Use este identificador para citar ou linkar para este item: http://www.repositorio.ufop.br/jspui/handle/123456789/15294
Título: An advanced pruning method in the architecture of extreme learning machines using L1-regularization and bootstrapping.
Autor(es): Souza, Paulo Vitor de Campos
Torres, Luiz Carlos Bambirra
Silva, Gustavo Rodrigues Lacerda
Braga, Antônio de Pádua
Lughofer, Edwin
Palavras-chave: Lasso with bootstrapping
Pruning of neurons
Least angle regression
Data do documento: 2020
Referência: SOUZA, P. V. de C. et al. An advanced pruning method in the architecture of extreme learning machines using L1-regularization and bootstrapping. Eletronics, v. 9, n. 5, 2020. Disponível em: <https://www.mdpi.com/2079-9292/9/5/811>. Acesso em: 29 abr. 2022.
Resumo: Extreme learning machines (ELMs) are efficient for classification, regression, and time series prediction, as well as being a clear solution to backpropagation structures to determine values in intermediate layers of the learning model. One of the problems that an ELM may face is due to a large number of neurons in the hidden layer, making the expert model a specific data set. With a large number of neurons in the hidden layer, overfitting is more likely and thus unnecessary information can deterioriate the performance of the neural network. To solve this problem, a pruning method is proposed, called Pruning ELM Using Bootstrapped Lasso BR-ELM, which is based on regularization and resampling techniques, to select the most representative neurons for the model response. This method is based on an ensembled variant of Lasso (achieved through bootstrap replications) and aims to shrink the output weight parameters of the neurons to 0 as many and as much as possible. According to a subset of candidate regressors having significant coefficient values (greater than 0), it is possible to select the best neurons in the hidden layer of the ELM. Finally, pattern classification tests and benchmark regression tests of complex real-world problems are performed by comparing the proposed approach to other pruning models for ELMs. It can be seen that statistically BR-ELM can outperform several related state-of-the-art methods in terms of classification accuracies and model errors (while performing equally to Pruning-ELM P-ELM), and this with a significantly reduced number of finally selected neurons.
URI: http://www.repositorio.ufop.br/jspui/handle/123456789/15294
DOI: https://doi.org/10.3390/electronics9050811
ISSN: 2079-9292
Licença: This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Fonte: o PDF do artigo.
Aparece nas coleções:DECSI - Artigos publicados em periódicos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_AdvancedPruningMethod.pdf1,72 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.