Please use this identifier to cite or link to this item: http://www.repositorio.ufop.br/jspui/handle/123456789/12603
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSilva, Ivair Ramos-
dc.contributor.authorMarques, Reinaldo Antônio Gomes-
dc.date.accessioned2020-08-17T14:01:56Z-
dc.date.available2020-08-17T14:01:56Z-
dc.date.issued2019-
dc.identifier.citationSILVA, I. R.; MARQUES, R. A. G. Frequentist-bayesian Monte Carlo testing. Communications in Statistics-Theory and Methods, v. 49, n. 10, fev. 2019. Disponível em: <https://www.tandfonline.com/doi/abs/10.1080/03610926.2019.1571610?af=R&journalCode=lsta20>. Acesso em: 03 jul. 2020.pt_BR
dc.identifier.issn1532-415X-
dc.identifier.urihttp://www.repositorio.ufop.br/handle/123456789/12603-
dc.description.abstractConventional methods for statistical hypothesis testing has historically been categorized as frequentist or Bayesian. But, a third option based on a reconciling hybrid frequentist-Bayesian framework is quickly emerging. Although prominent, there are applications where the exact hybrid test is not computable. For such cases, the present paper introduces a straightforward Monte Carlo procedure for performing frequentist-Bayesian testing.pt_BR
dc.language.isoen_USpt_BR
dc.rightsrestritopt_BR
dc.subjectMeasure of evidencept_BR
dc.subjectValiditypt_BR
dc.subjectComposite p-valuept_BR
dc.titleFrequentist-bayesian Monte Carlo testing.pt_BR
dc.typeArtigo publicado em periodicopt_BR
dc.identifier.uri2https://www.tandfonline.com/doi/abs/10.1080/03610926.2019.1571610?af=R&journalCode=lsta20pt_BR
dc.identifier.doihttps://doi.org/10.1080/03610926.2019.1571610pt_BR
Appears in Collections:DEEST - Artigos publicados em periódicos

Files in This Item:
File Description SizeFormat 
ARTIGO_FrequentistBayesianMonte.pdf
  Restricted Access
1,07 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.