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Abstract

In this work, we devise a chaos-based secret key cryptography scheme for digital communication where the

encryption is realized at the physical level, that is, the encrypting transformations are applied to the wave signal instead

to the symbolic sequence. The encryption process consists of transformations applied to a two-dimensional signal

composed of the message carrying signal and an encrypting signal that has to be a chaotic one. The secret key, in this

case, is related to the number of times the transformations are applied. Furthermore, we show that due to its chaotic

nature, the encrypting signal is able to hide the statistics of the original signal.

� 2004 Elsevier Ltd. All rights reserved.
In this letter, we present a chaos-based cryptography scheme designed for digital communication. We depart from

the traditional approach where encrypting transformations are applied to the binary sequence (the symbolic sequence)

into which the wave signal is encoded [1]. In this work, we devise a scheme where the encryption is realized at the

physical level, that is, a scheme that encrypts the wave signal itself.

Our chaos-based cryptographic scheme takes advantage of the complexity of a chaotic transformation. This com-

plexity is very desirable for cryptographic schemes, since security increases with the number of possibilities of

encryption for a given text unit (a letter for example). One advantage of using a chaotic transformation is that it can be

implemented at the physical level by means of a low power deterministic electronic circuit which can be easily etched on

a chip. Another advantage is that, contrary to a stochastic transformation, a chaotic one allows an straightforward

decryption. Moreover, as has been shown elsewhere [2], chaotic transformations for cryptography, enables one to

introduce powerful analytical methods to analyze the method performance, besides satisfying the design axioms that

guarantees security.

In order to clarify our goal and the scheme devised, in what follows, we initially outline the basic ideas of our

method. Given a message represented by a sequence fy0i g
l
i¼1, and a chaotic encrypting signal fx0i g

l
i¼1, with yi and xi 2 R

and xiþ1 ¼ GðxiÞ, where G is a chaotic transformation, we construct an ordered pair ðx0i ; y0i Þ. The ith element of the

sequence representing the encrypted message is the y component of the ordered pair ðxni ; yni Þ, obtained from F n
c ðx0i ; y0i Þ.

The function Fc : R
2 ! R2 is a chaotic transformation and n is the number of times we apply it to the ordered pair. The

nth iteration of ðx0i ; y0i Þ, has no inverse if n and x0i are unknown, that is, y0i can not be recovered if one knows only

F n
c ðxi; yiÞ. As it will be clear further, this changing of initial condition is one of the factors responsible for the security of

the method.

Now we describe how to obtain the sequence fyigli¼1 by means of the sampling and quantization methods. These

methods play an essential role in the field of digital communication, since they allow us to treat signals varying con-

tinuously in time as discrete signals. One instance of the use of continuous in time signals is the encoding of music or
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speech where variations in the pressure of the air are represented by a continuous signal such as the voltage in an electric

circuit. In the sampling process, a signal varying continuously in time is replaced by a set of measurements (samples)

taken at instants separated by a suitable time interval provided by the sampling theorem [3,4]. The signals to which the

sampling theorem applies are the band limited ones. By a band limited signal, we mean a function of time whose

Fourier transform is null for frequencies f such that jf jPW . According to the sampling theorem, it is possible to

reconstruct the original signal from samples taken at times multiple of the sampling interval TS 6 1=2W . Thus, at the

end of the sampling process, the signal is converted to a sequence fs01; s02; . . . ; s0lg of real values, which we refer to as the s
sequence. After being sampled the signal is quantized. In this process, the amplitude range of the signal, say the interval

½a; b�, is divided into N subintervals Rk ¼ ½ak ; akþ1Þ, 16 k6N , with a1 ¼ a, akþ1 ¼ ak þ dk , aNþ1 ¼ b, where dk is the

length of the kth subinterval. To each Rk one assigns an appropriate real amplitude value qk 2 Rk , its middle point for

example. A new sequence, the y sequence, is generated by replacing each s0i by the qk associated to the Rk region to

which it belongs. So, the y sequence fy01 ; y02 ; . . . ; y0l g is a sequence where each y0i 2 R takes on values from the set

fq1; . . . ; qNg. In traditional digital communication, each member of the y sequence is encoded into a binary sequence of

length log2 N . Thus, traditional cryptographic schemes, and even recent proposed chaotic ones [1], transforms this

binary sequence (or any other discrete alphabet) into another binary sequence, which is then modulated and trans-

mitted. In our proposed scheme, we transform the real y into another real value, and then modulate this new y value in
order to transmit it. This scheme deals with signals rather than with symbols, which implies that the required trans-

formations are performed at the hardware or physical level. Instead of applying the encrypting transformations to the

binary sequence, we apply them to the y0 sequence, the sequence obtained by sampling and quantizing the original wave

signal.

Suppose, now, that the amplitude of the wave signal is restricted to the interval [0,1]. The first step of the process is to

obtain the encrypting signal, a sequence fx01; x02; . . . ; x0lg, 0 < x0i < 1. As we will show, this signal is obtained by either

sampling a chaotic one or by a chaotic mapping. The pair ðx0i ; y0i Þ localizes a point in the unit square. In order to encrypt

y0i , we apply the baker map to the point ðx0i ; y0i Þ to obtain ðx1i ; y1i Þ ¼ ð2x0i � b2x0i c; 0:5ðy0i þ b2x0i cÞÞ, where b2x0i c is the

largest integer equal to or less than 2x0i . The encrypted signal is given by y1i , that is, 0:5ðy0i þ b2x0i cÞ. It is important to

notice that y1i can take 2N different values instead of N , since each y0i may be encoded as either 0:5 � ðy0i Þ < 0:5 or

0:5 � ðy0i þ 1Þ > 0:5, depending on whether x0i falls below or above 0:5. So, in order to digitally modulate the encrypted

signal for transmission, 2N pulse amplitudes are necessary, with each binary block being encoded by two different

pulses. Therefore, our method has an output format that can be straightforwardly used in digital transmissions.

Suppose, for example, that N ¼ 2, and we have q1 ¼ 0:25 and q2 ¼ 0:75. If s0i < 0:5 then y0i ¼ 0:25 and if we use n ¼ 1,

we have y1i ¼ 0:125 if x0i < 0:5 or y1i ¼ 0:625 if x0i P 0:5. On the other hand, if s0i > 0:5, then y0i ¼ 0:75 and we have

y1i ¼ 0:375, if x0i < 0:5 or y1i ¼ 0:875 if x0i P 0:5. So, the encrypted signal takes on values from the set

f0:125; 0:375; 0:625; 0:875g, where the first and third values can be decrypted as 0.25 in the non-encrypted sig-

nal while the second and the forth as 0.75. In a general case, where we apply n iterations of the mapping, y1i can

assume 2nN different values. In this case, if one wants to digitally transmit the cipher text, one can encode every

cipher text unit using a binary block of length log2ð2nNÞ and then modulate this binary stream using 2nN pulse

amplitudes. Thus, the decryption is straightforward if one knows how many times the baker map was applied during the

encryption.

If the baker transformation (function Fc) is applied n times, there are, for each plain text unit, 2nN possible cipher

text units. In this case, the complexity of the ciphertext, that is, its security, can have its upper bound estimated by the

Shannon complexity Hs which is the logarithm of the possible number of ciphertext units, produced after the baker’s

map have been applied n times. So, Hs ¼ n logð2Þ þ logðNÞ. We see that n is much more important for security reasons

than N . So, if one wishes to improve security, one could implement a dynamical secret key schedule for n. By this we

mean that, based on some information of the encrypted trajectory ðx1i ; y1i Þ, the value of n could be changed whenever a

plain text unit is encrypted. If one allows only m values for n, the number of possible cipher text units would be given by

Nm
Qm

j¼1 2
nj and the complexity of the cipher text would be

Pm
j¼1 nj log 2þ m logN , which can be very high, even for

small m. Thus, without knowing the number n of applications of the baker map during the encryption, the decryption

renders highly improbable. In fact, n is the secret key of our cryptographic scheme and we can think of the sequence

fx0i g as a dynamical secret key schedule for the x-component in the initial condition represented by the ordered pair

ðx0i ; y0i Þ.
The tools necessary to perform the security analysis are provided by the information theory. In this context,

information sources are modelled by random processes whose outcome may be either discrete or continuous in time.

Since major interest, and ours too, is in band limited signals, we restrict ourselves to the discrete case, where the source

is modelled by a discrete time random process. This is a sequence fy0i g
l
i¼1 in which each y0i assumes values within the set

A ¼ fq1; q2; . . . ; qNg. This set is called the alphabet and its elements are the letters. To each letter is assigned a

probability mass function pðqjÞ ¼ P ðy0i ¼ qjÞ, that gives the probability with which the letter is selected for transmission.
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In cryptography, one deals with two messages: the plain text fy01 ; y02 ; . . . ; y0l g and the encrypted or cipher text

fy11 ; y12 ; . . . ; y1l g, where y1i assumes values from the same set A if N levels are used in quantizing the incoming signal. A

secure cryptographic scheme must be such that no information about the plain text can be obtained from the cipher

text. This requirement is quantified by means of the mutual information Iðy0; y1Þ [5,6], which is defined as
Iðy0; y1Þ ¼
X

i;j

pðqi; qjÞ log
pðqi; qjÞ
pðqiÞpðqjÞ

; ð1Þ
where pðqi; qjÞ is the joint probability of occurrence of qi in the plain text and qj in the cipher text. This probability may

be written as
pðqi; qjÞ ¼ pðqiÞpðqjjqiÞ; ð2Þ
where pðqjjqiÞ is the conditional probability that qi in the plain text is encrypted as qj in the cipher text. Perfect security,

according to Shannon, means Iðy0; y1Þ ¼ 0, which implies pðqi; qjÞ ¼ pðqjÞpðqiÞ, that is pðqjjqiÞ ¼ pðqjÞ or

pðqijqjÞ ¼ pðqiÞ. Thus, perfect security is guaranteed if the plain text and cipher text are statistically independent [5], that

is, given a qi in the plain text it may be encrypted as any letter in A with a uniform probability distribution. It must be

so if one wishes to prevent the statistics of the plain text from being present in the cipher text. Indeed, security in our

scheme is based on the fact that chaotic systems have an invariant probability density, which implies that whatever is

the type of message being encrypted by the chaotic transformation, the encrypted text presents only statistical prop-

erties of the public chaotic transformation.

Note that increasing the number of iterations n by m, the number of elements in the alphabet of the ciphertext is

increased by 2m. For n sufficiently large and n � N , these elements can be understood as a coarse graining of the domain

½0; 1� of the Bernoulli shift, and the probability function of this discrete set is then approximately equal to the invariant

probability density of the Bernoulli shift. Therefore, for large n, an encrypted letter yni of the ciphertext is independent of
the next letter yniþ1, likewise the nth iterate of a point, by the Bernoulli shift, is independent of this point.

If, for example, we use N ¼ 2 quantization levels, and restrict the signal amplitude range to the interval ð0; 1Þ,
s0i < 0:5 gives y0i ¼ q1 while s0i P 0:5 gives y0i ¼ q2. The encrypted value 0:5 � ðy0i þ b2x0i cÞ, after quantization at the

receiver, represents a q1 if x0 < 0:5 or a q2 otherwise. If the encrypting signal fx01; x02; . . . ; x0lg is identically and uniformly

distributed (over the interval ½0; 1�), then the encrypted values y1i will be decoded at the receiver as either q1 or q2 with
the same probability, independently of the letter represented by y0i . Although we have used N ¼ 2 and n ¼ 1 as

example, the above analysis is valid for any N and any n. The security of the method depends only on the statistical

properties of the encrypting signal and on the fact that the cryptanalyst does not know n, the number of times the baker

transformation is applied during the encrypting process, even if this process is known.

An encrypting sequence satisfying the requirements for perfect security can be obtained by a chaotic mapping.

Consider, for example, the Bernoulli shift defined as
x0iþ1 ¼ 2x0i � b2x0i c: ð3Þ
To illustrate how the statistics of the plain text is hidden by the encrypting signal, we consider as the sampled signal, the

constant sequence s0i ¼ 0:1 for i ¼ 1; . . . ; l. In this case, the corresponding y0 sequence is a sequence of q1s for N ¼ 2.

The encrypted sequence is shown in Fig. 1. The values 0.125 and 0.625 are the values that y1i takes on. These values are
replaced by q1 and q2, respectively, if the N ¼ 2 levels are used by the receiver in quantizing the incoming analog signal.

Thus, the cipher text looks like a random sequence in which q1s and q2s appear with the same frequency, which is totally

different, in statistical terms, from the message to be encrypted that is formed by the constant sequence. Due to the

chaotic character of the encrypting signal, any encrypted sequence has this character too, independently of the char-

acteristics of the original sequence.

The chaotic dynamical system we used to generate the encrypting signal, the Bernoulli shift, is an idealized one. In

order to implement the cryptographic system herein introduced, we use as encrypting signal, a chaotic one generated by

a physical process. The Lorenz system [7,8], given by dx=dt ¼ rðy � xÞ, dy=dt ¼ rx� xz� y and dz=dt ¼ xy � bz fulfills
this task, since these equations model the behavior of electric circuits, where the signals xðtÞ, yðtÞ and zðtÞ represent

voltages [9]. For the parameter values r ¼ 10, b ¼ 8=3 and r ¼ 28, the Lorenz system exhibits chaotic behavior. Using

these values for the parameters and the initial conditions xð0Þ ¼ 10:0, yð0Þ ¼ 0:0 and zð0Þ ¼ 5:0, we take samples of yðtÞ,
1 unit of time apart starting at t ¼ 20, in order to obtain the encrypting signal. The result of using this sampled signal as

the encrypting one for the y sequence y0i ¼ 0:1 is shown in Fig. 2. Again, the constant in time signal is mapped into a

seemingly random one, satisfying the requirements for perfect security.

Note that the presence of a finite correlation between x0i and x0iþ1 (both generated by the Lorenz system) does not

imply a finite correlation between the encrypted signals yni and yniþ1, since each of the encrypted signals yni and yniþ1 are
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Fig. 1. Encrypted signal y1i obtained by n ¼ 1 iteration of the baker map (function Fc) applied to the ordered pair (x0i ; y
0
i ), where y0i

represents a constant message y0i ¼ 0:25 of length l ¼ 100. We use the Bernoulli shift map to generate the encrypting signal x0i . Note

that y1i looks like a random sequence of two events, despite the fact that the message is constant.
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Fig. 2. Encrypted signal y1i obtained by n ¼ 1 iteration of the baker map (function Fc) applied to the ordered pair (x0i ; y
0
i ), where y0i

represents a constant message y0i ¼ 0:25 of length l ¼ 100. We use a sampling of the yðtÞ coordinate of the Lorenz system as the

encrypting signal x0i . Note that y1i looks like a random sequence of two events, despite the fact that the message is constant.
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obtained by repeated iterations of the baker map and thus they can be seen as products of a pseudo-random number

generator.

We have shown, that by taking advantage of the sampling and quantization techniques used in converting analog

signals into digital ones, a secret key chaotic cryptographic scheme is accomplished. The encryption is realized at the

physical level, that is, the encryption transformations are applied to the signal instead to the symbolic sequence. The

secret key, in this case, is the number n of times a chaotic transformation is applied during the encryption. In addition,

the resulting encrypted signal can be digitally transmitted. We have seen that the security of the system lies on the fact

that the encrypting signal is a chaotic one, which implies that only its statistical properties are present in the encrypted

text. This kind of signal can be obtained, for example, from electric circuits that are modelled by the Lorenz system,

making feasible the implementation of the system.

A related issue is how noise affects the proposed scheme, since it seems to be noise sensitive for large values of N and

n. In fact, as shown in [10], information encoded by chaotic signals are fully recovered when there is noise in the

channel, and small parameter differences between the encoder and the decoder do not affect a full recovering of

the information. This question, the related one concerning error correction devices, and how to improve the security of

the method will be addressed in the future.
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