Please use this identifier to cite or link to this item:
http://www.repositorio.ufop.br/jspui/handle/123456789/9397
Title: | Monetary loss surveillance for credit models. |
Authors: | Silva, Ivair Ramos Barros, Vincius B. M. |
Keywords: | Hypothesis testing Risk management Sequential analysis |
Issue Date: | 2016 |
Citation: | SILVA, I. R.; BARROS, V. B. M. Monetary loss surveillance for credit models. Sequential Analysis-Design Methods and Applications, v. 35, p. 347-357, 2016. Disponível em: <http://www.tandfonline.com/doi/abs/10.1080/07474946.2016.1206379?journalCode=lsqa20>. Acesso em: 16 jan. 2018. |
Abstract: | There is a vast collection of statistical methodologies devoted to measure the customer’s credit risk.Well-knownstatistical techniques are logistic regression, genetic algorithms, and support vector machines, among others. However, there is a lack of statistical tools for monitoring monetary losses implied by a given credit model in operation. This article introduces a sequential procedure to favor such monitoring. Our method favors early detection of increased expected monetary losses. Analytical expressions are derived for the calculation of the statistical power performance of the proposed method. An application for a credit portfolio of a German bank is offered. |
URI: | http://www.repositorio.ufop.br/handle/123456789/9397 |
metadata.dc.identifier.uri2: | http://www.tandfonline.com/doi/abs/10.1080/07474946.2016.1206379?journalCode=lsqa20 |
metadata.dc.identifier.doi: | https://doi.org/10.1080/07474946.2016.1206379 |
ISSN: | 1532-4176 |
Appears in Collections: | DEEST - Artigos publicados em periódicos |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
ARTIGO_MonetaryLossSurveillance.pdf Restricted Access | 407,25 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.