Please use this identifier to cite or link to this item:
http://www.repositorio.ufop.br/jspui/handle/123456789/12603
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Silva, Ivair Ramos | - |
dc.contributor.author | Marques, Reinaldo Antônio Gomes | - |
dc.date.accessioned | 2020-08-17T14:01:56Z | - |
dc.date.available | 2020-08-17T14:01:56Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | SILVA, I. R.; MARQUES, R. A. G. Frequentist-bayesian Monte Carlo testing. Communications in Statistics-Theory and Methods, v. 49, n. 10, fev. 2019. Disponível em: <https://www.tandfonline.com/doi/abs/10.1080/03610926.2019.1571610?af=R&journalCode=lsta20>. Acesso em: 03 jul. 2020. | pt_BR |
dc.identifier.issn | 1532-415X | - |
dc.identifier.uri | http://www.repositorio.ufop.br/handle/123456789/12603 | - |
dc.description.abstract | Conventional methods for statistical hypothesis testing has historically been categorized as frequentist or Bayesian. But, a third option based on a reconciling hybrid frequentist-Bayesian framework is quickly emerging. Although prominent, there are applications where the exact hybrid test is not computable. For such cases, the present paper introduces a straightforward Monte Carlo procedure for performing frequentist-Bayesian testing. | pt_BR |
dc.language.iso | en_US | pt_BR |
dc.rights | restrito | pt_BR |
dc.subject | Measure of evidence | pt_BR |
dc.subject | Validity | pt_BR |
dc.subject | Composite p-value | pt_BR |
dc.title | Frequentist-bayesian Monte Carlo testing. | pt_BR |
dc.type | Artigo publicado em periodico | pt_BR |
dc.identifier.uri2 | https://www.tandfonline.com/doi/abs/10.1080/03610926.2019.1571610?af=R&journalCode=lsta20 | pt_BR |
dc.identifier.doi | https://doi.org/10.1080/03610926.2019.1571610 | pt_BR |
Appears in Collections: | DEEST - Artigos publicados em periódicos |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
ARTIGO_FrequentistBayesianMonte.pdf Restricted Access | 1,07 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.