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Origin of trigger-angle dependence of di-hadron correlations
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The STAR Collaboration reported measurements of di-hadron azimuthal correlations in medium-central
Au + Au collisions at 200A GeV, where the data are presented as a function of the trigger particle’s azimuthal
angle relative to the event plane φs . In particular, it is observed that the away-side correlation evolves from a single-
to a double-peak structure with increasing φs . In this work, we present the calculated correlations as functions
of both φs and the particle transverse momentum pT , using the hydrodynamic code NeXSPheRIO. The results
are found to be in reasonable agreement with the STAR data. We further argue that the above φs dependence of
the correlation structure can be understood in terms of the one-tube model, as due to an interplay between the
background elliptic flow caused by the initial state global geometry and the flow produced by fluctuations.
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I. INTRODUCTION

Di-hadron correlations in ultrarelativistic heavy-ion colli-
sions provide valuable information on the properties of the
created medium. The correlated hadron yields at intermediate
and low pT , when expressed in terms of the pseudorapidity
difference �η and azimuthal angular spacing �φ, are strongly
enhanced [1–10] compared to those at high pT [11,12]. The
structure in the near side of the trigger particle is usually
referred to as a “ridge”. It has a narrow �φ located around
zero and a long extension in �η, and therefore it is tied
to long-range correlation in pseudorapidity. The away-side
correlation broadens from peripheral to central collisions, and
may exhibit a double peak in �φ for certain centralities and
particle pT ranges. The latter is usually called a “shoulder”.
These structures, for the most part, can be successfully
interpreted as consequence of collective flow [13–18] due to
the hydrodynamical evolution of the system.

Recently, efforts have been made to investigate the trigger-
angle dependence of di-hadron correlations. The STAR Col-
laboration reported measurements [19] of di-hadron azimuthal
correlations as a function of the trigger particle’s azimuthal
angle relative to the event plane, φs = |φtr − �EP| at different
trigger and associated transverse momenta pT . The data are
for 20%–60% mid-central Au + Au collisions at 200A GeV. In
a more recent study [20], the correlation was further separated
into “jet” and “ridge”, where the ridge yields are obtained by
considering hadron pairs with large |�η|. In this procedure,
one assumes that the ridge is uniform in �η while jet yields
are not. This assumption is quite reasonable when one takes
into account the measured correlation at low pT without a
trigger particle [21]. In their work, all correlated particles
at |�η| > 0.7 are considered to be part of the ridge. It was
observed that the correlations vary with φs in both the near
and away sides of the trigger particle. The ridge drops when
the trigger particle goes from in plane to out of plane and,
moreover, the correlations in the away side evolve from single
to double peak with increasing φs .

Owing to the |�η| cut, it is quite probable that these data
mainly reflect the properties of the medium. If this is the case,
the main features of the observed trigger-angle dependence of

di-hadron correlations should be reproduced by hydrodynamic
simulations, as hydrodynamic models have been shown capa-
ble of reproducing many important characteristics in collective
flow [15,22–34]. The NeXSPheRIO code provides a good
description of observed hadron spectra [35], collective flow
[29,30,36,37], elliptic flow fluctuations [38], and two-pion
interferometry [39]. In addition, it is known to reproduce the
structures in di-hadron long-range correlations [13]. In our
previous studies of the ridge [14,40,41], we obtained some
of the experimentally known properties such as centrality
dependence and pT dependence. It is therefore interesting
to see whether the model is further able to reproduce the
observed trigger-angle dependence of the data. Moreover, it
is intriguing to identify the underlying physical origin behind
the phenomenon and numerical simulations. We, therefore,
propose an intuitive explanation for the mechanism of the
trigger-angle dependence of the ridge structures based on
hydrodynamics. This is the main purpose of the present study.

The paper is organized as follows. In the next section,
we carry out a hydrodynamic study on the trigger-angle
dependence of di-hadron correlations by using the NeX-
SPheRIO code. The calculations are done both with and
without the pseudorapidity cut |�η| > 0.7 . Numerical results
are presented for different angles of trigger particles and at
different associated-particle transverse momentum, and they
are compared with STAR data [19,20]. We try to understand
the origin of the observed features in Sec. III, by making use
of an analytic parametrization of the one-tube model [14]. It is
shown that the main features of the experimentally observed
φs dependence can be obtained by the model, where one takes
into account the interplay of the flow harmonics caused by a
peripheral energetic tube and those from the bulk background.1

In our approach, the background modulation is evaluated by
use of both cumulant and the zero yield at minimum (ZYAM)
methods, and very similar results are obtained. Section IV is
devoted to discussions and conclusions.

1A preliminary report of this discussion has been presented by Y.H.
at the ISMD2011 meeting [42].
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II. NUMERICAL RESULTS OF NEXSPHERIO

Here, we present the numerical results on di-hadron
azimuthal correlation, using the hydrodynamic code NeX-
SPheRIO. This code uses initial conditions (ICs) provided
by the event generator NeXuS [43,44], solves the relativistic
ideal hydrodynamic equations with the SPheRIO code [45]. By
generating many NeXuS events, and solving independently the
equations of hydrodynamics for each of them, one takes into
account the fluctuations of ICs on an event-by-event basis. At
the end of the hydrodynamic evolution of each event, a Monte
Carlo generator is employed to achieve hadron emission,
in the Cooper-Frye prescription, and then hadron decay is
considered.

To evaluate di-hadron correlations, we generate
1200 NeXuS events in the 20%–60% centrality window
for 200A GeV Au-Au collisions. At the end of each event,
the Monte Carlo generator is invoked for decoupling,
from 300 times for more central to 500 times for more
peripheral collisions. Here we emphasize that there is no
free parameter in the present simulation, since the few
existing ones have been fixed in earlier studies of η and pT

distributions [38]. To subtract the combinatorial background,
we evaluate the two-particle cumulant. In order to make
different events similar in character, the whole centrality
window is further divided equally into four smaller centrality
classes, from 20%–30% to 50%–60%. Then one picks a
trigger particle from one event and an associated particle from
a different event to form a hadron pair. Averaging over all
the pairs within the same subcentrality class, one obtains the
two-particle cumulant. Background modulation is evaluated

and subtraction is done within each subcentrality class, and
then they are summed up together at the end. We calculated
cases both with and without the pseudorapidity cut. In the first
case, all hadron pairs are included. Then in the latter case,
only hadron pairs with |�η| > 0.7 are considered as was
done in the STAR analysis [19,20]. Note that in our approach,
the ICs constructed by “thermalizing” the NeXus output do
not explicitly involve jets, but they are not totally forgotten in
the ICs as they manifect themselves as high transverse fluid
velocity in some localized region (see, for instance, Fig. 2 of
Ref. [40]). These regions with high transverse velocity, if not
smeared out during hydrodynamic evolution, will show up as
a part of a near-side jet-like peak in the resulting two-particle
correlation. Owing to its different physical origin, it is not
correlated with the ridge and shoulder structures due to
initial geometrical irregularities. The implementation of
the pseudorapidity cut in our calculation should reduce the
correlation due to this effect. In Fig. 2, the high-pT trigger
particles in general must come from the thermalized medium
and so may be correlated with other medium particles: this
happens when the trigger and associated particles are emitted
from the same high-density tube.

The numerical results are shown in Fig. 1 (without the
�η cut) and Fig. 2 (with the |�η| > 0.7 cut) as solid lines.
They are, respectively, compared with the STAR data [19,20]
shown as filled circles and flow systematic uncertainties in
histograms. Since the effect of the �η cut is to remove
most contributions from jet particles, this makes Fig. 2
a better place for comparison between the data and the
hydrodynamic model. From Figs. 1 and 2, one sees that the
data are reasonably reproduced by the NeXSPheRIO code.
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FIG. 1. (Color online) The subtracted di-hadron correlations as a function of �φ for different φs = φtrig − φEP and pa
T with 3 < p

trig
T <

4 GeV in 20%–60% Au + Au collisions. Calculations are done without any |�η| cut. The φs range increases from 0–15◦ (left column) to
75◦–90◦ (right column); the pa

T range increases from 0.15–0.5 GeV (top row) to 1.5–2 GeV (bottom row). NeXSPheRIO results as solid curves,
are compared with STAR data as filled circles [19]. The histograms indicate the systematic uncertainties from flow subtraction.
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FIG. 2. (Color online) The subtracted di-hadron correlations as a function of �φ for different φs = φtrig − φEP and pa
T with 3 < p

trig
T <

4 GeV and |�η| > 0.7 in 20%–60% Au + Au collisions. The φs range increases from 0–15◦ (left column) to 75◦–90◦ (right column); the pa
T

range increases from 0.15–0.5 GeV (top row) to 2–3 GeV (bottom row). NeXSPheRIO results as solid curves are compared with STAR data
as filled circles [20]. The shaded area between two histograms indicates the systematic uncertainties from flow subtraction.

Correlations decrease, especially in the near side and with
the |�η| > 0.7 cut, when φs increases. For high-pT triggers,
this was thought to be related to the path length that the
parton traverses [20]. Here, we see that this feature is also
presented by intermediate- and low-energy particles, and is
reproduced well in a hydrodynamic approach. As expected,
the NeXSPheRIO results fit better for low momentum and the
deviations increase at higher momentum; and the height of
the peaks decreases with increasing transverse momentum of
the associated particles. The calculated ridge structure in �φ
varies, especially on the away side, with trigger direction. For
an in-plane trigger, the simulation results exhibit a one-peak
structure, which is broader in comparison with the near-side
peak. The away-side structure changes continuously from one
peak in the in-plane direction (φs = 0) to a double peak in
the out-of-plane direction (φs = π/2). This characteristic is
manifested particularly for larger transverse momentum of the
associated particle. All these features are in agreement with
the STAR measurements.

The magnitude of correlations in Fig. 2 is globally smaller
than those in Fig. 1. This is because due to the �η cut in the
former case, the total yields of associated particles are reduced.
If one takes into consideration only the overall shape of the
correlations, one can see that the hydrodynamic results in both
plots are quite similar; Fig. 2 can be approximately obtained if
one scales the plots in Fig. 1 by a factor of 0.6. The above results
can be understood as a consequence of approximate Bjorken
scaling in the hydrodynamic model. On one hand, the �η
cut effectively removes a portion of associated particles with
selected pseudorapidity difference from that of the trigger par-
ticle. On the other hand, since the correlation is divided by the

total trigger-particle number, the reduction of this does not af-
fect the normalization. It would also be interesting to have var-
ious centrality windows for the comparison rather than a large
window of 20%–60%, since in the most peripheral ones, matter
is more diluted and, again, may not be completely thermalized.

III. THE ORIGIN OF TRIGGER-ANGLE DEPENDENCE
OF THE RIDGE STRUCTURE

As pointed out, the motivation to introduce the |�η|
cut was to separate ridge from jet structures; therefore
the measured ridge correlations are expected to reflect the
properties of the medium. In the previous section, we showed
that hydrodynamic simulations are able to reproduce the
main features observed experimentally. Now, how is this
effect produced? In a previous study [46], we tried to clarify
the origin of the effect by using the one-tube model [14]
adapted to noncentral collisions. Full details of the model
can be found in [14,18,40,41,47]. Here we outline only the
main thoughts. In the one-tube model, or more generally
the peripheral-tube model (allowing more than one tube),
one treats the initial energy profile on a transverse plane
as a superposition of peripheral high-energy tubes on top
of the background, which can be thought of as the average
distribution. The problem is further simplified by studying the
transverse hydrodynamic expansion of a system consisting of
only one peripheral tube with the assumption of longitudinal
invariance. As the high-energy tube deflects the collective
flow generated by the background, the resulting single-particle
azimuthal distribution naturally possesses two peaks. They
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eventually give rise to the desired ridge and shoulder structures.
In Ref. [46], we took as background the average energy-
density distribution obtained with NeXSPheRIO, which has an
elliptical shape for noncentral collisions. There is a peripheral
tube on top of the background and its azimuthal position varies
from event to event. As shown there, the di-hadron correlation
obtained from such a simple IC configuration does reproduce
the main features of the data.

Although the ICs of the problem were greatly simplified
through such an approach, the underlying physical mechanism
of the obtained features was still not clear. In order to identify it
more transparently, we further simplify it using an approximate
analytical model. The derivation of the results relies on the
following three hypotheses:

(i) The collective flow consists of contributions from the
background and those induced by a peripheral tube.

(ii) A small portion of the flow is generated due to the
interaction between background and the peripheral tube
and, therefore, the flow produced in this process is
correlated with the tube.

(iii) Event-by-event multiplicity fluctuations are further
considered as a correction that sits atop of the above
collective flow of the system.

Let us comment briefly on these hypotheses. Based on
the idea of the one-tube model, a small portion of the back-
ground flow is deflected by the peripheral tube; extra Fourier
components of the flow are generated by this process. The
event planes of these extra flow harmonics are consequently
correlated with the location of the tube, as stated in the second
hypothesis. Since the contribution from the tube is small, we
will treat it perturbatively, considering the resultant flow a
superposition of the background flow and the one produced
in the tube-background interaction as described above. We
believe that, at least the qualitative behavior of the results
will remain valid also in more realistic cases. Here, we are
considering just one tube as a fluctuation. However, in the limit
of small perturbations, it is quite straightforward to generalize
our results to the case of N tubes. There are many possible
sources for fluctuations, such as flow fluctuations, multiplicity
fluctuations, etc., we will consider only multiplicity fluctua-
tions in this simple model as assumed in the third hypothesis.
As will be shown below, this turns out to be enough to derive
the observed feature in di-hadron correlations.

Using the hypotheses stated above, we write down the one-
particle distribution as a sum of two terms: the distribution of
the background and that of the tube:

dN

dφ
(φ, φt ) = dNbgd

dφ
(φ) + dNtube

dφ
(φ, φt ), (1)

where

dNbgd

dφ
(φ) = Nb

2π

[
1 + 2vb

2 cos(2φ)
]
, (2)

dNtube

dφ
(φ, φt ) = Nt

2π

∑
n=2,3

2vt
n cos(n[φ − φt ]). (3)

Since the background is dominated by the elliptic flow in
noncentral collisions, as observed experimentally, in Eq. (2)

we consider the simplest case, by parametrizing it with the
elliptic flow parameter vb

2 and the overall multiplicity, denoted
by Nb. As for the contributions from the tube, for simplicity,
we assume they are independent of its angular position φt and
take into account the minimal number of Fourier components
needed to reproduce the two-particle correlation due to the sole
existence of a peripheral tube in an isotropic background (see
the plots of Fig. 2 of Ref. [18], for instance). Therefore, only
two essential components vt

2 and vt
3 are retained in Eq. (3). We

note here that the overall triangular flow in our approach is gen-
erated only by the tube, i.e., v3 = vt

3, and so its symmetry axis
is correlated with the tube location φt . The azimuthal angle φ of
the emitted hadron and the position of the tube φt are measured
with respect to the event plane �2 of the system. Since the flow
components from the background are much bigger than those
generated by the tube, as discussed below, �2 is essentially
determined by the elliptic flow of the background vb

2 .
Following the methods used by the STAR experiment

[19,20], the subtracted di-hadron correlation is given by〈
dNpair

d�φ
(φs)

〉
=

〈
dNpair

d�φ
(φs)

〉proper

−
〈
dNpair

d�φ
(φs)

〉mixed

,

(4)

where φs is the trigger angle (φs = 0 for an in-plane and φs =
π/2 for an out-of-plane trigger). In the one-tube model,〈

dNpair

d�φ

〉proper

=
∫

dφt

2π
f (φt )

dN

dφ
(φs, φt )

dN

dφ
(φs + �φ, φt ),

(5)

where f (φt ) is the distribution function of the tube. We will
take f (φt ) = 1, for simplicity.

The combinatorial background 〈dNpair/d�φ〉mixed can be
calculated by using either the cumulant or the ZYAM method
[48]. As shown below, both methods lend very similar con-
clusions in our model. Here, we first carry out the calculation
using cumulants, which gives〈

dNpair

d�φ

〉mixed(cmlt)

=
∫

dφt

2π
f (φt )

∫
dφ′

t

2π
f (φ′

t )
dN

dφ
(φs, φt )

dN

dφ
(φs + �φ, φ′

t ).

(6)

Notice that, in the averaging procedure above, integrations
over both φt and φ′

t are required in the mixed events, whereas
only one integration over φt is enough for proper events. This
will make an important difference between the two terms in
the subtraction of Eq. (4).

Using our simplified parametrization, Eqs. (1)–(3) and, by
averaging over events, one obtains〈

dNpair

d�φ

〉proper

=
〈
N2

b

〉
(2π )2

[
1 + 2vb

2 cos(2φs)
]{

1 + 2vb
2 cos[2(�φ + φs)]

}

+
(

Nt

2π

)2 ∑
n=2,3

2
(
vt

n

)2
cos(n�φ) (7)
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and〈
dNpair

d�φ

〉mixed(cmlt)

= 〈Nb〉2

(2π )2

[
1 + 2vb

2 cos(2φs)
]{

1 + 2vb
2 cos[2(�φ + φs)]

}
.

(8)

Because of the random distribution, contributions from pe-
ripheral tubes are canceled out upon averaging in the mixed-
event correlation. Observe the difference between the factors
multiplying the background terms of the proper- and mixed-
event correlations. By subtracting Eq. (8) from Eq. (7), the
resultant correlation is〈
dNpair

d�φ
(φs)

〉(cmlt)

=
〈
N2

b

〉−〈Nb〉2

(2π )2

[
1+2vb

2 cos(2φs)
]{

1+2vb
2 cos[2(�φ+φs)]

}

+
(

Nt

2π

)2 ∑
n=2,3

2
(
vt

n

)2
cos(n�φ). (9)

So, one sees that, as the multiplicity fluctuates, the background
elliptic flow does contribute to the correlation. Now, by taking
φs = 0 in Eq. (9), the correlation for the in-plane trigger is
finally given as

〈
dNpair

d�φ

〉(cmlt)

in plane

=
〈
N2

b

〉 − 〈Nb〉2

(2π )2

(
1 + 2vb

2

)[
1 + 2vb

2 cos(2�φ)
]

+
(

Nt

2π

)2 ∑
n=2,3

2
(
vt

n

)2
cos(n�φ). (10)

We note that, due to the summation of the two terms concerning
vt

3 and vb
2 , the away-side peak becomes broader than the near-

side one, as shown in Fig. 3.

Similarly, the out-of-plane correlation is obtained by putting
φs = π/2 as〈

dNpair

d�φ

〉(cmlt)

out of plane

=
〈
N2

b

〉 − 〈Nb〉2

(2π )2

(
1 − 2vb

2

)[
1 − 2vb

2 cos(2�φ)
]

+
(

Nt

2π

)2 ∑
n=2,3

2
(
vt

n

)2
cos(n�φ). (11)

One sees that, because of the shift in the trigger angle φs (0 →
π/2), the cosine dependence of the background contribution
gives an opposite sign, as compared to the in-plane correlation.
This negative sign leads to the following consequences. First,
there is a reduction in the amplitude of the out-of-plane
correlation both on the near side and on the away side. More
importantly, it naturally gives rise to the observed double-peak
structure on the away side. Therefore, despite its simplicity, the
above analytic model reproduces the main characteristics of
the observed data. The overall correlation is found to decrease;
meanwhile the away-side correlation evolves from a broad
single peak to a double peak as φs increases. The correlations
in Fig. 3 are plotted with the following parameters:〈

N2
t

〉 = 0.45, vt
2 = vt

3 = 0.1,
(12)〈

N2
b

〉 − 〈Nb〉2 = 0.022, vb
2 = 0.25.

We note that both the correlated yields and the flow harmonics
are actually dependent on the specific choice of the pT interval
of the observed hadrons as shown in Figs. 1 and 2. Since
the transverse momentum dependence has not been explicitly
taken into account in this simple model, the multiplicities in
the above parameter set are determined only up to an overall
normalization factor, and the flow coefficients are chosen
to reproduce the qualitative behavior of the trigger-angle
dependence of di-hadron correlation as shown by data.

Now we will show that very similar results will be
obtained again, if one evaluates the combinatorial mixed-event
contribution using the ZYAM method. The spirit of the ZYAM
method is to first estimate the form of resultant correlation

FIG. 3. (Color online) Plots of di-hadron correlations calculated by the cumulant method: (a) the peripheral-tube contribution; (b) the one
from the background (dashed line) and the resultant correlation (solid line) for in-plane triggers, as given by Eq. (10); and (c) the corresponding
contributions for the out-of-plane triggers, Eq. (11).
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solely due to the average background collective flow and then
the evaluated correlation is rescaled by a factor B, the latter
is determined by assuming zero signal at the minimum of
the subtracted correlation. The di-hadron correlation for the
background flow is given by〈

dNpair

d�φ

〉mixed(ZYAM)

= B(φs)
∫

dφ

2π
δ(φ − φs)

dNbgd

dφ
(φ)

dNbgd

dφ
(φ + �φ). (13)

In the STAR analyses, both v2 and v4 have been taken into
account for the background. In our simplified model, however,
the average background flow contains, besides the radial
one, only the elliptic flow vb

2 . Therefore, a straightforward
calculation gives〈
dNpair

d�φ

〉mixed(ZYAM)

= B(φs)
〈Nb〉2

(2π )2

[
1 + 2vb

2 cos(2φs)
][

1 + 2vb
2 cos(�φ + φs)

]
.

(14)

We remark that, since in the ZYAM method fluctuations are
not explicitly considered, the multiplicity of the background
distribution, as given by Eq. (2), is evidently the average
multiplicity 〈Nb〉. By combining this term with the proper
correlation, given by Eq. (7), the resultant correlation reads〈

dNpair

d�φ
(φs)

〉(ZYAM)

=
〈
N2

b

〉 − B(φs)〈Nb〉2

(2π )2

[
1+2vb

2 cos(2φs)
]

× {
1 + 2vb

2 cos[2(�φ + φs)]
}

+
(

Nt

2π

)2 ∑
n=2,3

2vt
n

2 cos(n�φ). (15)

The consistency of this expression with what is used in the
STAR analyses will be discussed in the next section. Note
that the normalization factor B(φs) is a function of the trigger
angle. It is fixed to give zero yield at the minimum of the
subtracted correlation, namely, 〈dNpair/d�φ(φs)〉(ZYAM) = 0
at the minimum. Because the correlation in Eq. (15) is
positively defined, and the second term can be positive or
negative, the coefficient of the first term 〈N2

b 〉 − B(φs)〈Nb〉2

must be positive. One sees clearly that the above expression
is almost identical to the cumulant result, Eq. (9), and so will
cause similar trigger-angle dependence. This can also be seen
from the plots of correlations obtained by adopting the same
parameters as in Eq. (12) and additionally〈

N2
b

〉 = 100, (16)

where the value of 〈N2
b 〉 is chosen to be larger compared to

its fluctuation. The scale factor B(φs) is subsequently fixed by
the minimum condition as

B(φs = 0) = 1.000 053,
(17)

B(φs = π/2) = 1.

FIG. 4. (Color online) Plot of in-plane di-hadron correlation
by using the ZYAM method as given by Eq. (15). The one-tube
contribution and out-of-plane correlation are exactly the same as the
ones shown in Fig. 3.

The in-plane correlation plot is shown in Fig. 4, and is very
close to the one in Fig. 3. The one-tube contribution and out-
of-plane correlation are not plotted, since they are exactly the
same as those shown in Fig. 3.

IV. DISCUSSION AND CONCLUSIONS

Here, we first show that the expression for the di-hadron
correlation of background flow in Eq. (14) is in agreement
with that obtained in Ref. [49], which is employed in STAR
analyses [19,20]. The only difference is that we have taken
into account only the second-order harmonic, and the reason
for not including any higher-order flow components in our
calculation is simply because we wanted to transparently show
the mechanism of the in-plane/out-of-plane effect by using
a model as simple as possible. In Ref. [49], it was shown
that

dNpair

d�φ
= B(R)

[
1 + 2

∞∑
n=1

v(a)
n v(t,R)

n cos(n�φ)

]
, (18)

where v(a)
n is the associated particle’s nth harmonic, v(t,R)

n is
the average nth harmonic of the trigger particles, and B(R), the
background normalization, denotes the integrated inclusive
pair yield

B(R) = B

(
1 +

∑
k=2,4,6,...

2v
(t)
k cos(kφs)

sin(kc)

kc

)
,

v(t,R)
n = v(t)

n + δn,evenTn+∑
k=2,4,6,...

(
v

(t)
k+n+v

(t)
|k−n|

)
Tk

1 + ∑
k=2,4,6,... 2v

(t)
k Tk

, (19)

Tk = cos(kφs)
sin(kc)

kc
〈cos(k��)〉,
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where 2c is the angular width at which a trigger is located. In
our approach, the size of the slice is taken to be infinitely small
(c → 0), and perfect-event plane resolution [〈cos(k��)〉 = 1]
is assumed. Taking, for instance, the in-plane correlation by
substituting φs = 0, and considering terms up to the second
order, one obtains

B(R) = B
(
1 + 2v

(t)
2

)
,

v
(t,R)
2 = 1,

which is readily shown to be consistent with Eq. (14). In
fact, it is intuitively easy to understand since the one-particle
distribution of the trigger in this case is a δ function which
peaks at φs = 0.

In our approach, the trigger-angle dependence of di-hadron
correlation is understood as due to the interplay between the
elliptic flow caused by the initial almond-shaped deformation
of the whole system and the flow produced by fluctuations.
The contributions due to fluctuations are expressed in terms
of a high-energy-density tube and the flow deflected by it.
However, the generic correlation due to the tube is preserved
even after the background subtraction [18]; by this simple
model we show explicitly that the result does not depend on use
of either the cumulant or the ZYAM method. This is because
the form of the combinatorial background is determined by
the average flow harmonics, as shown in Eqs. (9) and (15).
Although in this approach, only elliptic flow is considered for
simplicity, it is straightforward to extend the result here to
a more general case. Due to multiplicity fluctuations or due
to the procedure in the ZYAM method, the background flow
may also contribute to the subtracted correlation. Since the
background modulation is shifted, changing the phase, when
the trigger particle moves from in plane to out of plane as seen
in Eqs. (8) and (14), the summation of the contributions of
the background and that of the tube gives rise to the desired
trigger-angle dependence.

In the one-tube model, a part of the flow is caused by
the peripheral energetic tube. Since the tube deflects the
global flow of the background, the event planes of such flow
components are correlated to the localization of the tube as
expressed in Eq. (3). In particular, it also contains the second
harmonic vt

2. Although it is present in the proper two-particle
correlation [Eq. (7)], it is not considered in Eq. (14) when
evaluating the combinatorial background correlation. The
reason is twofold. First, to calculate the average v2 of a given
event, one must use the multiplicity as the weight; in our model,
the multiplicity of the background Nb is assumed to be much
bigger than that of the tube Nt . (The parameter 〈N2

b 〉 = 100
can be freely changed to a much bigger number.) Moreover,
since φt varies from event to event, the contribution to v2

from vt
2 is positive at φt = 0 and negative at φt = π/2. When

averaging over different events, most contributions cancel each
other at different φt values. As it happens, vt

2 contributes to the
subtracted correlation while it does not manifest itself in the
average background flow. This is an important feature of the
present approach.

It is interesting to note that the two-particle cor-
relation has also been studied using Fourier expansion

in [17,50]:〈
dNpair

d�φ
(φs)

〉proper

= N2

(2π )2
[1 + 2V2� cos(2�φ) + 2V3� cos(3�φ)] + · · · .

(20)

For comparison, we rewrite Eq. (7) in terms of Vn� as
follows:

V2� = N2
t〈

N2
b

〉[
1 + 2vb

2 cos(2φs)
] (

vt
2

)2 + cos(2φs)v
b
2 , (21)

V3� = N2
t〈

N2
b

〉(
1 + 2vb

2 cos(2φs)
)(

vt
3

)2
. (22)

One sees that the background elliptic flow vb
2 dominates V2�

for both in-plane and out-of-plane directions, while V3� is
determined by the triangular flow vt

3 produced by the tube.
Due to the factor cos(2φs), the second term of Eq. (21)
changes sign when the trigger angle goes from φs = 0 to
φs = π/2. Dominated by this term, V2� decreases with φs , and
it intersects V2� = 0 at around φs = π/4. Since the first term
in Eq. (21) is positive definite, the integral of V2� with respect
to φs is positive. These features are in good agreement with
the data analysis (see Fig. 1 of Ref. [17]). On the other hand,
the axis of triangularity is determined by the position of the
tube, �3 = φt . Since we have assumed a uniform distribution
f (φt ) = 1 in our calculation, the event plane of triangularity
is totally uncorrelated with the event plane �2, as generally
understood [15,51], and consequently, the contribution from
triangular flow should not depend much on the event-plane
angle. This is indeed shown in the above expression Eq. (22).
V3� barely depends on φs ; if anything, it slightly increases
with increasing φs . This characteristic is also found in the
data [17].

In conclusion, the NeXSPheRIO code gives correct quali-
tative behavior of the in-plane/out-of-plane effect. Physically,
we understand that this effect appears because, besides the
contribution coming from the peripheral tube, additional
contribution from the background flow has to be considered.
The latter is back to back (peaks at �φ = 0, π ) in the case
of in-plane triggers (φs = 0) and rotated by π/2 (peaks
at �φ = −π/2, π/2) in the case of out-of-plane triggers
(φs = π/2). A simplified analytical model is proposed,
and it is shown to successfully reproduce the observed
features.
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