Computing Systems

Engineering (SBESC), pp. 1–8. IEEE, 2022.

[49] SILVA, M. C., BIANCHI, A. G. C., RIBEIRO, S. P., et al. “Edge Computing

Smart Healthcare Cooperative Architecture for COVID-19 Medical Fa-

cilities”, IEEE Latin America Transactions, v. 20, n. 10, pp. 2229–2236,

2022.

[50] SILVA, M. C., BIANCHI, A. G., RIBEIRO, S. P., et al. “Bringing Deep Learn-

ing to the Fields and Forests: Leaf Reconstruction and Shape Estimation”,

SN Computer Science, v. 3, n. 3, pp. 1–14, 2022.

[51] SILVA, M. C., DA SILVA, J. C., DELABRIDA, S., et al. “Wearable Edge AI

Applications for Ecological Environments”, Sensors, v. 21, n. 15, pp. 5082,

2021.

[52] SILVA., M., OLIVEIRA., R., D’ANGELO., T., et al. “Faceshield HUD: Ex-

tended Usage of Wearable Computing on the COVID-19 Frontline”. In:

Proceedings of the 23rd International Conference on Enterprise Informa-

tion Systems - Volume 1: ICEIS,, pp. 893–900. INSTICC, SciTePress,

2021. ISBN: 978-989-758-509-8. doi: 10.5220/0010444308930900.

[53] SILVA, M., FERREIRA DA SILVA, J., OLIVEIRA, R. “IDiSSC: Edge-

computing-based Intelligent Diagnosis Support System for Citrus In-

spection”. In: Proceedings of the 23rd International Conference on En-

terprise Information Systems - Volume 1: ICEIS,, pp. 685–692. IN-

STICC, SciTePress, 2021. ISBN: 978-989-758-509-8. doi: 10.5220/

0010444106850692.

[54] SILVA, M. C., BIANCHI, A. G., RIBEIRO, S. P., et al. “Leaf shape reconstruc-

tion and damage estimation using a U-net-based conditional GAN”. In:

Proceedings of the 36th Annual ACM Symposium on Applied Computing,

pp. 1106–1109, 2021.

164

https://doi.org/10.5220/0011968900003467

[55] SILVA, M., MARTINS DE SOUSA, F., BARBOSA, D., et al. “Constraints

and Challenges in Designing Applications for Industry 4.0: A Func-

tional Approach”. In: Proceedings of the 22nd International Conference

on Enterprise Information Systems - Volume 1: ICEIS,, pp. 767–774.

INSTICC, SciTePress, 2020. ISBN: 978-989-758-423-7. doi: 10.5220/

0009570307670774.

[56] ALVIM, P. B., DA SILVA, J. C., AMORIM, V. J., et al. “Towards a mobile

system with a new wearable device and an AI application for walking and

running activities”. In: Anais do L Seminário Integrado de Software e

Hardware, pp. 155–166. SBC, 2023.

[57] SANTOS, R. C. C. D. M., SILVA, M. C., SANTOS, R. L., et al. “A Mo-

bile Robot Based on Edge AI”. In: Anais do L Seminário Integrado de

Software e Hardware, pp. 191–202. SBC, 2023.

[58] SANTOS, R., SILVA, M., SANTOS, R., et al. “Towards Autonomous Mobile In-

spection Robots Using Edge AI”. In: Proceedings of the 25th International

Conference on Enterprise Information Systems. SCITEPRESS - Science

and Technology Publications, 2023. doi: 10.5220/0011972200003467.

Dispońıvel em: <https://doi.org/10.5220/0011972200003467>.

[59] CARDOSO, F., SILVA, M., MEIRA, N., et al. “Towards a Novel Edge

AI System for Particle Size Detection in Mineral Processing Plants”.

In: Proceedings of the 25th International Conference on Enterprise In-

formation Systems. SCITEPRESS - Science and Technology Publica-

tions, 2023. doi: 10.5220/0011748000003467. Dispońıvel em: <https:

//doi.org/10.5220/0011748000003467>.

[60] GARROCHO, C. T., DE SOUSA, F. L., SILVA, M. C., et al. “Blockchain-

Based Smart Contract and Edge AI Applied in a Multirobot System: An

Approach”, IEEE Robotics & Automation Magazine, 2023.

[61] DA SILVA, J. C., SILVA, M. C., LUZ, E. J., et al. “Using Mobile Edge AI

to Detect and Map Diseases in Citrus Orchards”, Sensors, v. 23, n. 4,

pp. 2165, 2023.

[62] DA SILVA, J. C. F., DE AMORIM, V. J. P., DE OLIVEIRA LAZARONI,

P. S., et al. “Towards novel smart wearable sensors to classify subject-

specific human walking activities”. In: Anais Estendidos do XII Simpósio

Brasileiro de Engenharia de Sistemas Computacionais, pp. 68–73. SBC,

2022.

165

https://doi.org/10.5220/0011972200003467
https://doi.org/10.5220/0011748000003467
https://doi.org/10.5220/0011748000003467

[63] DA SILVA, J. C., SILVA, M. C., DELABRIDA, S., et al. “A novel intelligent

mobile application using human-centered AR: A case study in orange

inspection”. In: Anais Estendidos do XXI Simpósio Brasileiro de Fatores

Humanos em Sistemas Computacionais, pp. 72–75. SBC, 2022.

[64] VITOR, R. F., KELLER, B. N., BARBOSA, D. L., et al. “Enabling Digi-

tal Twins in Industry 4.0”. In: International Conference on Enterprise

Information Systems, pp. 465–488. Springer, 2022.

[65] DE C MEIRA, N. F., SILVA, M. C., VIEIRA, C. B., et al. “Edge Deep Learn-

ing Towards the Metallurgical Industry: Improving the Hybrid Pelletized

Sinter (HPS) Process”. In: International Conference on Enterprise Infor-

mation Systems, pp. 149–167. Springer, 2022.

[66] DA SILVA, J. C. F., SILVA, M. C., OLIVEIRA, R. A. “Towards a novel wear-

able solution for citrus inspection using Edge AI”. In: 2022 IEEE 46th

Annual Computers, Software, and Applications Conference (COMPSAC),

pp. 966–971. IEEE, 2022.

[67] DE SOUSA, F. L. M., SILVA, M. C., OLIVEIRA, R. A. R. “Applying Edge

AI towards Deep-learning-based Monocular Visual Odometry Model for

Mobile Robotics.” In: ICEIS (1), pp. 561–568, 2022.

[68] MEIRA, N., SILVA, M. C., BIANCHI, A. G., et al. “Edge Deep Learning

Applied to Granulometric Analysis on Quasi-particles from the Hybrid

Pelletized Sinter (HPS) Process”. In: Proceedings of the 17th International

Joint Conference on Computer Vision, Imaging and Computer Graphics

Theory and Applications (VISIGRAPP 2022) - Volume 4: VISAPP, pp.

462–469. INSTICC, SciTePress, 2022. ISBN: 978-989-758-555-5. doi: 10.

5220/0010836900003124.

[69] KLIPPEL, E., BIANCHI, A. G. C., DELABRIDA, S., et al. “Deep Learning

Approach at the Edge to Detect Iron Ore Type”, Sensors, v. 22, n. 1,

pp. 169, 2022.

[70] DE SOUSA, F. L. M., DA SILVA, M. J., DE MEIRA SANTOS, R. C. C., et al.

“Deep-Learning-Based Embedded ADAS System”. In: 2021 XI Brazilian

Symposium on Computing Systems Engineering (SBESC), pp. 1–8. IEEE,

2021.

[71] DE SOUSA, F. L. M., MEIRA, N. F. D. C., OLIVEIRA, R. A. R., et al.

“Deep-Learning-Based Visual Odometry Models for Mobile Robotics”. In:

166

Anais Estendidos do XI Simpósio Brasileiro de Engenharia de Sistemas

Computacionais, pp. 122–127. SBC, 2021.

[72] VITOR, R., KELLER, B., BARBOSA, D., et al. “Synchronous and Asyn-

chronous Requirements for Digital Twins Applications in Industry 4.0”.

In: Proceedings of the 23rd International Conference on Enterprise Infor-

mation Systems - Volume 2: ICEIS,, pp. 637–647. INSTICC, SciTePress,

2021. ISBN: 978-989-758-509-8. doi: 10.5220/0010444406370647.

[73] MEIRA, N., SILVA, M., OLIVEIRA, R., et al. “Edge Deep Learning Ap-

plied to Granulometric Analysis on Quasi-particles from the Hybrid Pel-

letized Sinter (HPS) Process”. In: Proceedings of the 23rd International

Conference on Enterprise Information Systems - Volume 1: ICEIS,, pp.

527–535. INSTICC, SciTePress, 2021. ISBN: 978-989-758-509-8. doi:

10.5220/0010458805270535.

[74] SATYANARAYANAN, M. “The emergence of edge computing”, Computer,

v. 50, n. 1, pp. 30–39, 2017.

[75] DENG, S., ZHAO, H., FANG, W., et al. “Edge intelligence: The confluence

of edge computing and artificial intelligence”, IEEE Internet of Things

Journal, v. 7, n. 8, pp. 7457–7469, 2020.

[76] ZHOU, Z., CHEN, X., LI, E., et al. “Edge intelligence: Paving the last mile

of artificial intelligence with edge computing”, Proceedings of the IEEE,

v. 107, n. 8, pp. 1738–1762, 2019.

[77] LIU, Y., PENG, M., SHOU, G., et al. “Toward edge intelligence: Multiaccess

edge computing for 5G and Internet of Things”, IEEE Internet of Things

Journal, v. 7, n. 8, pp. 6722–6747, 2020.

[78] WANG, X., HAN, Y., WANG, C., et al. “In-edge ai: Intelligentizing mo-

bile edge computing, caching and communication by federated learning”,

IEEE Network, v. 33, n. 5, pp. 156–165, 2019.

[79] LI, E., ZENG, L., ZHOU, Z., et al. “Edge AI: On-demand accelerating deep neu-

ral network inference via edge computing”, IEEE Transactions on Wire-

less Communications, v. 19, n. 1, pp. 447–457, 2019.

[80] LEE, Y.-L., TSUNG, P.-K., WU, M. “Techology trend of edge AI”. In: 2018

International Symposium on VLSI Design, Automation and Test (VLSI-

DAT), pp. 1–2. IEEE, 2018.

167

[81] GREENGARD, S. “Ai on edge”, Communications of the ACM, v. 63, n. 9,

pp. 18–20, 2020.

[82] HU, L., MIAO, Y., WU, G., et al. “iRobot-Factory: An intelligent robot

factory based on cognitive manufacturing and edge computing”, Future

Generation Computer Systems, v. 90, pp. 569–577, 2019.

[83] YANG, J., WANG, R., GUAN, X., et al. “AI-enabled emotion-aware robot: The

fusion of smart clothing, edge clouds and robotics”, Future Generation

Computer Systems, v. 102, pp. 701–709, 2020.

[84] RATHI, V. K., RAJPUT, N. K., MISHRA, S., et al. “An edge AI-enabled IoT

healthcare monitoring system for smart cities”, Computers & Electrical

Engineering, v. 96, pp. 107524, 2021.

[85] WU, G., MIAO, Y., ZHANG, Y., et al. “Energy efficient for UAV-enabled mo-

bile edge computing networks: Intelligent task prediction and offloading”,

Computer Communications, v. 150, pp. 556–562, 2020.

[86] ZHANG, Y., YU, J., CHEN, Y., et al. “Real-time strawberry detection using

deep neural networks on embedded system (rtsd-net): An edge AI ap-

plication”, Computers and Electronics in Agriculture, v. 192, pp. 106586,

2022.

[87] DEBAUCHE, O., MAHMOUDI, S., MAHMOUDI, S. A., et al. “Edge comput-

ing and artificial intelligence for real-time poultry monitoring”, Procedia

computer science, v. 175, pp. 534–541, 2020.

[88] DEBAUCHE, O., MAHMOUDI, S., ELMOULAT, M., et al. “Edge AI-IoT

pivot irrigation, plant diseases, and pests identification”, Procedia Com-

puter Science, v. 177, pp. 40–48, 2020.

[89] ELMOULAT, M., DEBAUCHE, O., MAHMOUDI, S., et al. “Edge computing

and artificial intelligence for landslides monitoring”, Procedia Computer

Science, v. 177, pp. 480–487, 2020.

[90] GIA, T. N., QINGQING, L., QUERALTA, J. P., et al. “Edge AI in smart

farming IoT: CNNs at the edge and fog computing with LoRa”. In: 2019

IEEE AFRICON, pp. 1–6. IEEE, 2019.

[91] MUHAMMAD, K., KHAN, S., PALADE, V., et al. “Edge intelligence-assisted

smoke detection in foggy surveillance environments”, IEEE Transactions

on Industrial Informatics, v. 16, n. 2, pp. 1067–1075, 2019.

168

[92] KLIPPEL, E., OLIVEIRA, R., MASLOV, D., et al. “Embedded Edge Ar-

tificial Intelligence for Longitudinal Rip Detection in Conveyor Belt

Applied at the Industrial Mining Environment”. In: Proceedings of

the 23rd International Conference on Enterprise Information Systems.

SCITEPRESS - Science and Technology Publications, 2021. doi: 10.

5220/0010447204960505. Dispońıvel em: <https://doi.org/10.5220/

0010447204960505>.

[93] GOMATHY, V., JANARTHANAN, K., AL-TURJMAN, F., et al. “Investigat-

ing the spread of coronavirus disease via edge-AI and air pollution corre-

lation”, ACM Transactions on Internet Technology, v. 21, n. 4, pp. 1–10,

2021.

[94] RAHMAN, M. S., KHALIL, I., YI, X., et al. “A Lossless Data-Hiding based

IoT Data Authenticity Model in Edge-AI for Connected Living”, ACM

Transactions on Internet Technology (TOIT), v. 22, n. 3, pp. 1–25, 2021.

[95] CHAVHAN, S., GUPTA, D., GOCHHAYAT, S. P., et al. “Edge Computing

AI-IoT Integrated Energy Efficient Intelligent Transportation System for

Smart Cities”, ACM Transactions on Internet Technology (TOIT), 2022.

[96] YANG, H., HAN, X. “National Sports AI Health Management Service Sys-

tem Based on Edge Computing”, Wireless Communications and Mobile

Computing, v. 2021, 2021.

[97] DINH, D.-L., NGUYEN, H.-N., THAI, H.-T., et al. “Towards AI-Based Traffic

Counting System with Edge Computing”, Journal of Advanced Trans-

portation, v. 2021, 2021.

[98] BIBI, R., SAEED, Y., ZEB, A., et al. “Edge AI-based automated detection and

classification of road anomalies in VANET using deep learning”, Compu-

tational intelligence and neuroscience, v. 2021, 2021.

[99] MUNIR, M. S., BAJWA, I. S., ASHRAF, A., et al. “Intelligent and smart

irrigation system using edge computing and IoT”, Complexity, v. 2021,

2021.

[100] BATTISTONI, P., DI GREGORIO, M., SEBILLO, M., et al. “AI at the

edge for sign language learning support”. In: 2019 IEEE International

Conference on Humanized Computing and Communication (HCC), pp.

16–23. IEEE, 2019.

169

https://doi.org/10.5220/0010447204960505
https://doi.org/10.5220/0010447204960505

[101] HOU, D., LIU, T., PAN, Y.-T., et al. “AI on edge device for laser chip defect

detection”. In: 2019 IEEE 9th Annual Computing and Communication

Workshop and Conference (CCWC), pp. 0247–0251. IEEE, 2019.

[102] YANG, C.-J., FAHIER, N., HE, C.-Y., et al. “An ai-edge platform with

multimodal wearable physiological signals monitoring sensors for affec-

tive computing applications”. In: 2020 IEEE International Symposium

on Circuits and Systems (ISCAS), pp. 1–5. IEEE, 2020.

[103] LIU, C., CAO, Y., LUO, Y., et al. “A new deep learning-based food recog-

nition system for dietary assessment on an edge computing service in-

frastructure”, IEEE Transactions on Services Computing, v. 11, n. 2,

pp. 249–261, 2017.

[104] LIN, Y.-C., CHEN, W.-H., KUO, C.-H. “Implementation of Pavement Defect

Detection System on Edge Computing Platform”, Applied Sciences, v. 11,

n. 8, pp. 3725, 2021.

[105] LIN, C.-J., CHUANG, C.-C., LIN, H.-Y. “Edge-AI-Based Real-Time Auto-

mated License Plate Recognition System”, Applied Sciences, v. 12, n. 3,

pp. 1445, 2022.

[106] PAN, J., LUO, Y., LI, Y., et al. “A Wireless multi-channel capacitive sensor

system for efficient glove-based gesture recognition with AI at the edge”,

IEEE Transactions on Circuits and Systems II: Express Briefs, v. 67, n. 9,

pp. 1624–1628, 2020.

[107] LI, J., WU, J., LI, J., et al. “Blockchain-based trust edge knowledge inference

of multi-robot systems for collaborative tasks”, IEEE Communications

Magazine, v. 59, n. 7, pp. 94–100, 2021.

[108] SAKIB, S., FOUDA, M. M., AL-MAHDAWI, M., et al. “Deep Learning Mod-

els for Magnetic Cardiography Edge Sensors Implementing Noise Process-

ing and Diagnostics”, IEEE Access, v. 10, pp. 2656–2668, 2021.

[109] LI, M., GAO, J., ZHAO, L., et al. “Deep reinforcement learning for collab-

orative edge computing in vehicular networks”, IEEE Transactions on

Cognitive Communications and Networking, v. 6, n. 4, pp. 1122–1135,

2020.

[110] FANG, W.-C., WANG, K.-Y., FAHIER, N., et al. “Development and vali-

dation of an EEG-based real-time emotion recognition system using edge

AI computing platform with convolutional neural network system-on-chip

170

design”, IEEE Journal on Emerging and Selected Topics in Circuits and

Systems, v. 9, n. 4, pp. 645–657, 2019.

[111] CHEN, J., LI, K., DENG, Q., et al. “Distributed deep learning model for

intelligent video surveillance systems with edge computing”, IEEE Trans-

actions on Industrial Informatics, 2019.

[112] QUERALTA, J. P., GIA, T. N., TENHUNEN, H., et al. “Edge-AI in LoRa-

based health monitoring: Fall detection system with fog computing and

LSTM recurrent neural networks”. In: 2019 42nd international conference

on telecommunications and signal processing (TSP), pp. 601–604. IEEE,

2019.

[113] FOUKALAS, F., TZIOUVARAS, A. “Edge artificial intelligence for industrial

internet of things applications: an industrial edge intelligence solution”,

IEEE Industrial Electronics Magazine, v. 15, n. 2, pp. 28–36, 2021.

[114] YANG, T., LEE, S.-H., PARK, S. “AI-Aided Individual Emergency Detec-

tion System in Edge-Internet of Things Environments”, Electronics, v. 10,

n. 19, pp. 2374, 2021.

[115] GUPTA, N., KHOSRAVY, M., PATEL, N., et al. “Economic data analytic

AI technique on IoT edge devices for health monitoring of agriculture

machines”, Applied Intelligence, v. 50, n. 11, pp. 3990–4016, 2020.

[116] LIU, Y., YANG, C., JIANG, L., et al. “Intelligent edge computing for IoT-

based energy management in smart cities”, IEEE network, v. 33, n. 2,

pp. 111–117, 2019.

[117] BARNAWI, A., ALHARBI, M., CHEN, M. “Intelligent search and find sys-

tem for robotic platform based on smart edge computing service”, IEEE

Access, v. 8, pp. 108821–108834, 2020.

[118] LIAO, C., SHOU, G., LIU, Y., et al. “Intelligent traffic accident detection sys-

tem based on mobile edge computing”. In: 2017 3rd IEEE International

Conference on Computer and Communications (ICCC), pp. 2110–2115.

IEEE, 2017.

[119] DE VITA, A., PAU, D., PARRELLA, C., et al. “Low-power HWAccelerator

for AI edge-computing in human activity recognition systems”. In: 2020

2nd IEEE International Conference on Artificial Intelligence Circuits and

Systems (AICAS), pp. 291–295. IEEE, 2020.

171

[120] LIBRI, A., BARTOLINI, A., BENINI, L. “pAElla: Edge AI-based real-time

malware detection in data centers”, IEEE Internet of Things Journal,

v. 7, n. 10, pp. 9589–9599, 2020.

[121] ESKANDARI, M., JANJUA, Z. H., VECCHIO, M., et al. “Passban IDS:

An intelligent anomaly-based intrusion detection system for IoT edge de-

vices”, IEEE Internet of Things Journal, v. 7, n. 8, pp. 6882–6897, 2020.

[122] MAZZIA, V., KHALIQ, A., SALVETTI, F., et al. “Real-time apple detection

system using embedded systems with hardware accelerators: An edge AI

application”, IEEE Access, v. 8, pp. 9102–9114, 2020.

[123] COPPOLA, M., NOAILLE, L., PIERLOT, C., et al. “Innovative Vineyards

Environmental Monitoring System Using Deep Edge AI”. 2021.

[124] POON, C. C., JIANG, Y., ZHANG, R., et al. “AI-doscopist: a real-time

deep-learning-based algorithm for localising polyps in colonoscopy videos

with edge computing devices”, NPJ digital medicine, v. 3, n. 1, pp. 1–8,

2020.

[125] MANOGARAN, G., SHAKEEL, P. M., FOUAD, H., et al. “Wearable IoT

smart-log patch: An edge computing-based Bayesian deep learning net-

work system for multi access physical monitoring system”, Sensors, v. 19,

n. 13, pp. 3030, 2019.

[126] COB-PARRO, A. C., LOSADA-GUTIÉRREZ, C., MARRÓN-ROMERA, M.,

et al. “Smart video surveillance system based on edge computing”, Sen-

sors, v. 21, n. 9, pp. 2958, 2021.

[127] KLIPPEL, E., OLIVEIRA, R., MASLOV, D., et al. “Embedded Edge

Artificial Intelligence for Longitudinal Rip Detection in Conveyor Belt

Applied at the Industrial Mining Environment”. In: Proceedings of

the 23rd International Conference on Enterprise Information Systems.

SCITEPRESS - Science and Technology Publications, 2021. doi: 10.

5220/0010447204960505. Dispońıvel em: <https://doi.org/10.5220/

0010447204960505>.

[128] LYU, S., LI, R., ZHAO, Y., et al. “Green Citrus Detection and Counting in

Orchards Based on YOLOv5-CS and AI Edge System”, Sensors, v. 22,

n. 2, pp. 576, 2022.

[129] SU, X., SPERLÌ, G., MOSCATO, V., et al. “An edge intelligence empow-

ered recommender system enabling cultural heritage applications”, IEEE

Transactions on Industrial Informatics, v. 15, n. 7, pp. 4266–4275, 2019.

172

https://doi.org/10.5220/0010447204960505
https://doi.org/10.5220/0010447204960505

[130] XU, S., QIAN, Y., HU, R. Q. “A semi-supervised learning approach for net-

work anomaly detection in fog computing”. In: ICC 2019-2019 IEEE In-

ternational Conference on Communications (ICC), pp. 1–6. IEEE, 2019.

[131] BECK, M. T., WERNER, M., FELD, S., et al. “Mobile edge computing: A

taxonomy”. In: Proc. of the Sixth International Conference on Advances

in Future Internet, pp. 48–55. Citeseer, 2014.

[132] AHMED, E., AHMED, A., YAQOOB, I., et al. “Bringing computation closer

toward the user network: Is edge computing the solution?” IEEE Com-

munications Magazine, v. 55, n. 11, pp. 138–144, 2017.

[133] DOLUI, K., DATTA, S. K. “Comparison of edge computing implementations:

Fog computing, cloudlet and mobile edge computing”. In: 2017 Global

Internet of Things Summit (GIoTS), pp. 1–6. IEEE, 2017.

[134] SHETH, K., PATEL, K., SHAH, H., et al. “A taxonomy of AI techniques

for 6G communication networks”, Computer communications, v. 161,

pp. 279–303, 2020.

[135] BALTRUŠAITIS, T., AHUJA, C., MORENCY, L.-P. “Multimodal machine

learning: A survey and taxonomy”, IEEE transactions on pattern analysis

and machine intelligence, v. 41, n. 2, pp. 423–443, 2018.

[136] TALBI, E.-G. “Machine learning into metaheuristics: A survey and taxon-

omy”, ACM Computing Surveys (CSUR), v. 54, n. 6, pp. 1–32, 2021.

[137] MENDEZ, J., BIERZYNSKI, K., CUÉLLAR, M., et al. “Edge Intelligence:

Concepts, architectures, applications and future directions”, ACM Trans-

actions on Embedded Computing Systems (TECS), 2022.

[138] AMIN, S. U., HOSSAIN, M. S. “Edge intelligence and internet of things in

healthcare: a survey”, IEEE Access, v. 9, pp. 45–59, 2020.

[139] LALAPURA, V. S., AMUDHA, J., SATHEESH, H. S. “Recurrent neural net-

works for edge intelligence: a survey”, ACM Computing Surveys (CSUR),

v. 54, n. 4, pp. 1–38, 2021.

[140] FANTACCI, R., PICANO, B. “Federated learning framework for mobile

edge computing networks”, CAAI Transactions on Intelligence Technol-

ogy, v. 5, n. 1, pp. 15–21, 2020.

[141] NGUYEN, D. C., DING, M., PHAM, Q.-V., et al. “Federated learning meets

blockchain in edge computing: Opportunities and challenges”, IEEE In-

ternet of Things Journal, 2021.

173

[142] AL-ANSI, A., AL-ANSI, A. M., MUTHANNA, A., et al. “Survey on intel-

ligence edge computing in 6G: characteristics, challenges, potential use

cases, and market drivers”, Future Internet, v. 13, n. 5, pp. 118, 2021.

[143] AUGIMERI, A., FORTINO, G., GALZARANO, S., et al. “Collaborative body

sensor networks”. In: 2011 IEEE International Conference on Systems,

Man, and Cybernetics, pp. 3427–3432. IEEE, 2011.

[144] FORTINO, G., GALZARANO, S., GRAVINA, R., et al. “A framework for

collaborative computing and multi-sensor data fusion in body sensor net-

works”, Information Fusion, v. 22, pp. 50–70, 2015.

[145] MIHOVSKA, A., SARKAR, M. “Cooperative Human-Centric Sensing Con-

nectivity”. In: Internet of Things-Technology, Applications and Standard-

ization, InTechOpen, 2018.

[146] ZHANG, X., YANG, Z., CHEN, T., et al. “Cooperative Sensing and Wear-

able Computing for Sequential Hand Gesture Recognition”, IEEE Sensors

Journal, 2019.

[147] PENG, Y., PENG, L. “A cooperative transmission strategy for body-area

networks in healthcare systems”, IEEE Access, v. 4, pp. 9155–9162, 2016.

[148] NGUYEN-HUU, K., SONG, C. G., SEON-WOO, L. “Smartwatch/Smart-

phone Cooperative Indoor Lifelogging System”, International Journal of

Engineering and Technology Innovation, v. 8, n. 4, pp. 261, 2018.

[149] PIMENTEL, G., RODRIGUES, S., SILVA, P. A., et al. “A Wearable Ap-

proach for Intraoperative Physiological Stress Monitoring of Multiple Co-

operative Surgeons”, International Journal of Medical Informatics, 2019.

[150] PRAKASH, R., GANESH, A. B. “Establishment of network coded cooper-

ative communication for clinical healthcare”. In: 2016 2nd International

Conference on Contemporary Computing and Informatics (IC3I), pp. 126–

130. IEEE, 2016.

[151] PHAM, M. H., WARMERDAM, E., ELSHEHABI, M., et al. “Validation of

a lower back “wearable”-based sit-to-stand and stand-to-sit algorithm for

patients with Parkinson’s disease and older adults in a home-like environ-

ment”, Frontiers in neurology, v. 9, pp. 652, 2018.

[152] CHEN, J., RAN, X. “Deep Learning With Edge Computing: A Review.”

Proceedings of the IEEE, v. 107, n. 8, pp. 1655–1674, 2019.

174

[153] WANG, X., HAN, Y., LEUNG, V. C., et al. “Convergence of edge comput-

ing and deep learning: A comprehensive survey”, IEEE Communications

Surveys & Tutorials, v. 22, n. 2, pp. 869–904, 2020.

[154] UDDIN, M. Z. “A wearable sensor-based activity prediction system to facili-

tate edge computing in smart healthcare system”, Journal of Parallel and

Distributed Computing, v. 123, pp. 46–53, 2019.

[155] LIU, H., YAO, X., YANG, T., et al. “Cooperative privacy preservation for

wearable devices in hybrid computing-based smart health”, IEEE Internet

of Things Journal, v. 6, n. 2, pp. 1352–1362, 2018.

[156] VEGA-BARBAS, M., DIAZ-OLIVARES, J. A., LU, K., et al. “P-Ergonomics

Platform: Toward precise, pervasive, and personalized ergonomics using

wearable sensors and edge computing”, Sensors, v. 19, n. 5, pp. 1225,

2019.

[157] KUMARI, P., LÓPEZ-BENÍTEZ, M., LEE, G. M., et al. “Wearable Inter-

net of Things-from human activity tracking to clinical integration”. In:

2017 39th Annual International Conference of the IEEE Engineering in

Medicine and Biology Society (EMBC), pp. 2361–2364. IEEE, 2017.

[158] DEMICHELI, G., SAMI, M. Hardware/software Co-design, v. 310. Springer

Science & Business Media, 2013.

[159] DE MICHELL, G., GUPTA, R. K. “Hardware/software co-design”, Proceed-

ings of the IEEE, v. 85, n. 3, pp. 349–365, 1997.

[160] MUIRURI, E. W., BARANTAL, S., IASON, G. R., et al. “Forest diversity

effects on insect herbivores: do leaf traits matter?” New Phytologist,

v. 221, n. 4, pp. 2250–2260, 2019.

[161] BENÍTEZ-MALVIDO, J., LÁZARO, A., FERRAZ, I. D. “Effect of distance

to edge and edge interaction on seedling regeneration and biotic damage

in tropical rainforest fragments: A long-term experiment”, Journal of

Ecology, v. 106, n. 6, pp. 2204–2217, 2018.

[162] SAIDOV, N., SRINIVASAN, R., MAVLYANOVA, R., et al. “First re-

port of invasive South American tomato leaf miner Tuta absoluta

(Meyrick)(Lepidoptera: Gelechiidae) in Tajikistan”, Florida Entomolo-

gist, v. 101, n. 1, pp. 147–150, 2018.

[163] BAUDRON, F., ZAMAN-ALLAH, M. A., CHAIPA, I., et al. “Understanding

the factors influencing fall armyworm (Spodoptera frugiperda JE Smith)

175

damage in African smallholder maize fields and quantifying its impact

on yield. A case study in Eastern Zimbabwe”, Crop Protection, v. 120,

pp. 141–150, 2019.

[164] WU, S. G., BAO, F. S., XU, E. Y., et al. “A leaf recognition algorithm for

plant classification using probabilistic neural network”. In: 2007 IEEE

international symposium on signal processing and information technology,

pp. 11–16. IEEE, 2007.

[165] NOVOTNỲ, P., SUK, T. “Leaf recognition of woody species in Central Eu-

rope”, Biosystems Engineering, v. 115, n. 4, pp. 444–452, 2013.

[166] OTSU, N. “A threshold selection method from gray-level histograms”, IEEE

transactions on systems, man, and cybernetics, v. 9, n. 1, pp. 62–66, 1979.

[167] DA SILVA, L. A., BRESSAN, P. O., GONÇALVES, D. N., et al. “Estimating

soybean leaf defoliation using convolutional neural networks and synthetic

images”, Computers and electronics in agriculture, v. 156, pp. 360–368,

2019.

[168] ISOLA, P., ZHU, J.-Y., ZHOU, T., et al. “Image-to-image translation with

conditional adversarial networks”. In: Proceedings of the IEEE conference

on computer vision and pattern recognition, pp. 1125–1134, 2017.

[169] RONNEBERGER, O., FISCHER, P., BROX, T. “U-net: Convolutional net-

works for biomedical image segmentation”. In: International Conference

on Medical image computing and computer-assisted intervention, pp. 234–

241. Springer, 2015.

[170] HOU, X., SHEN, L., SUN, K., et al. “Deep feature consistent variational au-

toencoder”. In: 2017 IEEE Winter Conference on Applications of Com-

puter Vision (WACV), pp. 1133–1141. IEEE, 2017.

[171] DONG, H., YANG, G., LIU, F., et al. “Automatic brain tumor detection

and segmentation using U-Net based fully convolutional networks”. In:

annual conference on medical image understanding and analysis, pp. 506–

517. Springer, 2017.

[172] OKTAY, O., SCHLEMPER, J., FOLGOC, L. L., et al. “Attention

u-net: Learning where to look for the pancreas”, arXiv preprint

arXiv:1804.03999, 2018.

176

[173] HYUN, C. M., KIM, H. P., LEE, S. M., et al. “Deep learning for undersam-

pled MRI reconstruction”, Physics in Medicine & Biology, v. 63, n. 13,

pp. 135007, 2018.

[174] ANTHOLZER, S., HALTMEIER, M., NUSTER, R., et al. “Photoacoustic

image reconstruction via deep learning”. In: Photons Plus Ultrasound:

Imaging and Sensing 2018, v. 10494, p. 104944U. International Society

for Optics and Photonics, 2018.

[175] GENÇTAV, A., AKSOY, S., ÖNDER, S. “Unsupervised segmentation and

classification of cervical cell images”, Pattern recognition, v. 45, n. 12,

pp. 4151–4168, 2012.

[176] SAMPAT, M. P., WANG, Z., GUPTA, S., et al. “Complex wavelet structural

similarity: A new image similarity index”, IEEE transactions on image

processing, v. 18, n. 11, pp. 2385–2401, 2009.

[177] SHAMIR, R. R., DUCHIN, Y., KIM, J., et al. “Continuous dice coefficient:

a method for evaluating probabilistic segmentations”, arXiv preprint

arXiv:1906.11031, 2019.

[178] MUN, J., JANG, W.-D., SUNG, D. J., et al. “Comparison of objective func-

tions in CNN-based prostate magnetic resonance image segmentation”.

In: 2017 IEEE International Conference on Image Processing (ICIP),

pp. 3859–3863. IEEE, 2017.

[179] NITSCH, J., KLEIN, J., DAMMANN, P., et al. “Automatic and efficient MRI-

US segmentations for improving intraoperative image fusion in image-

guided neurosurgery”, NeuroImage: Clinical, v. 22, pp. 101766, 2019.

[180] SALKIND, N. J. Encyclopedia of research design, v. 1. sage, 2010.

[181] GARRIDO-JURADO, S., MUÑOZ-SALINAS, R., MADRID-CUEVAS, F. J.,

et al. “Automatic generation and detection of highly reliable fiducial

markers under occlusion”, Pattern Recognition, v. 47, n. 6, pp. 2280–2292,

2014.

[182] RIBEIRO, S. P., BASSET, Y., KITCHING, R. “Density of insect galls in

the forest understorey and canopy: Neotropical, Gondwana or global pat-

terns?” In: Neotropical insect galls, Springer, pp. 129–141, 2014.

[183] GARCÍA-GUZMÁN, G., DIRZO, R. “Incidence of leaf pathogens in the

canopy of a Mexican tropical wet forest”, Plant Ecology, v. 172, n. 1,

pp. 41–50, 2004.

177

[184] SOUBEYRAND, S., ENJALBERT, J., SACHE, I. “Accounting for rough-

ness of circular processes: Using Gaussian random processes to model

the anisotropic spread of airborne plant disease”, Theoretical Population

Biology, v. 73, n. 1, pp. 92–103, 2008.

[185] POKHAREL, G., DEARDON, R. “Gaussian process emulators for spatial

individual-level models of infectious disease”, Canadian Journal of Statis-

tics, v. 44, n. 4, pp. 480–501, 2016.

[186] KETU, S., MISHRA, P. K. “Enhanced Gaussian process regression-based

forecasting model for COVID-19 outbreak and significance of IoT for its

detection”, Applied Intelligence, v. 51, n. 3, pp. 1492–1512, 2021.

[187] BONATO, P. “Wearable sensors/systems and their impact on biomedical

engineering”, IEEE Engineering in Medicine and Biology Magazine, v. 22,

n. 3, pp. 18–20, 2003.

[188] SILVA, M., DELABRIDA, S., RIBEIRO, S., et al. “Toward the Design of

a Novel Wearable System for Field Research in Ecology”. In: 2018 VIII

Brazilian Symposium on Computing Systems Engineering (SBESC), pp.

160–165. IEEE, 2019.

[189] SILVA, M. C., RIBEIRO, S. P., DELABRIDA, S., et al. “Smart-Helmet devel-

opment for Ecological Field Research Applications”. In: Anais do XLVI

Seminário Integrado de Software e Hardware, pp. 69–80. SBC, 2019.

[190] CHOUHAN, S. S., KAUL, A., SINGH, U. P. “A Database of Leaf Im-

ages: Practice towards Plant Conservation with Plant Pathology”. 2020.

Dispońıvel em: <https://data.mendeley.com/datasets/hb74ynkjcn/

4>.

[191] PEDREGOSA, F., VAROQUAUX, G., GRAMFORT, A., et al. “Scikit-learn:

Machine learning in Python”, the Journal of machine Learning research,

v. 12, pp. 2825–2830, 2011.

[192] SILVA, M., OLIVEIRA, R. “Analyzing the Effect of Increased Distribution on

a Wearable Appliance”. In: 2019 IEEE 43rd Annual Computer Software

and Applications Conference (COMPSAC), v. 2, pp. 13–18. IEEE, 2019.

[193] HELANTERÄ, H., STRASSMANN, J. E., CARRILLO, J., et al. “Unicolonial

ants: where do they come from, what are they and where are they going?”

Trends in Ecology & Evolution, v. 24, n. 6, pp. 341–349, 2009.

178

https://data.mendeley.com/datasets/hb74ynkjcn/4
https://data.mendeley.com/datasets/hb74ynkjcn/4

[194] MCGLYNN, T. P. “The ecology of nest movement in social insects”, Annual

review of entomology, v. 57, pp. 291–308, 2012.

[195] HAKALA, S. M., PERTTU, S., HELANTERÄ, H. “Evolution of dispersal in

ants (Hymenoptera: Formicidae): A review on the dispersal strategies of

sessile superorganisms”, Myrmecological News, v. 29, 2019.

[196] MAJER, J., HETERICK, B. “Planning for long-term invertebrate studies–

problems, pitfalls and possibilities”, Australian Zoologist, v. 39, n. 4,

pp. 617–626, 2018.

[197] WAN, J., WANG, Q., CHAN, A. B. “Kernel-based density map generation

for dense object counting”, IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2020.

[198] HOWARD, A. G., ZHU, M., CHEN, B., et al. “Mobilenets: Efficient convo-

lutional neural networks for mobile vision applications”, arXiv preprint

arXiv:1704.04861, 2017.

[199] TAN, M., LE, Q. “Efficientnetv2: Smaller models and faster training”. In:

International Conference on Machine Learning, pp. 10096–10106. PMLR,

2021.

[200] SODHRO, A., SANGAIAH, A., SODHRO, G., et al. “An energy-efficient

algorithm for wearable electrocardiogram signal processing in ubiquitous

healthcare applications”, Sensors, v. 18, n. 3, pp. 923, 2018.

[201] FIROUZI, F., RAHMANI, A. M., MANKODIYA, K., et al. “Internet-of-

Things and big data for smarter healthcare: from device to architecture,

applications and analytics”. 2018.

[202] COSTA, L., FARIAS, R., SANTIAGO, A., et al. “Abiotic factors drives floris-

tic variations of fern’s metacommunity in an Atlantic Forest remnant”,

Brazilian Journal of Biology, v. 78, n. 4, pp. 736–741, 2018.

[203] ARENA, M. V., MARTINES, M. R., DA SILVA, T. N., et al. “Multiple-scale

approach for evaluating the occupation of stingless bees in Atlantic forest

patches”, Forest ecology and management, v. 430, pp. 509–516, 2018.

[204] CALVÃO, L. B., JUEN, L., DE OLIVEIRA JUNIOR, J. M. B., et al. “Land

use modifies Odonata diversity in streams of the Brazilian Cerrado”, Jour-

nal of insect conservation, v. 22, n. 5-6, pp. 675–685, 2018.

179

[205] PEREIRA, A., NUNES, F., AICOS, F. P. “Physical Activity Intensity Mon-

itoring of Hospital Workers using a Wearable Sensor”. In: Proceedings

of the 12th EAI International Conference on Pervasive Computing Tech-

nologies for Healthcare (PervasiveHealth’18). EAI. DOI: http://dx. doi.

org/10.4108/eai, pp. 20–4, 2018.

[206] JAHANBANIFAR, S., AKHAVIAN, R. “Evaluation of wearable sensors to

quantify construction workers muscle force: an ergonomic analysis”. In:

Proceedings of the 2018 Winter Simulation Conference, pp. 3921–3929.

IEEE Press, 2018.

[207] WEEKS, D. L., SPRINT, G. L., STILWILL, V., et al. “Implementing wear-

able sensors for continuous assessment of daytime heart rate response

in inpatient rehabilitation”, Telemedicine and e-Health, v. 24, n. 12,

pp. 1014–1020, 2018.

[208] VELÁZQUEZ, R., PISSALOUX, E., RODRIGO, P., et al. “An outdoor navi-

gation system for blind pedestrians using GPS and tactile-foot feedback”,

Applied Sciences, v. 8, n. 4, pp. 578, 2018.

[209] TJHAI, C., STEWARD, J., LICHTI, D., et al. “Using a mobile range-camera

motion capture system to evaluate the performance of integration of mul-

tiple low-cost wearable sensors and gait kinematics for pedestrian navi-

gation in realistic environments”. In: 2018 IEEE/ION Position, Location

and Navigation Symposium (PLANS), pp. 294–300. IEEE, 2018.

[210] KISS, F., BOLDT, R., PFLEGING, B., et al. “Navigation systems for motor-

cyclists: exploring wearable tactile feedback for route guidance in the real

world”. In: Proceedings of the 2018 CHI Conference on Human Factors

in Computing Systems, p. 617. ACM, 2018.

[211] “DHT22.pdf”. https://www.sparkfun.com/datasheets/Sensors/

Temperature/DHT22.pdf. (Accessed on 08/11/2023).

[212] “MPU-6000-Datasheet1.pdf”. https://invensense.tdk.com/wp-content/

uploads/2015/02/MPU-6000-Datasheet1.pdf. (Accessed on

08/11/2023).

[213] “Microsoft Word - BCM2835 ARM Peripherals.docx”. https://datasheets.

raspberrypi.com/bcm2835/bcm2835-peripherals.pdf. (Accessed on

08/11/2023).

180

https://www.sparkfun.com/datasheets/Sensors/Temperature/DHT22.pdf
https://www.sparkfun.com/datasheets/Sensors/Temperature/DHT22.pdf
https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf
https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf
https://datasheets.raspberrypi.com/bcm2835/bcm2835-peripherals.pdf
https://datasheets.raspberrypi.com/bcm2835/bcm2835-peripherals.pdf

[214] “max30100.pdf”. https://www.analog.com/media/en/

technical-documentation/data-sheets/max30100.pdf. (Accessed on

08/11/2023).

[215] “GlobalTop-FGPMMOPA6H-Datasheet-V0A-Preliminary”.

https://cdn-shop.adafruit.com/datasheets/

GlobalTop-FGPMMOPA6H-Datasheet-V0A.pdf. (Accessed on

08/11/2023).

[216] “Document:”. https://cdn-shop.adafruit.com/datasheets/TSL2561.

pdf. (Accessed on 08/11/2023).

[217] WATERS, L. E., LANGE, R. A. “An updated calibration of the plagioclase-

liquid hygrometer-thermometer applicable to basalts through rhyolites”,

American Mineralogist, v. 100, n. 10, pp. 2172–2184, 2015.

[218] YADAV, N., BLEAKLEY, C. “Fast calibration of a 9-DOF IMU using a

3 DOF position tracker and a semi-random motion sequence”, Measure-

ment, v. 90, pp. 192–198, 2016.

[219] ÖBERG, T. “Muscle fatigue and calibration of EMG measurements”, Journal

of Electromyography and Kinesiology, v. 5, n. 4, pp. 239–243, 1995.

[220] MENGE, F., SEEBER, G., VOLKSEN, C., et al. “Results of absolute field

calibration of GPS antenna PCV”. In: PROCEEDINGS OF ION GPS,

v. 11, pp. 31–38. INSTITUTE OF NAVIGATION, 1998.

[221] SCHRAMA, C., REIJN, H. “Novel calibration method for filter radiometers”,

Metrologia, v. 36, n. 3, pp. 179, 1999.

[222] HAYES, M. J., SMITH, P. R. “A new method for pulse oximetry possess-

ing inherent insensitivity to artifact”, IEEE Transactions on Biomedical

Engineering, v. 48, n. 4, pp. 452–461, 2001.

[223] WU, F., REDOUTÉ, J.-M., YUCE, M. R. “We-safe: A self-powered wearable

IoT sensor network for safety applications based on LoRa”, IEEE Access,

v. 6, pp. 40846–40853, 2018.

[224] VARATHARAJAN, R., MANOGARAN, G., PRIYAN, M. K., et al. “Wear-

able sensor devices for early detection of Alzheimer disease using dynamic

time warping algorithm”, Cluster Computing, v. 21, n. 1, pp. 681–690,

2018.

181

https://www.analog.com/media/en/technical-documentation/data-sheets/max30100.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/max30100.pdf
https://cdn-shop.adafruit.com/datasheets/GlobalTop-FGPMMOPA6H-Datasheet-V0A.pdf
https://cdn-shop.adafruit.com/datasheets/GlobalTop-FGPMMOPA6H-Datasheet-V0A.pdf
https://cdn-shop.adafruit.com/datasheets/TSL2561.pdf
https://cdn-shop.adafruit.com/datasheets/TSL2561.pdf

[225] ROOPAEI, M., RAD, P., PREVOST, J. J. “A Wearable IoT with Complex

Artificial Perception Embedding for Alzheimer Patients”. In: 2018 World

Automation Congress (WAC), pp. 1–6. IEEE, 2018.

[226] LI, B., DONG, Q., DOWNEN, R. S., et al. “A wearable IoT aldehyde sensor

for pediatric asthma research and management”, Sensors and Actuators

B: Chemical, v. 287, pp. 584–594, 2019.

[227] NOUSIAS, S., TSELIOS, C., BITZAS, D., et al. “Uncertainty management for

wearable iot wristband sensors using Laplacian-based matrix completion”.

In: 2018 IEEE 23rd International Workshop on Computer Aided Modeling

and Design of Communication Links and Networks (CAMAD), pp. 1–6.

IEEE, 2018.

[228] GIA, T. N., SARKER, V. K., TCARENKO, I., et al. “Energy efficient wear-

able sensor node for IoT-based fall detection systems”, Microprocessors

and Microsystems, v. 56, pp. 34–46, 2018.

[229] MAHMOUD, M. S., MOHAMAD, A. A. “A study of efficient power consump-

tion wireless communication techniques/modules for internet of things

(IoT) applications”, 2016.

[230] BOUKERCHE, A., SAMARAH, S. “A novel algorithm for mining association

rules in wireless ad hoc sensor networks”, IEEE Transactions on Parallel

and Distributed Systems, v. 19, n. 7, pp. 865–877, 2008.

[231] CHEN, Z., HU, W., WANG, J., et al. “An empirical study of latency in

an emerging class of edge computing applications for wearable cognitive

assistance”. In: Proceedings of the Second ACM/IEEE Symposium on

Edge Computing, pp. 1–14, 2017.

[232] KIM, J., GUTRUF, P., CHIARELLI, A. M., et al. “Miniaturized battery-

free wireless systems for wearable pulse oximetry”, Advanced functional

materials, v. 27, n. 1, pp. 1604373, 2017.

[233] REN, J., GUO, H., XU, C., et al. “Serving at the edge: A scalable IoT

architecture based on transparent computing”, IEEE Network, v. 31, n. 5,

pp. 96–105, 2017.

[234] GRUBERT, J., LANGLOTZ, T., ZOLLMANN, S., et al. “Towards pervasive

augmented reality: Context-awareness in augmented reality”, IEEE trans-

actions on visualization and computer graphics, v. 23, n. 6, pp. 1706–1724,

2016.

182

[235] SURVE, A. R., GHORPADE, V. R. “Pervasive Context-Aware Computing

Survey of Context-aware ubiquitous middleware systems”, International

Journal of Engineering10. 1, 2017.

[236] AMFT, O. “How wearable computing is shaping digital health”, IEEE Per-

vasive Computing, v. 17, n. 1, pp. 92–98, 2018.

[237] KLIGER, A. S., SILBERZWEIG, J. “Mitigating risk of COVID-19 in dialysis

facilities”, Clinical Journal of the American Society of Nephrology, v. 15,

n. 5, pp. 707–709, 2020.

[238] PRACHAND, V. N., MILNER, R., ANGELOS, P., et al. “Medically-

necessary, time-sensitive procedures: A scoring system to ethically and

efficiently manage resource scarcity and provider risk during the COVID-

19 pandemic”, Journal of the American College of Surgeons, 2020.

[239] ORGANIZATION, W. H., OTHERS. Advice on the use of masks in the context

of COVID-19: interim guidance, 6 April 2020. Relatório técnico, World

Health Organization, 2020.

[240] HONG, S., GU, Y., SEO, J. K., et al. “Wearable thermoelectrics for per-

sonalized thermoregulation”, Science advances, v. 5, n. 5, pp. eaaw0536,

2019.

[241] SÖRÖS, G., SEMMLER, S., HUMAIR, L., et al. “Fast blur removal for wear-

able QR code scanners”. In: Proceedings of the 2015 ACM International

Symposium on Wearable Computers, pp. 117–124, 2015.

[242] TREMPER, K. K., BARKER, S. J. “Pulse oximetry”, Anesthesiology: The

Journal of the American Society of Anesthesiologists, v. 70, n. 1, pp. 98–

108, 1989.

[243] LONG, C., CAO, Y., JIANG, T., et al. “Edge computing framework for coop-

erative video processing in multimedia IoT systems”, IEEE Transactions

on Multimedia, v. 20, n. 5, pp. 1126–1139, 2017.

[244] CHEN, Z., HE, S., LI, F., et al. “Mobile field hospitals, an effective way of

dealing with COVID-19 in China: sharing our experience”, BioScience

Trends, 2020.

[245] CHANG, C., SRIRAMA, S. N., BUYYA, R. “Indie fog: An efficient fog-

computing infrastructure for the internet of things”, Computer, v. 50,

n. 9, pp. 92–98, 2017.

183

[246] MAJUMDER, S., MONDAL, T., DEEN, M. J. “Wearable sensors for remote

health monitoring”, Sensors, v. 17, n. 1, pp. 130, 2017.

[247] BETANCUR, J. A., VILLA-ESPINAL, J., OSORIO-GÓMEZ, G., et al. “Re-

search topics and implementation trends on automotive head-up display

systems”, International Journal on Interactive Design and Manufacturing

(IJIDeM), v. 12, n. 1, pp. 199–214, 2018.

[248] SHAH, S., MAJMUDAR, K., STEIN, A., et al. “Novel use of home

pulse oximetry monitoring in COVID-19 patients discharged from

the emergency department identifies need for hospitalization”, Aca-

demic Emergency Medicine, v. n/a, n. n/a. doi: 10.1111/acem.

14053. Dispońıvel em: <https://onlinelibrary.wiley.com/doi/abs/

10.1111/acem.14053>.

[249] CAO, K., XU, G., ZHOU, J., et al. “QoS-adaptive approximate real-time

computation for mobility-aware IoT lifetime optimization”, IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems,

v. 38, n. 10, pp. 1799–1810, 2018.

[250] SIKDER, N., NAHID, A.-A. “KU-HAR: An open dataset for heterogeneous

human activity recognition”, Pattern Recognition Letters, v. 146, pp. 46–

54, 2021.

[251] ABID, M. H., NAHID, A.-A. “Two Unorthodox Aspects in Handcrafted-

feature Extraction for Human Activity Recognition Datasets”. In: 2021

International Conference on Electronics, Communications and Informa-

tion Technology (ICECIT), pp. 1–4. IEEE, 2021.

184

https://onlinelibrary.wiley.com/doi/abs/10.1111/acem.14053
https://onlinelibrary.wiley.com/doi/abs/10.1111/acem.14053

	Wearable Edge AI towards Cyber-Physical Applications
	9b7cb46db53a7265a4e29f2ae177a27cd7825fac4c7b62edb12ac96731275fba.pdf
	Wearable Edge AI towards Cyber-Physical Applications
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Wearable Computing
	Edge Computing
	Artificial Intelligence (AI)
	Stakeholders
	Objectives
	Text Organization
	Contributions

	Edge AI
	Defining Edge AI
	Mapping Edge AI applications
	Applications Overview
	Preliminary Analyses

	Edge Computing and AI taxonomies analysis
	Edge Computing Taxonomies
	AI Algorithms Taxonomies

	Edge AI Taxonomy
	Final Remarks

	Wearable Edge AI
	Cooperative Wearable Systems
	Wearable Edge AI
	Rethinking the hardware/software co-design for Edge AI solutions

	Case Study - Wearable Edge AI towards environmental studies
	Leaf damage estimation
	Requirements
	Method overview
	Datasets Description
	Preprocessing
	Synthetic Dataset Generation
	Conditional GAN Architecture
	Damage Estimation
	Evaluation Methods
	A Broader Evaluation on the Damage Estimation Results
	Technical Evaluation: How to embed this solution?

	Evaluating and mapping diseases in forest canopies
	Requirements
	General Architecture Proposal
	Validation Tests
	Results

	Ant distribution and counting estimation
	Requirements
	Methods overview
	Experimental Results

	Wearable Edge AI towards healthcare applications
	Physical condition monitoring in field
	Requirements
	Context Overview
	Wearable computing requirements
	Device Architecture Description
	System Architecture
	Evaluation Methods
	Results

	Smart wearable systems in the context of COVID-19
	Requirements
	Architecture Proposal
	Prototyping and Validation Tests
	Validation Tests Results
	Edge Computing - Architecture Proposal
	Experimental Tests
	Results

	Wearable-based human activity recognition
	Requirements
	Evaluation Tests
	Results and Discussion

	Conclusions and Final Remarks
	Theoretical Backbone
	Lessons learned
	Future Works

	Bibliography

