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RESUMO 
 
O presente artigo apresenta um procedimento numérico para a obtenção de algumas configurações dos modelos clássicos de 
bielas e tirantes para certas aplicações estruturais. Para isso, faz-se o uso do método dos elementos finitos com o uso de uma 
formulação em teoria elasto-linear plana para a geração do elemento finito. Esse procedimento de análise é acoplado com 
um processo de otimização topológica denominado de SESO - Smoothing Evolutionary Structural Optimization. Esse 
método SESO baseia-se no procedimento de diminuição progressiva da contribuição de rigidez de elementos ineficientes 
com menores tensões até que ele não tenha mais influência, como se este estivesse em processo de danificação. São avaliados 
e comparados alguns exemplos de estruturas onde já se conhece a configuração ótima obtida dos modelos clássicos de bielas 
e tirantes, onde se demonstra a potencialidade da presente formulação para aplicações em estruturas genéricas. 
Palavra-Chave: Estruturas em concreto armado, Modelo de bielas e tirantes, Otimização topológica, Método dos 
elementos finitos. 
 
 
 

ABSTRACT 
 

The present paper presents a numerical procedure for finding the optimal configuration of some strut and tie models to 
classical reinforced concrete structures. The Finite Element Method is formulated in plane stress state which is considered 
for the analysis in conjunction with a heuristic topological method called SESO - Smoothing Evolutionary Structural 
Optimization. The method SESO is based on the procedure of gradual reduction of stiffness contribution of the inefficient 
elements at lower stress until it no longer has influence, as if it were in the damage process. Optimal topologies of strut and 
tie models are presented in several instances with good settings which indicates good potentiality in using this procedure for 
generic application in reinforced concrete structure. 
Keywords: Strut-and-tie model, Topology Optimization, Reinforced Concrete Structure, Finite Element Method 
 

 

 
1 INTRODUCTION 
 

With the growing worldwide competition demanding lower costs, the application of 
topological optimization has become a profit-oriented research tool for the industry, especially 
the steel industry, because it facilitates material molding. This application has the 
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computational ability to solve large problems using low-cost microprocessors, therefore 
creating an immense opportunity for research in applied mechanics. 

As such, topological evaluation has been used in the field of mechanics to optimize 
structural components or elements in one, two, or three dimensions. To achieve this, stress and 
displacement analysis techniques, for example, by finite element (FEM) or boundary element 
methods (BEM), together with optimization criteria, such as Von Mises stress constraints, 
natural frequency or buckling, are used in searching of solutions by numerical-mathematical 
formulations. 

Topology Optimization (TO) is a recent topic in the structural optimization field. However, 
the basic concepts that support the theoretical method have been established for over a century, 
as described by (ROZVANI,BENDSOE,KIRSCH,1995).The great advantage of TO, 
compared to traditional optimization methods, such as shape or parametric optimization, is 
that these methods are not able to change the layout of the original structure, failing to help 
the project conceptual framework for designing adequate flow stress. 

In topological analysis, two methodologies are important: the micro and macro approaches. 
The micro approach considers the existence of a microporous media that depends on its 
geometry and the volumetric density of a unit cell representative of the material properties and 
its constitutive relations. An example for this group is the SIMP (Simple Isotropic material 
with penalization) method, (ROZVANY, BENDSØE, KIRSCH,1995) e (ROZVANY, ZHOU, 
BIRKER,1993). 

In the macro approach, the topology of the structure is modified by the insertion of holes in 
the field. As an example of this group of TO, ESO (Evolutionary Structural Optimization) can 
be mentioned, which is based on the solution of the objective function when an element is 
removed from the finite element mesh and TSA (Topological Sensitivity Analysis), based on 
a scalar function, called topological derivative, which provides each set point in the problem 
domain the sensitivity of the cost function when a small hole is created, 
(SOKOLOWSKI,ZOCHOWSCKI,1999) e (NOVOTNY,FEIJÓO,PADRA,TARACO,2003). 
Strut-and-tie models are used to idealize the load transfer mechanism in a cracked structural 
concrete member at the ultimate limit states. The design task is mainly to identify the load 
transfer mechanism in a structural concrete member and reinforce the member such that this 
load path will safely transfer the applied loads to the supports. Obviously, some regions of a 
structural concrete member are not as effective in carrying loads as others. By eliminating 
these underutilized portions from a structural concrete member, the actual load transfer 
mechanism in the cracked concrete member can be found. The SESO technique is able to 
identify the underutilized portions of a structure and to remove them from the structure, to 
improve its performance.  

Developing an appropriate strut- and- tie model, a structural concrete member can be 
transformed into a topology optimization problem of a continuum structure. The optimal 
topology of a plane stress continuum structure, using the SESO technique, tends towards a 
model of truss structures. Therefore, it is appropriate to apply this technology to the automatic 
generation of strut and tie models in concrete structures. 

In order to propose an effective tool for developing strut-and-tie models, this work uses the 
technique in topology optimization SESO (Smooth-ESO), which is a variant of ESO, founded 
on verifying whether the element is not really necessary to the structure. Hence, the 
contribution to the ESO technique is the reduction of stiffness until it no longer has influence. 
That is, their removal is conducted smoothly, reducing the values of the constitutive element 
of the array, as if it is in the process of damage and capable of generating ideal members of 
struts-and-ties models. Thus, in the SESO technique used herein, the tensile (steel) and 
compressive (concrete) regions are incorporated with topology optimization to generate more 
efficient strut-and-tie models. 
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This paper presents the same theory described in (ALMEIDA, SIMONETTI, OLIVEIRA 
NETO, 2013) differing basically in the analyzed examples and in performance aspects of the 
optimized topologies. 

To evaluate elasticity problems numerically, finite element analysis is applied, but instead 
using a plane–stress triangular finite element implemented with high-order modes for solving 
complex geometric problems. Three examples are presented to show this effect: (1) Deep 
beam with web openings; (2) Interior beam-column connections and (3) Bridge Pier. 

 
 

2. SMOOTH EVOLUTIONARY STRUCTURAL OPTIMIZATION (SES O) 
 

(XIE,STEVEN,1993), developed a very simple way to impose modifications on the 
topology of a structure, using a heuristic gradual removal of the mesh of the finite elements, 
corresponding to the regions that do not effectively contribute to a better performance of the 
structure. Therefore, in this paper, the parameters of interest for the optimization problem are 
evaluated in an iterative process in order to decrease the weight by employing the maximum 
stress criterion of the structure. 

An initial finite element mesh is defined circumscribing the entire structure, or an extended 
domain of the design to include the boundary conditions (forces, displacements, cavities and 
other initial conditions). 
Thus, the elastic problem is solved via FEM iteratively; the principal stress is evaluated at 
each element, the highest stress values are taken as reference and the finite element which 
presents stress values above the defined condition as described in inequality (1a) is removed: 
 
 

    
  ,max

  

( )  vm vm
e k iRRσ σ≤ ⋅                                                               (1a) 

                                             1    k kRR RR RE+ = +                                                                 (1b) 

 
where   

vm
eσ  and    

,max
  

vm
iσ  are, respectively,  the principal Von Mises stress of element in i-th 

iteration and the maximum stress effective structure in iteration “i”; RR  k is the Rejection 

Ratio at kth steady state (0.0 ≤ RR ≤ 1.0), which is an input datum that is updated using the 
evolutionary rate (RE). The evolutionary process is defined by adding the rate of evolution 
(RE) to the RR factor, equation 1b, which is applied to control the removal process of the 
structure. 

In the subsequent iteration, the elastic problem is solved again, without the finite elements 
be removed from the design body. The elimination of the rejected elements is observed to 
adopt Young´s modulus values or thickness in the order of initial values times 1.E-8. This 
procedure avoids a re-meshing approach of the body and a subsequent interference in the 
relative field of responses. 

The same cycle of removing the elements used by inequality (1a) is repeated until there are 
no more elements that satisfy inequality (1a); when this occurs, or when the design volume is 
obtained, the steady state is reached. This procedure is known as hard kill and can be 
interpreted as follows: 

0  if j
( )

0    if j  

D
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where ( )D j  is the constitutive matrix of element Ω∈j , 0D  is the initial constitutive matrix, 

Ω = Γ + Γ  is the structure’s domain, ( )e max{ ( ) }vm RRσ σΓ = Ω ≥  is the amount of elements that 

will not be removed from the structure (solid), and ( )max{ / ( ) }vm vm
e RRσ σΓ = Ω − Γ = Ω Ω <  is 

the set of elements that are removed from the structure (empty parts), in i-th iteration, due to 
meeting inequality (1a). 

(TANSKANEN,2002) proved mathematically that the ESO heuristic removal approach of 
these elements is associated to regions with low level of strain energy and it is a non-explicit 
minimization procedure in relation to their weight if compared to a deterministic method, such 
as the sequential linear programming (SLP) of the optimization algorithm technique. 
However, the removal of an element may unduly affect the optimum; one way to correct this 
deviation would be the possibility of reinserting the element in the structure. In this sense, a 
variant of the ESO stands out, the BESO - Bidirectional Evolutionary Structural Optimization, 
(QUERIN,1997). The SESO, Smooth ESO, comes from this mathematically consistent 
philosophy, weighting the Young’s Modulus (E) and making the strain energy of the element 
increases tending to the strain energy of the structure; then the gradient tends to zero and the 
direction of minimum is restored. This is a smooth heuristic of the withdrawal of finite 
elements of the ESO method. Thus, the elements that meet the inequality (1a) are divided 
into groups and organized in order of increasing stress. Then p% of those groups are excluded 
(elements with the least stress, LSΓ domain) and (1-p%) is weighted by a regulatory function 

( 0 ( ) 1jη≤ ≤ ) and returned to the structure (GSΓ domain). This removal and devolution 

procedure of elements is performed by a hyperbolic function, as shown in Figure 1, that 
weights the rate max

vm vm
eσ σ  within the Γ domain; that is, it permits the high-stress elements 

(closest to max
vmσ  but fulfilling the ESO constraint in the GSΓ  domain) providing a better path 

for flow of tensions in each iteration. 
The elements near the maximum limit stress are maintained in the structure, defining the 

procedure as a "non hard-kill" withdrawal, but a smooth process in the heuristic of elements 
removal. The soft kill procedure used in the SESO technique can be interpreted as follows: 

 

                         

0

i 0

  

D ( ) ( )   

0  

i

j GS

LS

D if j

j D if j

if j

η
∈Γ 

 
= ⋅ Γ ∈Γ 
 ∈Γ 

                                                     (3) 

 

where GSLS Γ+Γ=Γ , for 0 ( ) 1jη≤ Γ ≤ . The function ηj(Γ) regulates the rate values max
vm vm
eσ σ  

within the Γ  domain and this procedure can eliminate the checkerboard problem. 
The procedure proposed can be performed by using, for example, a constant function 

( )η *EY(J)Γ = Γ , where EY is the Young’s Modulus of each element to be weighed, or a linear 

function, ( ) jη α βΓ = +  type. Because these two functions are continuous, they can be 

differentiated over all Γ  domain, and they have an image varying from 0 to 1, Figure 1. It is 
noteworthy that for smaller values of element removal ratio used by the SESO optimization 
criterion, the final design is more accurate, but more expensive with larger computational time. 
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Figure 1. Smoothing of the volume of the elements removed in iteration i. 

 
3. PERFORMANCE INDEX FOR THE SESO FORMULATION 
 

The heuristic of the withdrawal of undesired elements by ESO/SESO methods is equivalent 
to the optimization procedure with weight function of structure (W) to find a minimum 
stationary point, as demonstrated by (TANSKANEN,2002). It is known that the design criteria 
are defined in technical standards for acceptable limits of stresses or strains and the problem 
consists on the minimization of the objective function in terms of weight, subject to an 
allowable stress constraint (σproject) which can be defined as: 

                                          

NE

e
e 1

,max

minimize W  w ( ) 

subject to   -   0  

e

vm project
j

t

σ σ
=

=

≤

∑

    

 
 
(4) 
 

 
where W is the total weight of the structure, we is the weight of the eth element, te is the 

thickness of the eth element that is also treated as a design variable,     
,maxσ
vm

e is the maximum von 

Mises stress of each element in the structure and NE  is the number of elements. 
In (LIANG,XIE,STEVEN,1999) it is proposed that, instead of solving the optimization 

problem directly as previously indicated by equation (4), a monitoring parameter of the 
performance history, called performance index (PI), can be implemented for continuous 
structures with stress constraints, and this index is defined as: 

                                          0
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where 0W  and iW  are the weights of initial and current design at ith iteration, 0,maxσ
vm  and i,maxσ

vm  

are initial and ith-iteration maximum Von Mises stresses.  Replacing equations (6a) and (6b) 
in (5) one obtains: 
                                                                                        

                                       

0,max 0,max 0,max0 0 0 0

i,max i i,max i i,max i

          
vm vm vm

vm vm vm
i

W V V
PI

W V V

σ σ σρ
σ σ ρ σ
     ⋅= ⋅ = ⋅ = ⋅          ⋅     

                          

 
 
 
(7) 
 

 
where 0V  and iV  are initial and ith-iteration volumes, 0ρ  and iρ  are initial and ith-iteration 

densities, which values are equal for an incompressible material. The smoothing generated 
due to Eq. (3) in terms of constitutive matrix can be written in terms of thickness due to the 
direct linear relation between them. In this context, the performance index in formula (7), 
which takes into account expression (3) in terms of each thickness and the regulating function 
from SESO procedure, is written as: 
 

vm vm
0,max 0,max0 0 0
vm vm
i,max i,max

1 1

σ σ. .
PI= . = .   

σ σ
. . . ( )

NE NE

j j j j
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   
      
   ∑ ∑

 
 
(8) 

 

 
where 0t  is initial thickness and jt  is thickness of thj  element at ith iteration.  

The optimal control is exerted by this performance index, because it is a "monitoring factor" 
in the region optimal design. The control of maximizing this parameter refers to the 
minimization of the control volume, since the ratio between the stresses does not change 
greatly, ranging around the unit value. Thus, the curve PI is characterized by the ratio of 
volumes and maximizing it means that its minimum volume has been found. However, if the 
index falls sharply, it is a strong indication that it underwent a local optimum or stationary 
configuration. There is also no guarantee that this is a global optimum, but an optimal 
configuration for engineering design. 
Finally, the algorithm of the evolutionary process can be described as follows or as in the 
flowchart indicated in Figure 2: 
1. Discretize the domain for analysis with a refined mesh of finite elements; 
2. Solve the linear elastic problem, applying displacement boundary conditions and external 
or body forces; 
3. Determine the Von Mises stress distribution for each element and maximum at each 
iteration; 
4. Divide the elements that violate eq. 1a, into n groups, where p% of n groups are deleted, 
and (1-p%) of n groups are returned to the structure, setting each element in domains

GSLS or ΓΓΓ, ; 

5. Remove the elements that are inside domain LSΓ , and modify the constitutive matrix 

contributions related to elements inside GSΓ with prescribed regulatory function; 

6. If 0=Γ , then the steady state is reached at ith iteration; then, update RR = RR + ER. If 
0≠Γ , do not update RR; 

7. While PIi > PIi-1 or Vi > Vfinal, (Vfinal is the prescribed volume) repeat steps 2 to 6; if PIi << 
PIi-1, equilibrium has been reached, plot final topology. 
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Figure 2. Flowchart for the Smooth ESO procedure. 

 
4. PROBLEMS ANALYZED 
 

In structural engineering, most concrete linear elements are designed by a simplified theory, 
using Bernoulli’s hypothesis. For a real physical analysis of the behavior of these bending 
elements, the strut-and-tie model, a generalization of the classical analogy of truss beam 
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model, is usually employed. This analogy is shown by Ritter and Morsch at the beginning of 
twentieth century, associated with a reinforced concrete beam in an equivalent truss structure. 
The discrete elements (bars) represent the fields of tensile (rods) and compression (compressed 
struts) stress that emerge inside the structural element in bending effect. This analogy has been 
improved and it is still used by technical standards to design reinforced concrete beams in 
flexural and shear force and to define various criteria for determining safe limits in its 
procedures.  

However, the application of this hypothesis for any structural element can lead to over or 
under sizing of certain parts of structures. This hypothesis is valid for parts of frames in which 
there is no interference from regions with high stress concentration, such as sections near the 
columns, cavities or other areas where the influence of strain due to shear is not negligible. 

However, there are structural elements or regions where Bernoulli’s assumptions do not 
adequately represent the bending structural behavior and the stress distribution. Structural 
elements such as beams, walls, footings and foundation blocks, and special areas such as 
beam-column connection, openings in beams and geometric discontinuities, are examples, as 
shown in Figure 3. These regions, denominated “discontinuity regions D”, are limited to 
distances related to dimension order of structural adjacent elements (Saint Vernant’s 
Principle), in which shear stresses are applicable and the distribution of deformations in cross 
section is not linear.  

 
Figure 3. Examples of D and B-regions in shaded and blanked areas. 

The pioneering work by (SCHLAICH, SCHAFER, JENNEWEIN,1987) describes the strut-
and-tie model more generally, covering equivalent truss models and including these regions 
and special structural elements.  

Numerical analysis has provided these tools for years, with faster processing, new theories 
and formulations. Together with these tools, some techniques have been employed via strut-
and-tie models in reinforced concrete structures as shown in (LIANG,XIE,STEVEN,2002), 
(ALI,1997), (LIANG,UY,STEVEN,2002), (LIANG,2005), (REINECK, 2007), 
(BRUGGI,2009), (BRUGGI,2010), (VICTORIA,QUERIN,MARTÍ,2011), 
(KWAR,NOH,2006). Based on the formulation described in previous sections, a computer 
system was developed applying SESO technique in conjunction with finite element method, 
using a linear-elastic formulation for plane stress state analysis arising from free formulation, 
(BERGAN,FELIPPA,1985). An automated mesh generation routine was developed based on 
Delaunay triangulation and a set of Fortran subroutines was used for solving sparse symmetric 
sets of linear equations, as indicated in (DUFF,REID,1982). Von Mises stresses are calculated 
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in the centroid of each element, at each iteration process, using nodal stress values. Thus, some 
numerical examples are presented for evaluating and comparing the configurations obtained 
by classical models of strut-and-tie. The optimization parameters RR and RE, if not 
mentioned, are equal to 1% and defined as regulatory function 4( ) 10 * ( )EY jη −Γ = . The whole 
theory of SESO numerical technique is described by 
(ALMEIDA,SIMONETTI,OLIVEIRANETO,2013) e (SIMONETTI,ALMEIDA,OLIVEIRA 
NETO,2014). 
 
4.1 Deep beam with web openings 
 

In this example, SESO was applied to find best topology for optimal structure and strut-and-
tie models using triangular finite elements of high order, by comparing with the results 
presented in (LIANG,XIE,STEVEN,2000); the author used quadrilateral finite elements. The 
design domain and the boundary conditions are shown in Figure 4a; Figs. 4b, 4c, 4d e 4e show 
optimal settings obtained by (LIANG,XIE,STEVEN,2000). Young’s modulus of the material 
is30,088MPa , Poisson's ratio is 0.15 and thickness is 100 mm. Two equal concentrated loads 

of 140 kN are applied in the top of the beam. The procedure proposed can be performed by 
using, for example, a constant function 4( ) 10 * ( )EY jη −Γ =  where EY is the Young’s Modulus 
of each element to be weighed, with the regulatory function 1)(0 ≤≤ jη . 

 
Figure 4. (a) Design domain of a beam structure; (b) topology at iteration 20, (c) topology at iteration 40, d)  

Optimal Topology and e) Optimal strut-and-tie model by (LIANG,XIE,STEVEN,2000) . 
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Figures. 5a, 5b and 5c show the optimal topologies obtained by the present formulation, 
SESO, using refined mesh of 100x25 with a total triangular finite elements 4,688. The 
evolutionary procedure history presented in Figs. 5a, 5b and 5c was obtained with final volumes 
equal to 85,2%, 71,6% and 43,9%; the regions in red and blue respectively indicate the 
compressed (struts) and tensioned regions (ties). For the optimal settings shown in Figs. 5a and 
5b, same optimization parameters (RR, rejection ratio and RE, evolutionary ratio) were used. 
The optimal configuration shown in Figure 5c was obtained with parameters RR equal to 1% 
and RE equal to 1% by volume at constant removed iteration equal 1.75 %. Note that the 
proposed algorithm is sensitive to the variation of these parameters, boundary conditions and 
the geometry of the element. Figure 5d shows the optimal strut-and-tie model. 
 

 
Figure 5. History of topologies of beam structure obtained by the present model: (a) topology at iteration 40 

( 85.2%)V f =  (b) topology at iteration 80 ( 71.6%)V f = c)  Optimal Topology ( 43.9%)V f = , and d) Optimal 

strut-and-tie model. 

The graph in Figure 6 shows the monitoring made during the performance of the presente 
formulation to determine the optimal topology. The growth of the PI (performance index) 
values is plotted for each iteration, and the point at which PI drops sharply indicates that the 
previous iteration is thus the area of optimal design.  

The optimization history showing PI and volume reduction (VI/V0) versus iteration is also 
presented in the figure, where PI increases from unity and VI/V0 index decreases from 100% 
correspondingly. PI increasing indicates the improvement of progressive topologies while 
inefficient material is gradually removed  from an initially over-designed area. It can also be 
seen from Figures 5 and 6 that optimal  strut-and-tie models are translated from the final 
topologies in which the continuous lines represent  tension ties (blue) whereas the dash lines 
(red) denote compression struts. 
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Figure 6. Optimization history. 

 
4.2 Interior beam-column connections 
 

The design domain and the boundary conditions of the beam-column system are shown in 
Figure 7a. Under horizontal loads, one of the beams is subjected to positive moment and the 
other is subjected to negative one. Young’s Modulus is 28,567MPa  and Poisson ratio is 0.15. 

This structure is modeled with a 68x108 refined mesh totaling  9024 triangular finite elements 

and the optimization procedure used parameters RE=0,5% and RR=1%. Volume removed by 
iteration is 5%. Figures 7b, 7c and 7d show optimal setting, the strut-and-tie model and 
reinforcement concrete, proposed by (LIANG,2005). 

 
Figure 7. Interior beam-column connection: a) Domain Design, b)Optimal topology, c)Strut-and-tie model and 

d) Reinforcement by (LIANG,2005). 
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The method called PBO - Performance-Based Optimization was used. Figs. 8a and 8b  show 
optimal topologies obtained by the present formulation, SESO, with final volumes equal to 
82,6% and 27,7%; the regions in red and blue respectively indicate compressed (struts) and 
tensioned regions (ties). Fig 8c shows the strut-and-tie model. 

 
Figure 8. History of topologies of beam structure obtained by the present model: (a) topology at iteration 60 

( 82.6%)V f = , (b)   Optimal Topology  ( 27.7%)V f = , and c) Optimal strut-and-tie model. 

Figure 9 shows the flow of stress, respectively, in the first and the last iterations. The stress 
flow can be seen in the figure and the optimal setting for the strut-and-tie model is satisfactory 
and meets the conditions of the design. 
 

 
Figure 9. Stress flow: a) iteration 1 and b) Iteration 290. 

4.3 Bridge Pier 
 

 The bridge pier shown in Figure 10 is designed to support four concentrated loads of 2750 
kN transferred from four steel-concrete composite girders. The bridge pier is clamped on the 
foundation. An initial thickness of 1500 mm is assumed for this bridge pier. Young’s Modulus 
is 28600 MPaE =  and Poisson’s ratio is 0.15. 
 The optimal topology obtained and the strut-and-tie model proposed by 
(LIANG,STEVEN,2002), which used a method called PBO - Performance-Based 
Optimization, with 125-mm square, four-node, plane stress elements, are shown in Figure 11a 
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and Figure11b. Figure 11c shows optimal topology obtained by the present formulation, SESO, 
using a refined mesh 170x90, totaling 18,064 triangular finite elements, where the lighter areas 
represent ties. Table 1 shows the efforts obtained by (LIANG,STEVEN,2002) and by the 
present formulation for all the members shown in Figs. 11b and 11c. It shows a great similarity 
between the responses obtained by both procedures with same arrangement of bars originating 
from the strut-and-tie model as well as the efforts obtained at each member of the bridge pier, 
which can be designed and detailed following normative procedures.  
 Figure 11d shows the main horizontal reinforcement bars extended to the extremities in a 
range of 120 cm. Notes that the sum of the efforts in ties 1 and 2 is almost the same as that of 
tie 3. The vertical components of efforts in inclined ties are balanced by vertical reinforcement 
bars, as auxiliary reinforcements, which are not displayed in Figure 11d. 

 
Figure 10 - Design domain of the structure, (LIANG,STEVEN,2002), measurements in mm. 

 
Figure 11 – (a) Optimal topology (b) strut-and-tie model, proposed by (LIANG,STEVEN,2002), mm; (c) 

Optimal topology using the present model; (d) Proposed disposition of reinforcement for the present model 
(mm). 
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               Table 1 – Strut and tie forces (kN) for each member of the bridge 

Member Force 
(LIANG,STEVEN,2002) 

Force (present 
model) 

1 2,114 2,192 
2 1,162 1,195 
3 3,363 3,454 
4 -3,470 -3,589 
5 -3,919 -4,083 
6 -3,219 -3,482 
7 -3,363 -3,569 
8 -5,500 -5,964 

 
 
5. CONCLUSIONS 
 

Aiming to present a numerical formulation for the design of reinforced concrete structures 
under the focus of strut-and-tie model, a variant of topology optimization procedure, called 
Smooth Evolutionary Structural Optimization – SESO, was employed. The evolutionary 
procedure proposed, which smoothly removes the elements of  discretized body, is coupled to 
a FEM formulation in plane stress state analysis. A priori, an extended initial domain is defined 
and, iteratively, the method seeks an optimal topology configuration in which natural members 
are set indicated by struts and ties. Thus, efforts in the members may be evaluated to enable 
the design of the reinforcements needed for each section. The formulation  – SESO, in 
conjunction with a high order triangular finite element, presents robustness and efficiency to 
obtain optimal configurations. Three numerical examples demonstrated: a) good accuracy 
with strut-and-tie model configurations and the related effort values reported by other authors. 
The quantification and the disposition of reinforcements for a classic example described in 
international specific literature was also proposed;  
b) another major improvement obtained by  SESO formulation is the smoothing in classic TO 
problems, such as " checkerboard" in topology configurations of structures presented by  cited 
authors in this article; c) finally, we emphasize that SESO is an evolutionary numerical 
technique which can be used in future researches in TO problems that include more complex 
phenomena such as nonlinearities and/or dynamic analysis problems mainly due to  quality 
achieved, to optimal settings and also to low computational cost obtained in the problems 
presented that require intrinsically high computational cost. 
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