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� Simple sulfonation of biodiesel waste cake in mild conditions produces a new and active heterogeneous acid catalyst.
� The catalytic activity is comparable to H2SO4 and the catalyst can be reused several times.
� The catalyst combines a carbon-sulfonic acid surface with a very hydrophilic cellulose surface responsible for water removal.
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In this work, an efficient heterogeneous acid catalyst for the esterification of oleic acid was prepared
directly from oilseed cake by a simple sulfonation with concentrated H2SO4. Characterization by
SEM/EDS, IR, Raman, TG, TG/MS, potentiometric titration showed that treatment with H2SO4 for 1, 2
and 4 h at 120 �C partially dehydrates the cake to form a carbon/cellulose composite which is sulfonated
to produce strong ASO3H acidic sites. These surface sites were active for the esterification of oleic acid
with yields ca. 84%, 88% and 94% in the presence of 5, 10 and 20 wt% catalyst, respectively. These results
are comparable to 98% yield obtained with 1 wt% H2SO4 and higher than 75% observed for a high surface
area (880 m2 g�1) sulfonated activated carbon with similar number of ASO3H active groups. These results
are discussed in terms of two effects: (i) the number of sulfonic surface acidic groups and (ii) the presence
of a hydrophilic cellulosic fraction in the catalyst that adsorbs/traps water formed in the reaction shifting
the esterification equilibrium and improving the yield.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The transesterification reaction to produce biodiesel in the pres-
ence of basic homogeneous catalysts, e.g. KOH, NaOH or methox-
ides, has been extensively investigated in the last decade [1–4]. It
is well established that this alkaline catalyzed transesterification
is strongly affected by the presence of free fatty acids [4,5]. The
presence of these acids in concentrations higher than ca. 2% can
hinder the reaction and form surface active molecules with sig-
nificant complications in the purification step due to the formation
of stable emulsions [6].
An alternative route to deal with acidic oils is typically a previ-
ous esterification in the presence of H2SO4 as catalyst [7]. However,
sulfuric acid is corrosive and cannot be recovered [8,9]. In this
respect, the development of an active acid heterogeneous catalyst
to produce biodiesel using acidic oils is of considerable interest.
Heterogeneous catalysts can be easily removed and reused avoid-
ing the washing step which simplifies the process [10–13].

Different types of acidic materials, such as zeolites [14–16];
mesoporous silica [17–19], resins [20,21], oxides, e.g. zinc, titani-
um, strontium oxides [22–24], zirconia [25–28], supported carbon
nanotubes [29] and minerals such as a mordenite, kaolins, hal-
loysite [30–32] have been investigated as catalyst for the esterifi-
cation reaction. Also promising carbon based acid catalysts have
been prepared by pyrolysis followed by sulfonation with sulfuric
acid, using different precursors such as carbohydrates, lignin
[33,34], sugar cane bagasse [35], fibers [36], biochar [37], resin
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Fig. 1. Representation of the partial aromatization/sulfonation reaction of the biodiesel cake to produce the composite acid catalyst.
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[38], bean vermicelli [39], de-oiled canola [40], polymers [41],

D-glucose and sulfonated ordered mesoporous carbons [42–46].
These catalysts have shown great potential to replace the tradition-
al homogeneous H2SO4 catalysis.

In this work, we present a new and simple reaction procedure
to prepare an active heterogeneous catalyst from oilseed cake, a
biodiesel byproduct. Biodiesel cakes are solid materials obtained
after oil extraction by mechanical pressing, consisting mainly of
lignocellulosic fibers. The high concentrations of lignocellulosic
material, deficiency of proteins and the presence of some toxic
compounds strongly limit the use of some biodiesel cakes in feed
blends for ruminant animals [47,48]. The active acid catalyst can
be produced by the direct reaction of the cake with sulfuric acid
according to the simplified scheme shown in Fig. 1.

The reaction with concentrated sulfuric acid with the lignocel-
lulosic waste seems to promote surface reactions likely based on
dehydration with aromatization followed by sulfonation producing
the acid catalytic sites. The synthesis, characterization and use of
this heterogeneous acid catalyst for the esterification of oleic acid
in bench and pilot/ultrasound scale are described below.

2. Material and methods

Different biodiesel cakes obtained after extraction of sunflower,
castor, jatropha, curcas and macaw palm oil can be used as solid
lignocellulosic precursor. In a typical procedure the biodiesel cake
(1 g, ground to particles smaller than 2 mm and dried overnight at
80 �C) was mixed with concentrated H2SO4 (min 98%, 8 mL, Syn-
th�), under stirring, at room temperature for 1 h (sample CK1rt)
and at 120 ± 5 �C for 1, 2 and 4 h (samples CK1, CK2 and CK4,
respectively). Due to the exothermicity of the reaction, the process
should be well controlled in order to avoid overheating and dissi-
pate possible hot spots generated on the precursor surface. Caution
should be taken to control after the reaction the black solid was
extensively washed with water (until reaching pH � 7) and dried
at 80 �C for 12 h. Raman spectroscopy measurements were made
using a Senterra Raman spectrometer from Bruker using a CCD
detector, equipped with an optical microscope (OLYMPUS BX51)
and a laser at 633 nm. Thermal analyses (TG/DTG) were performed
in a Shimadzu 60H under nitrogen flow (100 mL min�1) and heat-
ing rate of 10 �C min-1 up to 900 �C. Scanning Electron Microscopy
(SEM/EDS) results were obtained in a Quanta 200 – FEG – FEI 2006.
FTIR spectra were obtained with KBr pellets in a Perkin Elmer FTIR
GX instrument. Potentiometric titration was carried out in an auto-
matic titrator Metrhomn 670 with a mixture of 25 mg of the sam-
ple dispersed in 0.01 mol/L of HCl and 0.1 mol/L of NaCl and
titrated with 0.010 mol/L of NaOH solution. The thermogravimet-
ric-mass spectrometry (TG–MS) analysis were performed in a
NETZSCH TGA model STA 449 F3, coupled to a mass spectrometer
NETZSCH Aëolos model QMS 403C. About 20 mg of the sample was
used an argon flow in the purge and protective lines, both at
20 mL/min, and with heating rate of 10 �C min�1 up to 900 �C. Gas-
eous species released from the sample during the heating were
drawn into an alumina tube fixed inside the furnace of the ther-
mobalance close to the sample, connected to a capillary silica col-
umn heated at 300 �C. The gases were then directly sucked into the
ionization chamber of the mass spectrometer.

The catalytic activity of the materials was tested in the esterifi-
cation of pure oleic acid in a round bottom flask fitted with a reflux
condenser at 60 �C for 2 h, with a ratio of 12:1 methyl alcohol:oleic
acid and different catalyst concentrations (5, 10 or 20 wt%, with
respect of oleic acid concentration). After the reaction the catalyst
(ca. 1 g) was washed with ethanol (30 mL at room temperature)
and dried at 80 �C for 4 h and tested in the reuse experiments.
The conversion of methyl esters was analyzed by the Ca 5a-40/
AOCS method and confirmed by 1H NMR. (RMN Bruker Advance
DPX 200). The signals used as references were of the methoxy
groups in the methyl ester (3.7 ppm) and of the a-carbonyl methy-
lene groups present in the oil and biodiesel (2.1 ppm) [49]. A
calibration curve from the 1H NMR spectra of oil/biodiesel mix-
tures using the 3.7 ppm and 2.3 ppm area ratio was obtained.

The catalytic activity of the materials was also investigated at a
pilot plant scale using an ultrasound promoted reactor (see Supple-
mentary Material – Fig. 1S) [50].

Commercially available activated carbon (from coconut shell,
880 m2 g�1, Sulfal) was used as a catalyst in a control reaction
study. The activated carbon was sulfonated using the same condi-
tions used for preparation of CK2 (sulfonation with concentrated
H2SO4 for 2 h at 120 �C under stirring and washed with water
(pH � 7) and dried at 80 �C for 12 h). The water absorption capacity
of the CK2 material was determined by the ‘‘tea bag’’ method by
weighing the water retained by the material [51].
3. Results and discussion

Biodiesel cakes from different sources, e.g. sunflower, castor,
jatropha curcas and macaw palm are composed mainly of lignocel-
lulosic fibers. In contact with sulfuric acid the lignocellulosic mate-
rial becomes completely black suggesting a strong dehydration
process to form polyaromatic/carbon on the surface. The reaction
with H2SO4 was carried out at room temperature for 1 h (sample
CK1rt) and at 120 �C for 1, 2 and 4 h (samples CK1, CK2 and CK4
respectively).

Raman analyses (Fig.2) for all the obtained solids after reaction
with sulfuric acid at 120 �C, showed two typical bands for carbona-
ceous materials: the D and the G band. The G band (at 1590 cm�1)
is typical for well-formed and organized graphitic structures
whereas the D band (near 1350 cm�1) indicates the presence of
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Fig. 2. Raman spectra of CK samples after reaction with concentrated H2SO4.
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Fig. 4. FTIR spectra of the materials CK, CK1rt, CK1, CK2, CK4.
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defects or amorphous carbon [52] confirming the carbonization
process of the cake material. These bands are not observed in the
material obtained at room temperature, CK1rt, indicating no sig-
nificant reaction with H2SO4. Moreover, due to exothermicity of
the reaction at 120 �C local temperatures might significantly raise
to generate hot spots which can contribute to the pyrolysis
process.

TG and DTG analyses (in N2) of the dry cake before reaction
(Fig. 3) showed a weight loss between 200 and 500 �C of ca. 80%
associated to the decomposition of lignocellulose to produce mainly
CO2, H2O and other small volatile molecules [53]. Similar TG profile
was obtained for the sample CK1rt. On the other hand, the materials
after reaction at 120 �C showed weight losses of only ca. 35–50%.
These smaller weight losses are likely related to the decomposition
of the remaining lignocellulose present in the materials.

FTIR spectra (Fig. 4) of the cake showed typical absorptions
observed in lignocellulosic materials. The intense band at
3340 cm�1 is assigned to the OAH stretching vibration, bands at
2893 and 1431 cm�1 characteristic of CAH stretching and bands
at 1190 and 1000 cm�1 are related to the saccharide structure
[54]. After acid dehydration a significant change in the IR spectrum
was observed with strong changes in the absorptions at 1190 and
1000 cm-1 and a narrowing of the band at 3340 cm�1. On the other
hand, new bands appeared, i.e. 1029 and 1160 cm�1, related to the
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Fig. 3. TG and DTG analyses of the materials CK, CK1rt, CK1, CK2, CK4, under
nitrogen atmosphere.
symmetric stretching vibrations of O@S@O in ASO3H groups
[38,55–57] and another at 620 cm�1 related to the bending vibra-
tion of –OH groups hydrogen bonded to -SO3H [57], mainly in CK1
and CK2 samples. In addition, intense absorptions are observed
between 1500 and 1800 cm�1 likely related to aromatic C@C
(�1600 cm�1) and C@O from various functional groups as carboxyl
(1729 cm�1) and quinone (1550–1680 cm�1) [58].

Fig. 5 shows the potentiometric titration curves of the CK cata-
lysts with NaOH. The number of acidic sites and pKa obtained are
displayed in Table 1.

It can be observed that the CK and CK1rt showed total groups
concentration of 1.2–1.7 mmol g�1, mainly as weak acidic groups.
As the cake was treated with H2SO4, more acidic groups were
formed, 3.0–3.3 mmol g�1. It can be observed that very acidic
groups are formed with pKa lower than 2. These groups are likely
related to ASO3H.

It is interesting to observe that longer reaction times, i.e. 4 h, led
to a decrease of the number of acidic groups. This is probably relat-
ed to the hydrolysis/decomposition of the surface groups [51].

SEM analyses (Fig. 6) suggests that the surface texture of the
cake does not change significantly after H2SO4 reaction. In fact,
the BET surface area (ca. 0 m2 g�1) and porosity of the precursor
CK also did not change after H2SO4 treatment. EDS data clearly
showed the presence of sulfur after reactions with H2SO4 due to
the sulfonation reaction.
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Fig. 5. Potentiometric titration of the materials CK, CK1rt, CK1, CK2, CK4.



Table 1
Results of potentiometric titrations for biodiesel cake, before and after reaction with H2SO4.

Sample Acidic functional groups (mmol g�1) Total of acids (mmol g�1)

(pKa < 2.5) 4 < pKa < 6 6 < pKa < 8 8 < pKa < 10

CK – 0.45 0.53 0.22 1.2
CK1rt – 0.47 0.04 1.20 1.7
CK1 0.43 0.83 0.34 1.36 3.0
CK2 0.68 0.91 0.74 0.93 3.3
CK4 – 1.00 0.51 1.10 2.6

Fig. 6. SEM/EDS images of the materials CK, CK1and CK2.
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The CK and CK2 samples were also characterized by TG/MS.
Fig. 7 shows the TG/MS profiles for some specific molecules. It is
possible to observe that the CK sample loses m/z 18 near 100 �C
related to adsorbed water. It can also be observed a water loss
150–350 �C related to cellulose decomposition. After sulfonation
for 2 h (CK2) the TG/MS profiles suggests the presence of some
adsorbed water but the cellulose decomposition signal is much less
intense, suggesting that H2SO4 has previously dehydrated the cake.
The profile for m/z 44 signal also decreases in intensity after sul-
fonation which is also likely due to deoxygenation reactions caused
by sulfuric acid. It is interesting to observe an intense m/z signal 64
related to SO2 produced in the sulfonated CK2 material which
suggests the presence of ASO3H groups.

The esterification of oleic acid was investigated using the sam-
ple CK2 since it showed the highest concentration of surface acid
sites. Different catalyst concentrations were used, i.e. 5, 10 and
20 wt% relative to oleic acid. The esterification yields after 2 h reac-
tion are shown in Fig. 8 (see SM Fig. S3 results for ester yields vs
reaction time).

It can be observed yields near 84, 88 and 94% in the presence of
5, 10 and 20 wt% of catalyst, respectively. It is interesting to
observe that the use of the classical homogeneous reaction with
1 wt% H2SO4 showed yield near 98%. Sulfuric acid (H2SO4) is very
acidic with pKa of �3 (first ionization) and 2 (second ionization)
[59] and potentially affords 2 H+ for the reaction. Catalyst concen-
tration of 1wt% H2SO4 corresponds to 20 mmol H+/100 g of oleic
acid. For the CK2 heterogeneous catalyst it can be considered as
catalytically active sites sulfonic acid surface groups which should
have pKa near between �2 and �3 (see for example benzene sul-
fonic acid with pKa of �2.8) [59]. According to titration results
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the surface groups with pKa < 2.5 corresponds to ca. 0.68 mmol g�1

for the catalyst CK2 (see Table 1). Therefore, 5, 10 and 20 wt% of
catalyst in the reaction corresponds to 3.4, 6.8 and 13.6 mmol
H+/ 100 g oleic acid. It is interesting to observe that the CK2 shows
similar catalytic activity with even lower concentration of catalytic
species. It is also interesting to compare the CK2 catalyst (near no
surface area ca. 0 m2 g�1) with a high surface area activated carbon
(890 m2 g�1) sulfonated under the same conditions (2 h at 120 �C
with H2SO4 concentrated). This catalyst showed total acid concen-
tration of 3.15 mmol g�1 however with lower esterification yield,
75%, compared with the CK2. Turnover number calculation after
2 h reaction showed for the catalyst CK2 (20%) 4.6 molester molsite

whereas the activated carbon AC-SO3 showed TON of 3.9 molester

molsite. This result suggests that some catalytic acid sites of the
activated carbon are not active for the reaction likely due to the
location inside the not accessible small micro pores.

Catalyst reuse was carried out with the sample CK2 at 10 wt%
under mechanical stirring without any treatment between the
reactions (Fig. 9).

After the first use the yield decrease from 88% to ca. 66%. In the
subsequent cycles there was a decrease of the 10% in ester yield
every cycle. The catalyst used in the 4th reaction was regenerated
by ethanol washing characterized by thermal analysis in nitrogen
atmosphere (see SM Fig. S4). It is possible to observe a weight loss
of 4% at temperatures below 150 �C, relating to the loss of water/al-
cohol adsorbed. In addition, the material still lost 35% weight at
temperatures between 150 and 300 �C. This loss can be attributed
to the contamination of the catalyst by oleic acid or biodiesel.
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Fig. 8. Esterification yield of oleic acid using the catalyst CK2, H2SO4, and sulfonated
commercial activated carbon (AC-SO3) by mechanical stirring after 2 h reaction.
Preliminary scale up experiments in ultrasonic reactor pro-
duced by the company Biominas (see reactor in SM, Fig. S1) were
carried out for the esterification of oleic acid (Fig. 10).

It can be observed for pilot scale ultrasound stirring similar
ester yields obtained by mechanical stirring bench experiments.
Reactions in the presence of 5, 10 and 20% showed similar behavior
as in mechanical stirring bench experiments (see SM – Fig. S5). The
20% CK2 heterogeneous catalyst showed esterification yield higher
than 90% which was comparable to 1% H2SO4 used as control.

The reuse of the catalyst CK2 (10%) under ultrasound stirring
showed a decrease from 86% to 81%, 56% and 48% for the 1st,
2nd, 3rd and 4th reuse.

Previous works used sulfonated carbons as heterogeneous cata-
lysts for the esterification of fatty acids. The carbons used were
produced by pyrolysis of different vegetable precursors such as
lignin [33], cane bagasse [35], mung bean [39], canola [40] and
sugars [60]. In all these studies, the precursors had to be previously
carbonized at high temperature (400–800 �C) under controlled
atmosphere and only after pyrolysis underwent sulfonation. The
obtained results showed only moderate yields of ca. 80% which
could be increased to higher than 90% at high temperatures and
prolonged reactions (5–24 h).

The catalysts prepared in this work did not need a preliminary
carbonization step and the sulfonation was carried out directly on
the lignocellulosic precursor waste under mild reaction conditions.
Another feature of the CK catalysts is that the carbonization and
sulfonation is only partial and part of the lignocellulosic structure
remains in the material as suggested by IR and TG analyses. This
lignocellulosic structure has a high concentration of surface OH
groups and shows a strong hydrophilic character. This hydrophilic
surface can have the effect of water adsorption which can be
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Fig. 11. Behavior of materials CK and CK2 in contact with a biphasic mixture of
water and hexane.
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beneficial for the esterification reaction since the water molecules
are directly involved in the reaction equilibrium.

In fact, water absorption experiments showed that the CK2 mate-
rial can absorb a high amount of water, i.e. 30 gH2O/gcatalyst. (see SM –
Fig. S6). This water absorption can be a potential advantage over the
homogeneous H2SO4 catalyst that does not have any effect on the
H2O formed in the reaction. On the other hand, the carbonized sur-
face has a more hydrophobic character which is important for the
interaction/interface with the oil or oleic acid. Fig. 11 shows the
behavior of materials CK (cake without sulfonation) and CK2 in
the presence of water/hexane two phases mixture. It is possible to
observe that the cake CK, before sulfonation, presents a hydrophilic
character and immediately goes to the aqueous phase. For the CK2
(after the sulfonation) the material initially stays at the interface
water/hexane suggesting an amphiphilic character due to the com-
bination of hydrophilic cellulose fraction with the carbonized sur-
face. However, after few minutes the black solid migrates to the
aqueous phase due to the wetting of the hydrophilic surface. The
reaction medium is an emulsion of the hydrophobic oleic acid and
the hydrophilic methanol. An amphiphilic catalyst is very important
to contact these reactants and promote the reaction. The hydrophilic
surface is important to interact with the polar methanol.
4. Conclusion

Cakes obtained after oil extraction can be converted by a simple
process of aromatization/sulfonation with H2SO4 into a new type of
heterogeneous catalyst for the esterification of free fatty acids. The
produced catalyst showed activities comparable to the homoge-
neous H2SO4 catalyst and could be recovered and reused several
times. The catalytic activity is discussed in terms of sulfonic groups
(ASO3H) combined with an amphiphilic surface composed of carbon
(more hydrophobic) which interacts well with the fatty acid and
non-decomposed cellulose (more hydrophilic) which is responsible
for water adsorption during the esterification reaction. Preliminary
tests, showed that this heterogeneous catalyst can also be used in
the production of biodiesel from low quality/high free acidity oils
with the important advantage of eliminating the washing step.
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