Please use this identifier to cite or link to this item:
Title: The antioxidant and anti-inflammatory properties of lycopene in mice lungs exposed to cigarette smoke.
Authors: Campos, Keila Karine Duarte
Araújo, Glaucy Rodrigues de
Martins, Thais Lourenço
Bandeira, Ana Carla Balthar
Costa, Guilherme de Paula
Silva, André Talvani Pedrosa da
Garcia, Camila Carrião Machado
Oliveira, Laser Antônio Machado de
Costa, Daniela Caldeira
Bezerra, Frank Silva
Keywords: Redox imbalance
Issue Date: 2017
Citation: CAMPOS, K. K. D. et al. The antioxidant and anti-inflammatory properties of lycopene in mice lungs exposed to cigarette smoke. Journal Of Nutritional Biochemistry, v. 48, p. 9-20, 2017. Disponível em: <>. Acesso em: 15 set. 2017.
Abstract: Lycopene is a carotenoid with knownantioxidant and anti-inflammatory properties.Weaimed to evaluate the in vitro and in vivo effects of lycopene on reducing the redox imbalance and inflammation induced by cigarette smoke (CS). For the in vitro study, J774A.1 (macrophages) cells were incubated in the presence of 0.5, 1.0, 2.0, 4.0, 8.0, 10.0 and 25 μMof lycopene for 3, 6 and 24 h or in the presence of 0.1%, 0.25%, 0.5%, 0.625%, 1.25%, 2.25%, 5% and 10% cigarette smoke extract (CSE) for 3, 6 and 24 h to assess cell viability and measurement of intracellular reactive oxygen species (ROS). For the in vivo study, 40 micewere divided into 5 groups: a control exposed to ambient air (CG), a vehicle-control group that received 200 μl of sunflower oil by orogastric gavage, a group exposed to CS and two groups administered lycopene (diluted in sunflower oil) at doses of either 25 or 50 mg/kg/day prior to exposure to CS (LY25+CS and LY50+CS). The total treatment time lasted 5 days. A cell viability decreasewas observed at 10- and 25-μMconcentrations of lycopene in 3, 6 and 24 h compared with CG. Therewas an increase ofROS production in 24 h in CS compared with CG. Lycopene concentrations of 1 μMand 2 μMwere able to reduce the production of ROS in 24 h comparedwith CS. In the bronchoalveolar lavage fluid, the total number of leukocytes increased in the CS group compared with the control groups (CG). Administrationwith lycopene at the highest dose suppressed this CS-induced increase in leukocytes. Lipid peroxidation and DNA damage increased in the CS group comparedwith that in the controls, and this increase was suppressed by lycopene at the highest dose. In contrast, superoxide dismutase activity decreased in the CS group compared with that in the controls. Catalase activity also increased in the CS group compared with that in both control groups, and this increase was suppressed in LY25+CS and LY50+CS. There was an increase in the levels of tumor necrosis factor-α, interferon-γ and interleukin-10 after exposure to CS, and these effects were suppressed by both doses of lycopene. These data elucidate the role of lycopene as an antioxidant and anti-inflammatory agent in these two models of short-term exposure to CS.
ISSN: 09552863
metadata.dc.rights.license: O periódico The Journal of Nutritional Biochemistry concede permissão para depósito deste artigo no Repositório Institucional da UFOP. Número da licença: 4210820933333.
Appears in Collections:DECBI - Artigos publicados em periódicos

Files in This Item:
File Description SizeFormat 
ARTIGO_AntioxidantAntiInflamatory.pdf1,16 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.