PLA-b-SMA as an amphiphilic diblock copolymer for encapsulation of lipophilic cargo.
Nenhuma Miniatura disponível
Data
2023
Título da Revista
ISSN da Revista
Título de Volume
Editor
Resumo
The encapsulation of active pharmaceutical ingredients (APIs) within drug
delivery systems such as polymeric nanoparticles (PNPs) vastly improves the
therapeutic efficiency of the incorporated APIs. PNPs synthesized using
amphiphilic block copolymers are efficient drug delivery systems as the
hydrophobic block facilitates the encapsulation of lipophilic components and
the hydrophilic block constitutes the hairy corona of the PNP that stabilizes
the nanocarriers against aggregation in solution. Poly(styrene-alt-maleic acid)
(SMA) is an attractive polymer for the hydrophilic corona of PLA-based
nanoparticles as it allows for post polymerization functionalization and aids in
the prevention of NP aggregation. The synthesis of a novel PLA-b-SMA block
copolymer, via sequential ring opening polymerization (ROP) and reversible
addition–fragmentation chain transfer (RAFT) polymerization, is presented.
PLA macro-CTAs, synthesized via ROP, can be chain extended via RAFT
copolymerization of styrene and maleic anhydride to yield PLA-b-SMAnh and
via RAFT polymerization of N-vinylpyrrolidone to yield PLA-b-PVP block
copolymers. Controlled hydrolysis of the anhydride moieties converts
PLA-b-SMAnh into PLA-b-SMA. Monodisperse PLA-b-SMA and PLA-b-PVP
nanoparticles (NPs) ranging in diameter between 60 and 220 nm are prepared.
The lipophilic fluorescent dye DiI is encapsulated within the NPs successfully
and these fluorescent NPs are used in a preliminary cell uptake study.
Descrição
Palavras-chave
Citação
BALL, L. E. et al. PLA-b-SMA as an amphiphilic diblock copolymer for encapsulation of lipophilic cargo. Macromolecular Chemistry and Physics, v. 224, n. 1, artigo 2200212, jan. 2023. Disponível em: <https://onlinelibrary.wiley.com/doi/epdf/10.1002/macp.202200212>. Acesso em: 01 ago. 2023.