Please use this identifier to cite or link to this item: http://www.repositorio.ufop.br/handle/123456789/9384
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCançado, André Luiz Fernandes-
dc.contributor.authorGomes, Antonio E.-
dc.contributor.authorSilva, Cibele Queiroz da-
dc.contributor.authorOliveira, Fernando Luiz Pereira de-
dc.contributor.authorDuczmal, Luiz Henrique-
dc.date.accessioned2018-01-30T13:29:05Z-
dc.date.available2018-01-30T13:29:05Z-
dc.date.issued2016-
dc.identifier.citationCANÇADO, A. L. F. et al. An item response theory approach to spatial cluster estimation and visualization. Environmental and Ecological Statistics, v. 23, p. 1-17, 2016. Disponível em: <https://link.springer.com/article/10.1007/s10651-016-0347-x>. Acesso em: 16 jan. 2018.pt_BR
dc.identifier.issn 1573-3009 -
dc.identifier.urihttp://www.repositorio.ufop.br/handle/123456789/9384-
dc.description.abstractThe scan statistic is widely used in spatial cluster detection applications of inhomogeneous Poisson processes. The most popular variant of the spatial scan is the circular scan. However, such approach has several limitations, in particular, the circular window is not suitable to make the correct description of irregularly shaped and/or unconnected clusters. Additionally, such methodology does not incorporate the tools needed for quantifying the uncertainty in the description of the most likely cluster in the analysis. In the present work we build upon the previously proposed methodology called intensity function a more efficient and accurate way of defining the uncertainty in the identification of spatial clusters using Item Response Theory ideas. Using simulated data we show that the proposed method can correctly identify primary, secondary and irregular clusters.pt_BR
dc.language.isoen_USpt_BR
dc.rightsrestritopt_BR
dc.subjectInhomogeneous poisson processpt_BR
dc.subjectItem response theorypt_BR
dc.subjectIrregularly shaped spatial clusterspt_BR
dc.subjectScan statisticpt_BR
dc.titleAn item response theory approach to spatial cluster estimation and visualization.pt_BR
dc.typeArtigo publicado em periodicopt_BR
dc.identifier.uri2https://link.springer.com/article/10.1007/s10651-016-0347-xpt_BR
dc.identifier.doihttps://doi.org/10.1007/s10651-016-0347-x-
Appears in Collections:DEEST - Artigos publicados em periódicos

Files in This Item:
File Description SizeFormat 
ARTIGO_ItemResponseTheory.pdf8,79 MBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.