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Abstract

We investigate the Hamiltonian dynamics of two low-dimensional quantum spin systems in
a random "eld, at the in"nite-temperature limit: the XY chain and the two-leg XY ladder with
interchain Ising interactions. We determine the longitudinal spin autocorrelation functions of the
spin- 12 XY chain and ladder in the presence of disordered "elds by using the method of recurrence
relations. The "rst six basis vectors for the chain and the "rst four basis vectors for the ladder
of the dynamic Hilbert spaces of �z

j(t), as well as the corresponding recurrents and moments of
the time-dependent autocorrelation function, are analytically computed for bimodal distributions
of the "elds. We did "nd a remarkable result in the disordered models. Cases with a fraction of
p sites under "eld BB and a fraction of 1−p sites under the "eld BA have the same longitudinal
dynamics as those with p sites under "eld BA and 1− p sites under the "eld BB. We also "nd
that both the XY chain and the two-leg XY ladder with Ising interchain coupling in the presence
of random "elds are sensitive to the percentage of disorder but not to the intensity of the "elds.
c© 2003 Elsevier B.V. All rights reserved.

PACS: 75.40.Gb; 75.50.Lk; 75.10.Jm; 05.05.+q

Keywords: XY model; Spin dynamics; Method of recurrence relations; Continued fractions

1. Introduction

The quantum XY chain has attracted considerable attention during the last four
decades not only as an interesting many-body theoretical problem but also due to
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its applicability to real quasi-one-dimensional compounds. The Hamiltonian of the
one-dimensional spin- 12 XY model can be de"ned by

H =
1
2

N∑
i=1

(Jx�x
i �

x
i+1 + Jy�

y
i �

y
i+1)−

1
2

N∑
i=1

Bi�z
i ; (1)

where ��
i (�= x; y; z) are Pauli matrices on site i, Jx and Jy are nearest-neighbor cou-

pling constants, N is the number of sites, and Bi is the "eld at site i. This model,
with Bi = 0, was introduced in 1961 and many of its properties have been deter-
mined exactly [1–4]. It has been successfully used to describe the dynamic behavior
of quasi-one-dimensional compounds, such as PrCl3 [5] and CsCoCl3 [6]. Lieb et al.
[1], who introduced the model, used the Jordan–Wigner transformation [7] to map the
problem onto that of a system of non-interacting spinless fermions to "nd the exact
energies of the model. Ever since, a good deal of work has appeared in the literature
concerning mainly its thermodynamic properties. Katsura [2] solved the anisotropic XY
model in the presence of a uniform magnetic "eld in the z direction (i.e., Jx �= Jy and
Bi=B) with the help of Jordan–Wigner transformation. He obtained exact results for the
temperature and magnetic "eld dependence of various thermodynamics properties such
as magnetization, susceptibility, and speci"c heat, among others. Suzuki [8] studied the
e?ect of a staggered magnetic "eld Bi by using a theorem to calculate the partition
function exactly. A further extension on this model was done by Derzhko and Richter
[9] who calculated some thermodynamic quantities for the quantum XY chain with
random Lorentzian intersite interaction and transverse "eld, using the Jordan–Wigner
transformation.
Regarding the dynamics of this model, Niemeijer [10] obtained the exact time-

dependent correlation function C(t) = 〈�z
j(0)�

z
j(t)〉 at T → ∞ and Bi = 0 for the

isotropic model (Jx = Jy). The result is simply C(t)= [J0(2t)]2, where J0 is the zeroth
order Bessel function. McCoy [11] studied the spatial spin pair correlation function
along the x, y, and z directions for di?erent anisotropies in the limit of large number
of sites. At T �= 0, those correlation functions decay to zero exponentially as the num-
ber of spins N → ∞. On the other hand, at T = 0 the transverse correlation function
decays exponentially to a non-zero value if its direction is along that of the stronger
coupling, while the other transverse correlation function approaches zero exponentially
as N → ∞. In the isotropic case, all three correlation functions approach zero following
power laws, as N → ∞.

Barouch et al. [12–14] studied the time-dependent properties of the z-direction
magnetization. They considered the XY model in thermal equilibrium at temperature T
in the presence of a uniform external magnetic "eld B1. At t = 0, the "eld is changed
to some other value B2, and Mz(t) is then determined. The most interesting aspect is
that if B2 = 0, then Mz(t) �= 0 as t → ∞. They also examined the asymptotic behavior
of the space–time dependent spin correlation function at T = 0. Sur et al. [15] cal-
culated the exact transverse autocorrelation function for "nite chains containing 5; 7,
and 9 spins. Their analysis suggested that such autocorrelation function for the in"-
nite chain is given by exp(−J 2t2)=4. In fact, later on, Brandt and Jacoby [16] and also
Capel and Perk [17] obtained independently the same Gaussian behavior. Florencio and
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Lee [18] investigated the dynamics of the one-dimensional s = 1
2 isotropic XY model

and the transverse Ising model in the high-temperature limit by using the method of
recurrence relations. They found that the dynamic Hilbert spaces of the two models
have the same structure, which leads to a similar dynamic behavior apart from a time
scale.
Quantum models de"ned on a ladder structure have also been of considerable in-

terest since they can be viewed as an interpolation between one- and two-dimensional
systems. Physical realizations such as (VO)2P2O7 [19] and Cu2(C5H12N2)2Cl4 [20] cor-
respond in fact to quantum Heisenberg ladders. The full two-leg ladder Heisenberg–
Ising Hamiltonian can be written as

H =
1
2

N∑
i=1

(Jx�x
i;1�

x
i+1;1 + Jy�

y
i;1�

y
i+1;1 + Jz�z

i;1�
z
i+1;1)

+
1
2

N∑
i=1

(Jx�x
i;2�

x
i+1;2 + Jy�

y
i;2�

y
i+1;2 + Jz�z

i;2�
z
i+1;2)

+
1
2

N∑
i=1

Ii�z
i;1�

z
i;2 −

1
2

N∑
i=1

Bi;1�z
i;1 −

1
2

N∑
i=1

Bi;2�z
i;2 ; (2)

where subscripts 1 and 2 refer to chains 1 and 2, J� (� = x; y; z) are exchange cou-
plings, Ii is the interchain Ising coupling, and Bi;1 and Bi;2 are external "elds. Most
of the theoretical work with spin ladders deals with ladders with Heisenberg or XXZ
interactions along the legs. Only a few of them concern the case where Jz =0, that is,
the XY -Ising ladder. Huber and CaillLe [21] studied the XY -Ising ladder consisting of
two chains, with Jx = Jy, connected by a uniform Ising interaction I . They used the
Jordan–Wigner transformation to obtain the speci"c heat. Hikihara and Furusaki [22]
numerically computed the spatial correlation functions along the x and z directions by
using the density matrix and renormalization group approaches. Orignac and Giamarchi
[23] treated anisotropic spin- 12 XY ladders in the presence of several types of weak ran-
dom perturbations. They found that the e?ect of the disorder depends on whether or
not the XY symmetry is preserved. More recently, MLelin et al. [24] considered ladders
with a strong disorder in the antiferromagnetic interactions.
In this paper, we study the e?ects of an applied random "eld on the dynamic be-

havior at the in"nite-temperature limit of the longitudinal autocorrelation function of
the following spin- 12 systems: (i) the XY model in one dimension, and (ii) the two-leg
XY -Ising ladder. In both cases, the "elds Bi are drawn independently according to
bimodal distributions. The main theoretical tool we use is the method of recurrence
relations [25–29], which has been successfully used to treat a variety of dynamic prob-
lems such as, the velocity autocorrelation function [30], interacting electron gas [31,32],
quantum spin systems [18,33–35], classical di?usion [36–38], simple Muids [39], and
ergodic theory [40], among others. We should stress that in the present work, we shall
use an extension of the method of recurrence relations in order to properly account for
the random "elds.



4 M.E.S. Nunes et al. / Physica A 332 (2004) 1–14

This paper is arranged as follows. In Section 2 we review the method of recurrence
relations. In Section 3 that method is applied to study the dynamical behavior of the
XY chain in a disordered "eld. Our study of the dynamics of the XY -Ising ladder is
presented in Section 4. Finally, in Section 5 we summarize our results.

2. Method of recurrence relations

Consider a system described by a Hamiltonian H . The time evolution of an operator
A is governed by

dA(t)
dt

= iLA(t) ; (3)

where L is the Liouville operator, de"ned by LA= [H; A] ≡ HA−AH . The solution to
Eq. (3) can be cast as the following orthogonal expansion

A(t) =
d−1∑
n=0

an(t)fn ; (4)

where the fn’s are basis vectors spanning a d-dimensional Hilbert space S. In order to
include an average over disorder, we now modify the original de"nition of the scalar
product, that is, we de"ne the scalar product in S as the Kubo product [41] averaged
over the random variables

(X; Y ) =
1
�

∫ �

0
d 〈X ( )Y †〉 − 〈X 〉〈Y †〉 ; (5)

where 〈· · ·〉 denotes an ensemble average and an average over all realizations of dis-
order. Here, X and Y are vectors de"ned in S, � = 1=kBT is the inverse temperature,
and X ( ) = exp( H)X exp(− H). In the high-temperature limit, T → ∞, the scalar
product reduces to

(X; Y ) =
TrXY †

Tr1
; (6)

where Tr1 gives the number of states of the system.
By choosing f0 =A(0), it follows that the remaining basis vectors can be generated

by using the following recurrence relation:

fn+1 = iLfn + "nfn−1 ; (RRI)

where 06 n6d− 1. The quantity

"n =
(fn; fn)

(fn−1; fn−1)
; n¿ 1 (7)

gives the relative norms of consecutive basis vectors, and is usually referred to as
recurrent. By de"nition, f−1 ≡ 0 and "0 ≡ 1.

The coeOcients an(t)s satisfy a second recurrence relation

"n+1an+1(t) =− dan(t)
dt

+ an−1(t) ; (RRII)
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where 06 n6d− 1, and a−1(t) ≡ 0. Notice that with the initial choice f0 = A(0), it
follows from Eq. (4) that a0(0) = 1, and an(0) = 0 for n¿ 1. Hence, a0(t) represents
the relaxation function of linear response theory. In the limit T → ∞, a0(t) is simply
the time-dependent autocorrelation function C(t). The complete time evolution of A(t)
can thus be determined by using (RRI) and (RRII).
By applying the Laplace transform to (RRII), one obtains

"1�1(z) = 1− z�0(z); n= 0 ; (8)

"n+1�n+1(z) =−z�n(z) + �n−1(z); n¿ 1 ; (9)

where

�n(z) =
∫ ∞

0
e−ztan(t) dt; Re z¿ 0 : (10)

By using Eqs. (8) and (9), one obtains the continued fraction for �0(z):

�0(z) =
1

z + ("1=z + ("2=z + · · ·)) : (11)

Note that the "n are the sole ingredients that enter the determination of the dynamic
correlation functions. In addition, the knowledge of the "n enables one to obtain the
moments of the correlation function. In practice, only a few "n can be determined
analytically.
By working on the high-temperature limit, T =∞, we managed to obtain the "rst

six "n pertaining to �z
j(t) and Hamiltonian (1), and the "rst four "n for Hamilto-

nian (2). From the "n, we determine the corresponding moments %2n of the average
time-dependent correlation function

C(t) = 〈�z
j(0)�

z
j(t)〉=

∞∑
k=0

%2k t2k ; (12)

where %2k are de"ned by the following formula involving 2k nested commutators,

%2k =
1
2k!

(−1)k〈[H; [H; : : : [H; �z
j] · · · ]]�z

j〉 : (13)

It is also possible to compute the spectral function &(!) which is de"ned as the Fourier
transform of the time-dependent autocorrelation function

&(!) =
∫ ∞

−∞
ei!tC0(t) dt : (14)

This spectral function has the advantage of being accessible in experiments.

3. Dynamics of the XY chain in a random �eld

In this section, we focus on the spin autocorrelation function of the XY model in one
dimension in the in"nite-temperature limit. Hamiltonian (1) is given by the following,
in the isotropic case (Jx = Jy = J ),

H =
J
2

N∑
i=1

(�x
i �

x
i+1 + �y

i �
y
i+1)−

1
2

N∑
i=1

Bi�z
i ; (15)
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where the "elds Bi are randomly drawn according to the bimodal distribution

(({Bi}) =
N∏
i

[p)(Bi − BA) + (1− p) )(Bi − BB)] (16)

with 06p6 1, where p represents the probability of drawing BA. Thus p = 0 and
p=1 correspond to the cases Bi=BB and Bi=BA, respectively. We shall be interested
in the cases where BA = 0 and BB = 1:5 J . The distribution ( is normalized to unity
and the average of a given function f({Bi}) is obtained simply by using the integral

f({Bi}) =
∫ ∞

−∞
(({Bi})f({Bi})

N∏
i

dBi : (17)

Since we are interested in the longitudinal correlation function in the limit of in"nite
temperature, Eq. (12), we express the time evolution of the tagged spin �z

j as follows:

�z
j(t) =

d−1∑
n=0

an(t)fn ; (18)

where f0 = �z
j(0) = �z

j . Clearly, (f0; f0) = (�z
j ; �

z
j) = 1. The other basis vectors are

determined using the recurrence relation (RRI). Thus for f1, we obtain

f1 = J�y
j �

x
j+1 + J�x

j−1�
y
j − J�x

j�
y
j+1 − J�y

j−1�
x
j : (19)

Its squared norm is computed by using the T =∞ limit of Kubo product, Eq. (6). The
result is

(f1; f1) = 4 J 2 ; (20)

which already includes the average over the random "elds. After a somewhat lengthy
but straightforward calculation, we exactly determined the vectors f2, f3; : : : ; f6. The
results are rather involved and shall not be reported here.
The "rst recurrent is readily determined,

"1 =
(f1; f1)
(f0; f0)

= 4 J 2 : (21)

Notice that it does not depend on the external magnetic "elds BA or BB. The next
recurrent is

"2 = 5 J 2 + 2[pB2
A + (1− p)B2

B]− 2[pBA + (1− p)BB]2 ; (22)

which now depends on both BA and BB. By following this procedure, we also calculated
"3; : : : ; "6. The results, however, are again too lengthy to be reproduced here. Rather,
we present the results for the recurrents in Fig. 1. They are shown for n6 6 and
di?erent concentrations p of BA=0, and are valid in the high-temperature limit T =∞.
We notice that at p = 0:0 (B = 1:5 J along the whole chain) or p = 1:0 (no external
"eld) the system has the same recurrents. It means that in the case of either a uniform
"eld or in the absence of a "eld, the dynamics will be the same, since the recurrents
determine uniquely the time-dependent correlations. The cases p=0:2 and 0.8 also yield
the same recurrents, and so do all the complementary concentrations p and 1−p. Such
feature will be explained in the next section.
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Fig. 1. Recurrants, in the in"nite-temperature limit, for several values of p. In the "gure, BA=0, BB=1:5 J ,
and J = 1. The lines are just guides to the eye.

In order to determine the time-dependent autocorrelation function at T = ∞, de-
"ned by Eq. (12), one must have the moments %2k or, equivalently, the recurrents
"n. Usually, when just a few of the recurrents are available, one can only "nd the
short-time expansion of C(t). In order to extend the region of validity to longer times,
we propose an ansatz for "n, n¿ 6. Such approach relies strongly on the behavior of
the known recurrents. For the isotropic XY chain in the absence of an applied "eld,
it can be shown from the exact result of Ref. [10] that the recurrents tend to a "nite
value "∞ = 4 J 2 as n → ∞. In the present case, the results of Fig. 1 suggest that
the recurrents also approach a "nite value as n gets larger, even in the disordered
cases 0¡p¡ 1 (recall that p=0 and 1 are disorderless cases). We shall assume that
both the odd- and even-ordered recurrents approach a common terminal value "∞ by
following independent power-laws, just like in the case of the isotropic XY chain.
Based on the above considerations, we can construct an approximant to the higher-

order recurrents in the in"nite-temperature limit: (i) "rst, we estimate the value of "∞
by plotting "n versus 1=n and assuming that "∞ is given by its extrapolated value at
the origin of the horizontal axis (as n → ∞); (ii) next, we use the following ansatz
for the high-ordered recurrents,

"n =
A
n+

+ "∞; n= 1; 3; 5; : : : ; (23)

A= ("3 − "∞)3+ ; (24)

+=− ln
(
"∞ − "5

"∞ − "3

)/
ln
(
5
3

)
(25)
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Table 1
Parameters of the ansatz for the recurrents in the in"nite-temperature limit, Eqs. (23)–(28). We used BA=0,
BB = 1:5 J , and J = 1

p "∞ A + B ,

0.0 and 1.0 4.15 −0:58 0.45 −0:58 0.45
0.2 and 0.8 6.05 −0:49 0.56 −6:53 1.28
0.6 and 0.4 6.34 −0:33 0.28 −4:16 0.83
0.5 6.37 −0:28 0.17 −3:99 0.78

and

"n =
B
n,

+ "∞; n= 2; 4; 6; : : : ; (26)

B= ("4 − "∞)4, ; (27)

,=− ln
(
"∞ − "4

"∞ − "6

)/
ln
(
3
2

)
: (28)

The parameters "∞, A, +, B, and ,, which appear in the ansatz above, are listed in
Table 1 for several values of p, for BA=0, BB=1:5 J , J=1, in the in"nite-temperature
limit.
It is worthwhile to compare the outcomes of our extrapolation scheme above with

a known exact result, so that one can attest the reliability of the method. Consider
the XY chain with isotropic interactions Ji = J , in the absence of external "elds, in
the in"nite-temperature limit, that is, the system for which Niemeijer’s solution applies.
The recurrents "n, derived from that solution, J0(2 Jt)2, oscillate about a terminal value
"∞ = 4 J 2 as n grows, with decreasing amplitude. Both the odd and even recurrents
ultimately reach "∞ (at n=∞) by following independent power laws. We need at least
the "rst 60 exact recurrents to reconstruct J0(2 Jt)2 in the time region 06 t6 10 (in
units of J−1), such that no visible di?erence can be seen in the scale of the "gures used
in this work. Extensions for larger t can be obtained by using more recurrents. Now,
the present approach yields "∞ = 4:15 J 2 (see Table 1), which is marginally higher
than the exact value. Thus, the recurrents from the ansatz tend to the terminal value
with a slower power-laws of n, as compared to the exact recurrents. The implications of
these on the time-dependent correlation function are shown in Fig. 2 which shows the
results from our ansatz for the XY case in comparison to the exact solution. One can
clearly see that, despite the fact that our approximation is based on six exact recurrents
only, we obtain good quantitative results for times up to t = 4:5. The behavior of the
approximation for t¿ 4:5 has the same general behavior as the exact one, except that
C(t) is slightly shifted upward, causing it never to vanish at the zeros of J0(2Jt),
as the exact result does. In addition, the approximate C(t) seems to tend to a "nite,
albeit small, value as t → ∞, as opposed to exact result, which vanishes at that limit.
Hence, based on the above considerations, we are led to expect that our results for
the cases with disorder should behave as nearly exactly at short times, and be a little
overestimated at longer times. Finally, since the results for p= 0 and 1 coincide with
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Fig. 2. Comparison between exact and approximate autocorrelation function for the pure XY model with or
without a uniform "eld (i.e., p = 0 or p = 1) at T =∞. Both curves were drawn by considering the "rst
60 recurrents only.

Fig. 3. Time-dependent autocorrelation function of the XY chain in the in"nite-temperature limit for several
values of p, where we use BA=0, BB = 1:5 J (J = 1).

each other, as shown in Fig. 2, we conclude that the presence or not of a uniform "eld
does not alter the autocorrelation function.
Figs. 3 and 4 show the time-dependent autocorrelation function and the corresponding

spectral densities, respectively, for several distribution of "elds. Disorder lifts C(t)
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Fig. 4. Spectral density function of the XY chain in the limit of high temperature, T =∞, for several values
of p. Here, BA = 0, BB = 1:5 J , and J = 1.

appreciably, thereby producing slower decay at large t. Such e?ect is most pronounced
at maximum disorder, p=0:5. The disorder-induced raise of C(t) is already noticeable
at short times, where the curves are essentially exact. The system presents an interesting
behavior when a random external "eld is applied: it is susceptible to the percentage of
disorder, but not to the intensity of the "eld. For example, the cases p=0:2 and 0.8 have
the same behavior, although the percentage of sites under the e?ect of external "eld is
di?erent. Similar results are obtained for other values of BA and BB. The explanation
is given in next section, since it also applies to the case of a ladder.

4. Dynamics of the XY -Ising ladder in a random �eld

We now consider the dynamics of the two-leg spin ladder on a random "eld in the
high-temperature limit, T =∞. We set Jx = Jy = J and Jz =0 in Hamiltonian (2). The
external "elds act on sites of both legs of the ladder. We consider two independent
random "eld variables, Bi;1 and Bi;2, distributed according to

(({Bi;1}) =
N∏
i

[q)(Bi;1 − BA) + (1− q) )(Bi;1 − BB)] ; (29)

(({Bi;2}) =
N∏
i

[r)(Bi;2 − BC) + (1− r) )(Bi;2 − BD)] ; (30)

where 06 q, r6 1. The quantities BA and BB are random "elds on chain 1, while
BC and BD are the random "elds on chain 2, respectively. We use the same method
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Fig. 5. Autocorrelation function of the XY model on a ladder without external "eld (BA=BB=BC =BD=0)
and isotropic exchange interactions, J = 1, for a few values of the Ising interchain coupling I (in units of
J ), in the in"nite-temperature limit.

as in Section 3 to investigate the longitudinal dynamic spin autocorrelation functions
on the ladder, C(t) = 〈�z

j(0)�
z
j(t)〉. We analytically determine the "rst four recurrents

only, since the higher connectivity of the ladder makes the calculations much longer
than those of the chain. We then use a similar procedure as in the previous section
to extrapolate to longer times t. Next, we devise an ansatz similar to Eqs. (23)–(28),
to estimate the next 56 recurrents. We do not present the details here since the ansatz
can be easily reproduced by following the steps outlined in the last section. The only
di?erence is that now we have only four exact recurrents, thus making the ensuing
extrapolation less reliable. Nevertheless, as we shall see, the method works remarkably
well and we obtain sensible results for the autocorrelation functions.
We now outline the results for the time-dependent autocorrelation functions in the

T = ∞ limit, shown in Figs. 5 and 6. The case without external "eld is depicted in
Fig. 5. It shows the e?ects of the competition between the XY coupling along the
legs and the Ising interchain coupling on the time-dependent longitudinal correlation
function. The XY coupling favors a [J0(2 Jt)]2-type of behavior, Niemeijer’s solution
for the chain, while the Ising coupling drives the correlation function towards unity,
which is the case for Ising interactions only. For very low I , the dynamics is mainly
of the XY -chain type, since the two legs are almost disconnected. As I increases, the
oscillations pertaining to the XY behavior are still present, but the Ising interaction lifts
the curves C(t) above the time axis. In the limit I�J , the correlation function will
approach unity for all t, since the z-component of spin is then essentially a constant
of motion. Hence, for a given value of I in the long-time limit C(t) will approach a
constant value between 0 and 1, corresponding to the extreme cases of couplings I =0



12 M.E.S. Nunes et al. / Physica A 332 (2004) 1–14

Fig. 6. Autocorrelation function for the XY model on a ladder with disordered "elds (BA = BC = 0 and
BB = BD = 1:5 J ) for Ji;1 = Ji;2 = J = I = 1, at T =∞.

and ∞. One should bear in mind that the long-time behavior shown in Fig. 5 is very
likely to be a bit overestimated due to same reasons described in the last section. For
example, the steady rise in C(t) at large t is surely an artifact of the ansatz used. Still
our conclusions above should hold true, since the raises of C(t) due to uncertainties
in the ansatz, are much smaller than the e?ects of the interchain coupling, especially
from moderate I ∼ J to higher couplings I ¿ J .

Fig. 6 shows C(t), in the in"nite-temperature limit, for di?erent concentrations of
equal "elds on each chain (as well as equal concentrations on each chain). The cou-
plings J = I , while the "elds Bi are disordered and obey bimodal distributions, with
probabilities q and r for zero "eld, otherwise Bi=1:5 J . We can see that, as in the case
of the single chain model, the presence or not of an external "eld produces the same
dynamic behavior for the disorderless cases (p = 0 and 1). The same holds true for
the symmetric pairs of distributions (q, 1− q) and (r, 1− r). Such result is due to the
up–down symmetry of the model Hamiltonian along the z-direction. This symmetry is
best seen with the canonical transformation of �x

i → �y
i , �

y
i → �x

i , �
z
i → −�z

i , which
changes the sign of the interaction energy with the longitudinal "eld and, of course,
leaves the energy spectrum unchanged. Hence, a "eld applied to either the positive
or negative direction of the z-axis will yield the same results for both the static and
dynamic quantities. Suppose we exchange the probabilities q and 1 − q, as well as r
and 1− r from the distributions of "elds. This is equivalent to the exchange of the end
values of the "elds in the bimodal distributions. The form of the new Hamiltonian will
be the same as that of the canonically transformed Hamiltonian, apart from a shift in
the overall energy scale, which does not a?ect the dynamics. Therefore, the dynamic
correlations of the cases (q, 1 − q) and (r, 1 − r) should be identical, as our results
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show in Fig. 6. These considerations are quite general and apply to any space dimen-
sions. The Ising coupling I = J already leads to non-zero long-time behavior for C(t),
however disorder also lifts C(t), with highest values at maximum disorder, q= r=0:5.
Similar results are obtained for di?erent values of the Ising interchain coupling I .

5. Conclusions

We investigated the time evolution of the spin- 12 XY isotropic model de"ned on a
single chain and on a two-leg ladder (with Ising-type interchain couplings), at in"nite
temperature, by using the method of recurrence relations. We exactly determined the
"rst six moments (for the model on a chain) and the "rst four moments (for the model
on a ladder) of the time-dependent longitudinal correlations in the high-temperature
limit. We extended the exact results, which are valid for short times only, by using
an approximate method in which the recurrents are assumed to oscillate towards a
terminal value "∞. Within this scheme, we were able to reproduce fairly well-known
exact results, such as the XY chain without applied "eld. The most interesting aspect
of the present results is the dependence of the chain and the ladder under a disordered
"eld. Both are sensible to the percentage of disorder, but not to the intensity of the
"elds. Despite its simplicity in using just a few exact recurrents, the present approach
is able to give a good picture of the dynamics of the XY chain and ladder in the
presence of random "elds.
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