Please use this identifier to cite or link to this item: http://www.repositorio.ufop.br/handle/123456789/10927
Title: In vivo antileishmanial efficacy of a naphthoquinone derivate incorporated into a Pluronic® F127-based polymeric micelle system against Leishmania amazonensis infection.
Authors: Mendonça, Débora Vasconcelos Costa
Tavares, Grasiele de Sousa Vieira
Lage, Daniela Pagliara
Soyer, Tauane Gonçalves
Carvalho, Lívia Mendes
Dias, Daniel Silva
Ribeiro, Patrícia Aparecida Fernandes
Ottoni, Flaviano Melo
Antinarelli, Luciana Maria Ribeiro
Vale, Danniele Luciana
Ribeiro, Fernanda Ludolf
Duarte, Mariana Costa
Coimbra, Elaine Soares
Chávez Fumagalli, Miguel Angel
Roatt, Bruno Mendes
Souza, Daniel Menezes
Barichello, José Mario
Alves, Ricardo José
Coelho, Eduardo Antônio Ferraz
Keywords: Chemotherapy
Amphotericin B
Tegumentary leishmaniasis
Toxicity
Issue Date: 2019
Citation: MENDONÇA, D. V. C. et al. In vivo antileishmanial efficacy of a naphthoquinone derivate incorporated into a Pluronic® F127-based polymeric micelle system against Leishmania amazonensis infection. Biomedicine & Pharmacotherapy, v. 109, p. 779-787, jan. 2019. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0753332218367878>. Acesso em: 22 fev. 2019.
Abstract: New therapeutic strategies against leishmaniasis are desirable, since the treatment against disease presents problems, such as the toxicity, high cost and/or parasite resistance. As consequence, new antileishmanial compounds are necessary to be identified, as presenting high activity against Leishmania parasites, but low toxicity in mammalian hosts. Flau-A is a naphthoquinone derivative recently showed to presents an in vitro effective action against Leishmania amazonensis and L. infantum species. In the present work, the in vivo efficacy of Flau-A, which was incorporated into a Poloxamer 407-based micelle system, was evaluated in a murine model against L. amazonensis infection. Amphotericin B (AmB) and Ambisome® were used as controls. The animals were infected and later treated with the compounds. Thirty days after the treatment, parasitological and immunological parameters were evaluated. Results showed that AmB, Ambisome® , Flau-A or Flau-A/M-treated animals presented significantly lower average lesion diameter and parasite burden in tissue and organs evaluated, when compared to the control (saline and micelle) groups. Flau-A or Flau-A/M-treated mice were those presenting the most significant reductions in the parasite burden, when compared to the others. These animals developed also a more polarized antileishmanial Th1 immune response, which was based on significantly higher levels of IFN-γ, IL-12, TNF-α, GM-CSF, and parasite-specific IgG2a isotype; associated with low levels of IL-4, IL10, and IgG1 antibody. The absence of toxicity was found in these animals, although mice receiving AmB have showed high levels of renal and hepatic damage markers. In conclusion, results suggested that the Flau-A/M compound may be considered as a possible therapeutic target to be evaluated against human leishmaniasis.
URI: http://www.repositorio.ufop.br/handle/123456789/10927
ISSN: 07533322
metadata.dc.rights.license: This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/). Fonte: o próprio artigo.
Appears in Collections:DECBI - Artigos publicados em periódicos

Files in This Item:
File Description SizeFormat 
ARTIGO_VivoAntileishmanialEfficacy.pdf1,46 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.