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This paper deals with the Open-Pit-Mining Operational Planning problem with dynamic truck allocation.
The objective is to optimize mineral extraction in the mines by minimizing the number of mining trucks
used to meet production goals and quality requirements. According to the literature, this problem is NP-
hard, so a heuristic strategy is justified. We present a hybrid algorithm that combines characteristics of
two metaheuristics: Greedy Randomized Adaptive Search Procedures and General Variable Neighbor-
hood Search. The proposed algorithm was tested using a set of real-data problems and the results were
validated by running the CPLEX optimizer with the same data. This solver used a mixed integer program-
ming model also developed in this work. The computational experiments show that the proposed algo-
rithm is very competitive, finding near optimal solutions (with a gap of less than 1%) in most instances,
demanding short computing times.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

This work deals with the Open-Pit-Mining Operational Planning
(OPMOP) problem, which involves to determine extraction rate of
material from ore and waste rock pits, and to assign the equip-
ments (shovels and mining trucks) to these pits. The objective is
to determine the extraction rate at each pit in a way that produc-
tion and quality goals are satisfied, and to minimize the number of
trucks needed for the production process.

We are considering dynamic truck allocation in the OPMOP
problem, that is, the trucks are not fixed to specific pits/or shovels.
Instead, a truck can be assigned to different pits, which increases
the fleet productivity, allowing smaller fleets to perform the
operations.

The problem in focus has the Multiple Knapsack Problem (MKP)
as a subproblem. In fact, the analogy can be made by considering
each shovel like a knapsack and the loads (ore or waste rock) of
the trucks as the items. In this analogy, the goal is to determine
which loads are the most attractive to allocate to each knapsack,
respecting its capacity (productivity). Thus, as MKP belongs to
the NP-hard class (Papadimitriou and Steiglitz, 1998), OPMOP does
too. Since in real cases the decision must be fast and it is unlikely
that optimal solutions would be obtained by exact techniques in a
short space of time, it is proposed to find sub-optimal solutions for
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the problem by means of heuristic techniques. The proposed heu-
ristic algorithm is based on the procedures Greedy Randomized
Adaptive Search Procedures – GRASP (Resende and Ribeiro, 2010)
and General Variable Neighborhood Search – GVNS (Hansen et al.,
2008a,b; Hansen and Mladenovic, 2001; Mladenovic and Hansen,
1997).

These algorithms have been applied with success to solve sev-
eral hard combinatorial problems (Glover and Kochenberger,
2003). We propose here a hybrid heuristic with the aim of com-
bining good features found in each one of these metaheuristics.
From GRASP we used the construction phase to quickly produce
good quality solutions and accelerate the improvement phase.
GVNS was chosen due to its simplicity, efficiency and the natural
capacity of its local search (VND method) for handling different
neighborhoods.

To test the efficiency of the proposed heuristic, its results were
also validated by using the state-of-the-art commercial optimiza-
tion software CPLEX 11.0.1 applied to a mathematical program-
ming model also proposed in this work.

The contribution of this work is the presentation of a more com-
plete mathematical programming model of OPMOP than those
found in literature. This model seeks to more faithfully depict a real
operational mining industry environment. Moreover, it presents a
new heuristic model not yet found in literature in order to solve
the problem in focus.

The remainder of this paper is organized as follows. Section 2
shows the related work. Section 3 describes the problem consid-
ered in this work. Section 4 presents a mathematical programming
formulation to OPMOP, while Section 5 presents a heuristic ap-
proach to the problem in focus. The testing scenarios are described
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in Section 6, while in the following section, the computational
experiments are presented and analyzed. Section 8 concludes the
work.
2. Related works

White and Olson (1986) proposed an algorithm that is the ba-
sis for the DISPATCH System, which operates in many mines
around the world. A solution is obtained in two steps. The first,
based on linear programming, handles the problem of ore mix-
ture optimizing by minimizing costs considering the mining rate,
the quality of the mixture, the ore feed rate to the plant for
beneficiating, and the material handling. The restrictions of the
model are related to the production capacity of the shovels,
the quality of the mixture and the minimum feeding rate to
the processing plant. The second stage of the algorithm, which
is solved by dynamic programming, uses a model similar to
White et al. (1982), differing from this by using a decision vari-
able for the volume of material transported per hour on a given
route, instead of the truck working rate per hour. Also consid-
ered is the presence of storage piles. In this second stage of
the algorithm, the objective is to minimize material transporta-
tion in the mine.

Sgurev et al. (1989) described an automated system for real-
time control of truck haulage in open-pit mines. This system is
called TRASY and it is designed towards the improvement of
the technical–economical indices of the loading–unloading pro-
cess in open-pit mines where trucks are used as vehicles. The
authors described the two ways of organizing the trucks work:
on a closed-circuit system and on an open-circuit system, so-
called dynamic allocation system. The benefits of the open-circuit
system are shown and the authors described the four modules of
the TRASY system: configuration, control, monitoring and report.
The authors concluded that the increase of the operation produc-
tivity in open-pit mines may be achieved by improving the effec-
tiveness of the loading-haulage process control, so the
introduction of automated systems for haulage vehicles control
is one way to accomplish this goal. However, this system does
not take into account the quality goals of the ore control
parameters.

Chanda and Dagdelen (1995) developed a linear programming
model that solves the problem of mixed minerals in the short-term
planning of a coal mine. The objective function of this model is the
weighted sum of three distinct objectives: to maximize an eco-
nomic criterion, to minimize production deviations, and to mini-
mize quality deviations from the desired values of the control
parameters. No allocation for the loading and transport equipment
was considered in this model.

Ezawa and Silva (1995) developed a system for dynamic
truck allocation with the objective of reducing variability in
the levels of the ore and increasing transport productivity. The
system uses a heuristic to sequence the trucks in order to min-
imize changes in the levels. To validate it, the authors used a
simulation and the theory of graphs for the mathematical mod-
eling of the mine. Deploying this system transport productivity
increased by 8% and management obtained more accurate data
in real time.

Alvarenga (1997) developed a program for the optimal dis-
patch of trucks in the iron mining of an open-pit mine, with
the objectives of minimizing the queue time of the trucks in
the fleet, increasing productivity and improving the quality of
the extracted ore. In the work, which is the basis of the SMART

MINE system widely used in various Brazilian mines, a technique
of stochastic optimization was applied, using the genetic algo-
rithm with parallel processing. Basically, the problem is to indi-
cate the best point of tipping or loading and the trajectory for
the movement, when there is a situation of choice to be made.
The author pointed to productivity gains of 5–15%, proving the
validity of the proposal.

Merschmann (2002) developed an optimization system and
simulation for analyzing the production scenario in open-pit
mines. The system, called OTISIMIN (Simulator and Optimizer
for Mining), was developed in two modules. The first is the optimi-
zation module where a linear programming model is constructed
and solved, while the second is a simulation module that allows
the user to use the results obtained by solving the linear program-
ming model as input for the simulation. The optimization module
was developed with the aim of optimizing the process of mixing
the ores from the mining of several pits in order to meet the quality
specifications imposed by the treatment plant and allocating
equipments (trucks, shovels and/or excavators) to pits, considering
both static and dynamic truck allocation. The developed model
does not consider production optimization and quality targets, or
reduction of the number of trucks required by the production
system.

Godoy and Dimitrakopoulos (2004) dealt with the open-pit
mine design and production scheduling problem, with a view to
find the most profitable mining sequence over the life of a mine.
According to the authors the dynamics of mining ore and waste
and the spatial grade uncertainty make predictions of the optimal
mining sequence a challenging task. The authors show a risk-
based approach to life-of-mine production scheduling, including
the determination of optimal mining rates for the life of mine,
whilst considering ore production, stripping ratios, investment
in equipment purchase and operational costs; and the generation
of a detailed mining sequence from the previously determined
mining rates, focusing on spatial evolution of mining sequences
and equipment utilization. The production scheduling stage uses
a specially-developed combinatorial optimization algorithm
based on the Simulated Annealing metaheuristic. A new risk-
based, multistage optimization process for long-term production
scheduling is presented, and the results show the potential to
considerably improve the valuation and forecasts for life-of-mine
schedule.

Guimaraes et al. (2007) presented a computational simulation
model to validate the results obtained by applying a mathematical
programming model to determine the mining rate in open-pit
mines. LINGO solver, version 7.0, was used for optimizing the prob-
lem and ARENA, version 7.0, simulated the solver’s solution. Con-
trary to belief, the modeling demonstrated that by increasing the
number of vehicles, the production goal was not met and was fur-
ther deterred due to increased queue time. Thus, increasing the
number of vehicles does not necessarily optimize mining
operations.

Boland et al. (2009) dealt with the open-pit mining produc-
tion scheduling problem (OPMPSP). The treated problem consists
of finding the sequence in which the blocks should be removed
from pits, over the lifetime of the mine, such that the net present
value (NPV) of the operation is maximized. Due to the large
number of blocks and precedence constraints linking them,
blocks are aggregated to form larger scheduling units. The
authors investigated the characteristics of the problem and
showed how the aggregates can be systematically divided into
bins (groups of blocks) so that the solution of the linear pro-
gramming (LP) relaxation with all processing decision variables
fully disaggregated to block level (D-LP) can be recovered from
the solution of our compactly disaggregated LP relaxation (B-
LP) with processing decisions made at the level of bins. As the
number of bins is much smaller than the number of blocks, using
their binning approach, D-LP can be solved to optimality for
much larger data instances than by a direct disaggregation
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approach. They showed that their approach can lead to significant
improvements in NPV.
3. The OPMOP problem

In the Open-Pit-Mining Operational Planning (OPMOP) problem
there are ore pits and waste rock pits. The material extracted by
shovels from the ore and waste rock pits is transported by trucks
to unloading points (e.g., crusher and waste rock deposit). For
the waste rock pits is necessary to meet a recommended rate of
mining, while for the ore pits, besides satisfying a recommended
rate of mining, we need to fulfill quality requirements of the ore
mixture (formed by ore mass extracted from ore pits). These qual-
ity requirements correspond to percentages of several ore control
parameters (e.g., %Fe, %SiO2 and %P).

It is considered that there are shovels of different productivi-
ties and their set is smaller than the number of pits they can
be allocated to. Given the high cost of a shovel, a minimum pro-
ductivity is required to justify its use. Also, the trucks used to
transport the material (ore and waste rock) may have different
capacities.

This work deals with dynamic truck allocation in the OPMOP
problem. In the dynamic allocation system, the trucks are not fixed
to specific pits/or shovels. A truck can be directed to different pits,
which increases the fleet productivity, reducing the amount of
equipment needed to maintain a certain level of production. In this
system it is also possible to decrease the time of the queue, since
the truck can be allocated to different loading points. The disad-
vantages of dynamic vehicle allocation are: the demand for a great-
er number of operations; and a computerized dispatching system
for the mining trucks.

In this problem, the objective is to determine the extraction rate
at each pit in a way that production and quality goals are satisfied,
and to minimize the number of trucks needed for the production
process. The Fig. 1 shows a typical production scenario for the
problem here described. In this figure, there are equipments as-
signed to only two pits. The quantity extracted from each pit de-
fines the quality of the final product (ore mixture), since each pit
has a known composition.

4. Mathematical model

This section presents a new mixed integer programming
(MIP) model based on goal programming (Romero, 2004) to
Fig. 1. Example of mining operations in a open-pit mine.
solve OPMOP. This model refers to production planning for one
hour, replicated while there is not any exhausted pit and
operational conditions of the mine remain the same. The objec-
tive is to minimize the deviations of the production and quality
goals and to reduce the number of vehicles required for the
operation.

Let the parameters be:
O set of ore pits;
W set of waste rock pits;
F set of ore and waste rock pits, i.e., F = O [W;
P set of control parameters analyzed in the ore (% Fe, SiO2,

etc.);
S set of shovels;
T set of mining trucks;
Or recommended rate of mining for ore (ton/hour);
Ol minimum rate of mining for ore (ton/hour);
Ou maximum rate of mining for ore (ton/hour);
Wr recommended rate of mining for waste rocks (ton/hour);
Wl minimum rate of mining for waste rocks (ton/hour);
Wu maximum rate of mining for waste rocks (ton/hour);
a� penalty for negative deviation from the production of ore;
a+ penalty for positive deviation from the production of ore;
b� penalty for negative deviation from the production of

waste rocks;
b+ penalty for positive deviation from the production of waste

rocks;
pij percentage of the control parameter j in pit i (%);
prj recommended percentage for the control parameter j in

the mixture (%);
plj minimum allowable percentage for the control parameter j

in the mixture (%);
puj maximum allowable percentage for the control parameter

j in the mixture (%);
k�j penalty for a negative deviation of the control parameter j

in the mixture;
kþj penalty for a positive deviation of the control parameter j

in the mixture;
xl penalty for use of the lth truck;
Qui maximum rate of mining for pit i (ton/hour);
Txl maximum rate of use for truck l (%);
Slk minimum productivity for shovel k (ton/hour);
Suk maximum productivity for shovel k (ton/hour);
capl capacity of truck l (ton);
ctil total cycle time of truck l in pit i (min);
glk 1, if truck l is compatible with shovel k; and 0, otherwise.

Consider also the following variables of decision:
xi mining rate of pit i (ton/hour);
yik 1, if shovel k operates in pit i; and 0, otherwise.
nil number of trips that truck l performs to pit i;
D�o negative deviation from the recommended ore production

(ton/hour);
Dþo positive deviation from the recommended ore production

(ton/hour);
D�w negative deviation from the recommended waste rock pro-

duction (ton/hour);
Dþw positive deviation from the recommended waste rock pro-

duction (ton/hour);
d�j negative deviation of the control parameter j in the mix-

ture (ton/hour);
dþj positive deviation of the control parameter j in the mixture

(ton/hour);
Ul 1, if truck l is being used; and 0, otherwise.

Next, the Eqs. (1)–(26) present the MIP model for the problem
in focus.
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min
X

j2P

k�j d�j þ
X

j2P

kþj dþj þa�D�o þaþDþo þb�D�wþbþDþwþ
X

l2T

xlUl ð1Þ

X

i2O

ðpij�pujÞxi 6 0 8j2 P; ð2Þ

X

i2O

ðpij�pljÞxi P 0 8j2 P; ð3Þ

X

i2O

ðpij�prjÞxiþd�j �dþj ¼ 0 8j2 P; ð4Þ

X

i2O

xi 6Ou; ð5Þ

X

i2O

xi P Ol; ð6Þ

X

i2O

xiþD�o �Dþo ¼Or ; ð7Þ

X

i2W

xi 6Wu; ð8Þ

X

i2W

xi P Wl; ð9Þ

X

i2W

xiþD�w�Dþw ¼Wr ; ð10Þ

xi 6Qui; 8i2 F; ð11Þ
xi P 0; 8i 2 F; ð12Þ

d�j ;d
þ
j P 0; 8j2 P; ð13Þ

D�o ;D
þ
o 0; ð14Þ

D�w;D
þ
w0; ð15Þ

X

k2S

yik 6 1; 8i 2 F; ð16Þ

X

i2F

yik 6 1; 8k 2 S; ð17Þ

yik 2 f0;1g; 8i 2 F; 8k2 S; ð18Þ

xi�
X

k2S

Sukyik 6 0; 8i 2 F; ð19Þ

xi�
X

k2S

Slkyik P 0; 8i 2 F; ð20Þ

nilctil�60
X

k2S; glk¼1

yik 6 0; 8i 2 F; 8l 2 T; ð21Þ

xi�
X

l2T

nil capl ¼ 0; 8i 2 F; ð22Þ

1
60

X

i2F

nilctil 6 Txl; 8l2 T; ð23Þ

Ul�
1

60

X

l2T

nilctil P 0; 8i2 F; ð24Þ

nil 2 Zþ8i 2 F; 8l 2 T; ð25Þ
Ul 2 f0;1g; 8l2 T: ð26Þ

The objective function (1) seeks to minimize the differences
with regard to production goals of ore and waste rock, quality
targets of the mixture, as well as to reduce the number of trucks
used. The constraints (2)–(15) model the classic problem of
blending with goals. Constraints (2) and (3) assure that the max-
imum and minimum limits for the control parameters must be
verified, respectively. Constraints (4), together with the objective
function, aim to meet the recommended percentage for the con-
trol parameters. Constraints (5) and (6) guarantee that the maxi-
mum and minimum production of ore are verified. The
constraints (8) and (9) model the same, but considering waste
rock. Constraints (7) and (10) relate respectively to the care of
the production targets of ore and waste rock, while the con-
straints (11) limit the maximum mining rate defined by the user
for each pit.
The other constraints which complement the model can be di-
vided into two groups. The first concerns the allocation of shovels
and productivity range in order to justify the equipment use. The
second is related to the allocation of trucks for material transport
in the mine.

For the first group, constraints (16) define that at most one sho-
vel can be allocated to each pit, while constraints (17) define that
each shovel can be allocated to one pit at most. Constraints (18)
define that the variables yik are binary. Each constraint (19) and
(20) limits, respectively, the maximum and minimum mining rate
defined by shovel k allocated to pit i.

In the second group of constraints, each constraint (21) forces
the truck to only perform trips where there is compatible shovel
allocated. The constraints (22) are such that the mining rate of a
pit is equal to the total production of the trucks allocated to that
pit. The constraints (23) ensure that each truck l is in operation
for at most Txl% in 1 hour. The constraints (24), together with the
objective function, force the number of trucks used to be penalized.
The constraints (25) force the number of trips that a truck performs
to a pit to be a positive integer value. Constraints (26) indicate that
the variables Ul are binary.
5. Heuristic model

5.1. Representation of a solution

A solution is represented by a matrix R = [YjN], where Y is a ma-
trix jFj � 1 and N is a matrix jFj � jTj.

Each cell yi of the matrix YjFj�1 represents the shovel k allocated
to pit i. A value �1 means that there is not any shovel allocated to
pit i. If there are not any trips made to pit i, the shovel k associated
to that pit is considered inactive and it is not penalized for a pro-
duction below the minimum for a shovel.

In the matrix NjFj�jTj, each cell nil represents the number of trips
that each truck l 2 T performs to a pit i 2 F. A value 0 (zero) means
that there are not any trips allocated to the truck l to the pit i, while
a value �1 indicates that the truck and the shovel allocated to that
pit are not compatible.

Fig. 2 illustrates a solution involving four trucks, four pits and
three shovels. In this figure, for example, the truck 1 makes two
trips to pit 1 and one trip to pit 3. The shovel 2 is assigned to pit
4 and the truck 1 is incompatible with it. In this solution, pit 2 is
available.

From Y, N and the cycle times from the matrix CT(jFj � jTj
dimensional) the extraction rate at each pit is determined, as well
as the sum of the cycle times for each truck.

5.2. Neighborhoods

To explore the solution space of the problem, eight movements
were developed. Each movement defines a neighborhood N(�),
which are presented in Sections 5.2.1–5.2.8.

5.2.1. Movement number of trips – NNT(s)
This movement increases or decreases the number of trips of

truck l to pit i where there’s an allocated compatible shovel. Thus,
in this movement, a cell nil of the matrix N has its value increased
or decreased by one trip.

5.2.2. Movement load – NL(s)
Consists of changing two separate cells yi and yk of the matrix Y,

i.e. exchanging the shovels that operate in the pits i and k, if both
pits have allocated shovels. If only one of the two pits has an allo-
cated shovel and the other is available, this movement will relocate
the shovel to the available pit. In order to maintain compatibility
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between shovels and trucks, the trips made to that pits are relo-
cated along with the shovels.
5.2.3. Movement relocate trip from a truck – NTT(s)
Consists of choosing two cells nil and nkl from the matrix N and

passing one trip from nil to nkl. Thus, in this movement, the truck l
cancels one trip to pit i and does it at another pit k. Compatibility
restrictions between equipment are respected in this movement,
so the trip relocation is only done when there’s compatibility be-
tween them.
5.2.4. Movement relocate trip from a pit – NTP(s)
Two cells nil and nik from the matrix N are chosen and a unit of

nil is relocated to nik. So this movement consists of relocating one
trip from truck l to truck k which are both working at pit i. Compat-
ibility restrictions between equipment are respected in this move-
ment, so the trip relocation is only done when there’s compatibility
between them.
5.2.5. Movement pit operation – NPO(s)
Consists of removing from operation the shovel that is allocated

to pit i. The movement removes all the trips made to this pit, leav-
ing this shovel inactive. The shovel is again put in operation as soon
as a new trip is associated to it.
5.2.6. Movement truck operation – NTO(s)
Consists of selecting a cell nil from the matrix N and zero-fill its

content, meaning that the truck l does not operate in pit i anymore.
5.2.7. Movement swap trips – NST(s)
Two cells of the matrix N are selected and one trip is relocated

from one to another. This movement can occur in any cell of the
matrix N if compatibility restrictions between equipments are
respected.
5.2.8. Movement swap shovels – NSS(s)
Consists of swapping two separate cells yi and yk from the ma-

trix Y, i.e. exchanging the shovels that operate in pits i and k. This
movement is similar to the movement Load (Neighborhood NL),
because the shovels are also exchanged, but the trips made to these
pits are not exchanged. To maintain compatibility between the
shovels and trucks, the trips made by incompatible equipment
are removed.

Fig. 2 shows examples of these movements, where m is a move-
ment that belongs to the neighborhood N(s). In this figure, a signal
* close to a number means the modification made in the solution s.
For example, solution s �mTT differs of s in relation to the trips of
the truck 2 for the pits 1 and 3. This neighbor was obtained from s
by reassigning one trip of the truck 2 from the pit 1 to the pit 3.
Now, this truck realizes three trips to the pit 1 and one trip to
the pit 3.
5.3. Evaluation of a solution

As the developed movement can generate infeasible solutions,
a solution is evaluated by a mono-objective function f : S! R,
where S represents the set of all possible solutions s generated
from the movements presented in the previous section. This
function f, defined by Eq. (27), to be minimized, consists of
two parts: first, the objective function itself (Eq. (1) from the
mathematical programming model) and second, a group of func-
tions that penalize the occurrence of infeasibility in current
solution.

f ðsÞ ¼ f MPðsÞ þ f pðsÞ þ
X

j2P

f q
j ðsÞ þ

X

l2T

f u
l ðsÞ þ

X

k2S

f c
k ðsÞ: ð27Þ

In Eq. (27), fMP(s) is the objective function from the mathemat-
ical programming model given by Eq. (1), i.e. fMP(s) evaluates s 2 S
considering production and quality goals, as well as the number
of trucks used; fp(s) evaluates s considering unmet production
goals for ore and waste rock; f q

j ðsÞ evaluates s considering the
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infeasibility of the jth control parameter; f u
l ðsÞ evaluates s regard-

ing disrespect of the maximum use rate of the lth truck; and f c
k ðsÞ

evaluates s for disrespect of the productivity limits of the shovel
k.

5.4. Initial solution generation

An initial solution to the problem is built in two steps. First, the
allocation of the shovels and the distribution of trips are done for
the waste rock pits; secondly, for the ore pits. This strategy is
adopted because in the waste rock pits it is important to meet pro-
duction and not necessary to observe the quality of the control
parameters.

In the first step a greedy heuristic is used (Algorithm 1). In
this algorithm, we define the ‘‘best” choice according to our
greedy criterion as follows: for waste rock pits, the best is the
one with the greatest mass; for shovels, the best is the one with
the greatest production and for trucks, the largest one is the
best.

Algorithm 1. BuildWasteSolution

Input: S, T, W, Wr

Output: Solution sW

T Set of available trucks ordered by their capacities (the
first is the truck that has the greatest capacity);

S Set of available shovels ordered by their maximum
productivities (the first is the shovel that has the greatest
productivity);

W Set of available waste rock pits ordered according to
their maximum rates of mining (the first is the pit that has
the greatest rate);

while the waste rock production is less than the recommended
one and there are available waste rock pits do
Select the first pit i from W;
if there is no shovel at pit i then

if All shovels are assigned then Remove pit i from W else
Update sW assigning the best available shovel to pit i;

end
if Pit i was not removed from W then

Find a truck l 2 T such that: (a) it is compatible with the
shovel assigned to pit i; (b) it can do one more trip; (c) its
capacity does not violate the shovel’s maximum
production;

if truck l exists then Update sW assigning the maximum
number of trips of the l-truck to pit i;

else Remove pit i from W;
end

end
return sW;

For the second step, a heuristic based on GRASP is used. In its
original form (Feo and Resende, 1995), GRASP is an iterative meth-
od that has two phases: construction and local search. The con-
struction phase builds a feasible solution, whose neighborhood is
explored by local search. The best solution over all GRASPmax iter-
ations is returned as the result.

For the ore pits, the classification of the candidate elements to
be inserted in the solution is made considering that: (a) the best
pit is the one that has the least deviation of the control parameter
levels in relation to the targets; (b) the best shovel is the one that
provides the greatest production and (c) the best truck is the one
that has the smallest capacity.
In order to select the ore pits in the second step, a guide
function g, which measures the deviation values of the quality
goals, is used. According to this function, it is more likely to
choose the ore pit that best helps to minimize the deviations
from the quality targets. First, all candidate pits (CL) are sorted
with respect to the function g, where CL is the set of available
pits. From CL, the construction phase creates a restricted candi-
date list (RCL) using the best qualified ore pits according to the
guide function. The parameter c 2 [0,1] defines the size of this
restricted list. The procedure includes the best dc � jCLje pits in
the RCL.

Afterwards, the procedure chooses a pit randomly from this
list using a strategy proposed by Bresina (1996), and adds it to
the partial solution. The strategy consists in assigning a rank-
based probability for each candidate pit in RCL. The bias function
bias(r) = 1/(r) is associated to the rth best classified pit. Then, each
candidate pit is chosen with probability pðrÞ ¼ biasðrÞ=P

i¼1;...;jRCLjbiasðiÞ. The construction phase ends when the ore pro-
duction goal is reached or when there are no more pits or shovels
available. In each iteration of this construction, the shovel with
the greatest production and the truck that has the smallest capac-
ity is chosen. Algorithm 2 outlines the second step of the con-
struction phase.

According to Lourenço et al. (2003), the initial solution is cer-
tainly important to achieve high quality solutions in the first in-
stants of the search. Since the construction phase of GRASP is
often able to produce solutions close to some local optimum (Re-
sende and Ribeiro, 2010) and our local search procedures are very
expensive (Section 5.2), we opted for executing a number of itera-
tions of the construction procedure alone before proceeding do the
next phase.

Algorithm 2. BuildOreSolution

Input: sW, c, g, O, S, T, Or

Output: Solution s0

s0 sW;
T Set of available trucks ordered by their capacities (the

first is the truck that has the smallest capacity);
S Set of available shovels ordered by their maximum

productivities (the first is the shovel that has the greatest
productivity);

while the ore production is less than the recommended one and
there are available ore pits do
CL Set of available ore pits i 2 O ordered according to
function g;
jRCLj = dc � jCLje;
Select i 2 RCL according to the bias function;
if there is no shovel at pit i then

if All shovels are assigned then Remove pit i from CL else
Update s0 assigning the best available shovel to pit i;

end
if Pit i was not removed from CL then

Find a truck l 2 T such that: (a) it is compatible with the
shovel assigned to pit i; (b) it can do one more trip; (c) its
capacity does not violate the shovel’s maximum
production;
if truck l exists then Update s0 assigning one l-truck trip

for the pit i;
else Remove pit i from CL;

end
end
return s0;
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5.5. Proposed algorithm

The proposed algorithm, called GGVNS, combines ideas from
GRASP (Resende and Ribeiro, 2010) and General Variable Neighbor-
hood Search – GVNS (Hansen et al., 2008b) procedures. Algorithm 3
outlines the steps.

Algorithm 3. GGVNS

Input: sets O, W, P, S, T, . . . (see parameters in Section 4)
Input: c, GRASPmax, IterMax
Output: Solution s
1 sW BuildWasteSolution()
2 s0 best solution from GRASPmax calls to

BuildOreSolution(sW,c)
3 s VND(s0)
4 p 0
5 while stop criterion not satisfied do
6 iter 0
7 while iter < IterMax and stop criterion not satisfied do
8 s0  s
9 for i = 1top + 2 do
10 k SelectNeighborhood()
11 s0  Shake(s0,k)
12 end
13 s00  VND(s0)
14 if f(s00) < f(s) then
15 s s00

16 p 0
17 iter 0
18 end
19 iter iter + 1
20 end
21 p p + 1
22 end
23 return s
Building an initial solution s0 (lines 1 and 2 of Algorithm 3) is
made by the procedure described in subsection 5.4. The local
search (lines 3 and 13 of Algorithm 3), in turn, uses the VND proce-
dure (see the pseudo-code in Algorithm 3) with the movements
described in Section 5.2.

Whenever a given number of iterations without improvement is
reached, the GGVNS algorithm applies p + 2 times the Shake proce-
dure, using a previously selected neighborhood. The procedure
SelectNeighborhood (line 10 of the Algorithm 3) works as follows.
We randomly select a neighborhood k from the list {NSS, NTO, NPO,
NST, NNT, NL} with probabilities {10%, 10%, 10%, 20%, 30%, 20%},
respectively. We observed that some neighborhoods are more
likely to contain solutions which are significantly different of the
current solution. These probabilities reflect this observation. Each
Shake(s0, k) call (line 11 of Algorithm 3) performs a random move-
ment from neighborhood k of the shaken solution s0. After IterMax
iterations without improvement, we increment p in order to gener-
ate solutions which become increasingly distant from the current
location in the search space.

The local search applied on the solution returned by the Shake
procedure is based on the VND procedure (line 13 of Algorithm
3). If VND finds a better solution, the variable p returns to the low-
est value, that is, p = 0.
Algorithm 4. VND

Input: r neighborhoods in random order: NL, NNT, NTT and NTP

Input: Initial solution s
Output: Solution s
1 k 1
2 while k 6 r do
3 Find the best neighbor s0 2 N(k)(s)
4 if f(s0) < f(s) then
5 s s0

6 k 1
7 end
8 else
9 k k + 1
10 end
11 end
12 return s
As in the preliminary tests some neighborhoods did not produce
good quality solutions or spent too much processing time to
achieve a good one, only a small group of neighborhoods was used
in the local search. Thus, the VND used the following neighbor-
hoods: NL, NNT, NTT and NTP. Furthermore, the VND procedure (see
Algorithm 4) operates in the neighborhoods in a random order,
which can be different at each VND call (more details in the
Section 7).

6. Scenarios description

The scenarios utilized for the tests refer to an iron mining com-
pany located in the state of Minas Gerais, Brazil and are available at
http://www.iceb.ufop.br/decom/prof/marcone/projects/mining.html.

Table 1 describes some characteristics of the instances. The col-
umns ‘‘# pits, # shovels, # trucks and par.” indicate the number of
pits, shovels, trucks and control parameters (chemical and/or gran-
ulometric), respectively. The column ‘‘characteristics” shows the
number and the truck capacity or the shovel productivity. For
example, the pair (15,50t) means there are 15 trucks (or shovels)
of 50 ton of capacity (or maximum productivity).

The following weights were adopted in the evaluation function:
a� ¼ aþ ¼ b� ¼ bþ ¼ 100; k�j ¼ kþj ¼ 1 8j 2 T; xl ¼ 1 8l 2 V ; Txl ¼
75% 8l 2 V .

7. Computational experiments and analysis

The proposed algorithm, so-called GGVNS, was coded in C++
programming language and compiled with the GNU Compiler Col-
lection version 4.0. The mathematical programming model was
written in AMPL language (Fourer et al., 1990) and solved by the
ILOG CPLEX optimizer version 11.01 (ILOG, 2008), using default
parameters. Both heuristic and exact models were tested in a PC
Pentium Core 2 Quad (Q6600), 2.4 GHz, with 8 GB of RAM, running
Windows Vista.

All the experiments considered the following parameters: Iter-
Max = 5000, GRASPmax = 10,000 and c = 0.3.

As mentioned in Hansen et al. (2008b), one important decision
to build an efficient VND procedure is to select an application order
of the different neighborhoods. In a preliminary set of experiments
(10 runs for each instance) we tried to discover the optimal se-
quence of neighborhood application, that is, the one which, in aver-
age, produces better solutions in a limited amount of time when
running the GGVNS algorithm. To accomplish this objective, we
adopted the following strategy. Firstly, we executed experiments

http://www.iceb.ufop.br/decom/prof/marcone/projects/mining.html


Table 1
Characteristics of the instances.

Inst. # Pits Shovels # par. Trucks

# Shovels Characteristics # Trucks Characteristics

opm1 17 8 (4,900t), (2,1000t) 10 30 (15,50t), (15,80t)
(2,1100t)

opm2 17 8 (4,900t), (2,1000t) 10 30 (15,50t), (15,80t)
(2,1100t)

opm3 32 7 (2, 400t), (2,500t) 10 30 (30,50t)
(1,600t), (1,800t)
(1,900t)

opm4 32 7 (2, 400t), (2,500t) 10 30 (30,50t)
(1,600t), (1,800t)
(1,900t)

opm5 17 8 (4,900t), (2,1000t) 5 30 (15,50t), (15,80t)
(2,1100t)

opm6 17 8 (4,900t), (2,1000t) 5 30 (15,50t), (15,80t)
(2,1100t)

opm7 32 7 (2,400t), (2,500t) 5 30 (30,50t)
(1,600t), (1,800t)
(1,900t)

opm8 32 7 (2,400t), (2,500t) 5 30 (30,50t)
(1,600t), (1,800t)
(1,900t)

Table 2
Results of the preliminary experiments.

Instance Phase I Phase II Phase III Random

L NT TT TP L � NT L � TT L � TP L � TT � NT � TP L � TT � TP � NT

opm1 232.80 1,816.40 235.54 236.85 232.66 232.36 233.11 1696.35 236.20 230.12
opm2 335.37 340.70 2686.72 326.78 350.27 340.93 327.30 332.68 338.18 256.56
opm3 164,058.99 164,054.62 164,057.97 164,067.40 164,059.08 164,057.56 164,054.60 164,057.96 164,054.29 164,064.68
opm4 164,138.64 164,143.77 164,126.98 164,123.92 164,118.64 164,158.45 164,123.00 164,135.01 164,133.37 164,153.92
opm5 229.86 1692.72 1690.83 229.07 232.01 229.58 228.93 450.71 231.05 228.09
opm6 326.60 330.51 308.14 2703.00 319.09 325.50 2,672.08 308.21 312.88 237.97
opm7 164,021.50 164,021.65 164,021.67 164,021.58 164,021.55 164,021.86 164,021.59 164,021.56 164,021.66 164,021.89
opm8 164,024.32 164,024.36 164,024.53 164,023.89 164,023.90 164,023.58 164,024.43 164,024.08 164,023.62 164,027.29

GAP (%)
opm1 2.501 699.753 3.707 4.284 2.440 2.309 2.639 646.894 3.996 1.321
opm2 30.814 32.894 947.986 27.465 36.628 32.985 27.669 29.766 31.913 0.074
opm3 0.019 0.017 0.019 0.025 0.019 0.019 0.017 0.019 0.017 0.023
opm4 0.050 0.053 0.043 0.041 0.038 0.062 0.040 0.048 0.047 0.059
opm5 1.240 645.560 644.726 0.892 2.189 1.120 0.834 98.516 1.768 0.462
opm6 38.052 39.702 30.247 1042.531 34.876 37.586 1,029.463 30.278 32.251 0.588
opm7 0.002 0.003 0.003 0.003 0.002 0.003 0.003 0.003 0.003 0.003
opm8 0.003 0.003 0.004 0.003 0.003 0.003 0.004 0.003 0.003 0.005

Average 9.085 177.248 203.342 134.405 9.524 9.261 132.583 100.691 8.750 0.317
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considering each one of the neighborhoods as the first neighbor-
hood in the sequence, and the remaining ones were chosen in a
random order, at each VND call (Phase I columns of the Table 2).
For simplicity, the neighborhoods NL, NNT, NTT, NTP are denoted by
L, NT, TT, TP, respectively, in the Table 2. Considering these results,
we observed better results in relation to the average gap (the last
row in the Table 2) when selecting NL as the first neighborhood.
Therefore, this neighborhood was kept as the first in the sequence.

After that, we ran experiments to define the second neighbor-
hood of the sequence. From the remaining neighborhoods {NNT,
NTT, NTP}, NTT produced the best results in relation to the same
metric used previously (Phase II columns in Table 2), being se-
lected to occupy the second position.

Finally, additional experiments (Phase III columns in Table 2)
indicated that it would be better to search in the neighborhood
NTP before proceeding to search in NNT. In these experiments, we
observed that our ‘‘best” sequence of neighborhoods does not out-
perform many of the results produced when the neighborhood
application order was partially random (Columns 2–8 in Table 2).
This motivated us to perform an additional experiment in which
the neighborhood application sequence was completely random
at each VND call. This experiment produced the best results, indi-
cating that the random selection of neighborhoods to search is
the best option (Random column in the Table 2). The results in Ta-
ble 3 were produced using this last strategy.

In the first set of experiments we evaluated GGVNS considering
its ability to produce good solutions in a short amount of time.
Considering the needs of decision makers, we limited the execu-
tion time to 2 minutes, which is a typical value for the maximum
tolerance in a real case. The GGVNS algorithm was applied 30 times
for each instance. For CPLEX, we also allowed longer execution
times for searching for the optimal solution.

Results of this set of experiments appear in Table 3. In this table,
column ‘‘best known” refers to the best known cost found in all our
experiments. In column ‘‘opt.” we indicate by ‘‘

p
” instances in

which CPLEX succeeded in proving the optimality of the best
known cost. Columns ‘‘gap” are computed as follows: consider that
f �i is the best known cost for instance i (optimal cost for some in-
stances), f CPLEX

i is the upper bound obtained at the end of CPLEX
execution for instance i and �f GGVNSi is the average value found in



Table 3
Experimental results: mathematical programming model in CPLEX and GGVNS heuristic.

Instance Best known CPLEX GGVNS

2 hours 2 minutes

Cost Opt.a Cost Gap Cost Gap Best Average Std. dev. Gap

opm1 227.12 227.12 0.00 230.65 1.55 230.12 230.12 0.01 1.32
opm2 256.37 257.66 0.50 4858.39 >100.00 256.37 256.56 0.26 0.07
opm3 164,027.15

p
164,027.15 0.00 164,042.60 0.01 164,039.12 164,064.68 17.24 0.02

opm4 164,056.68
p

164,056.68 0.00 164,061.80 0.00 164,099.66 164,153.92 29.43 0.06
opm5 227.04 227.04 0.00 7229.07 >100.00 228.09 228.09 0.00 0.91
opm6 236.58 236.58 0.00 236.58 0.00 236.58 237.97 2.38 0.59
opm7 164,017.46

p
164,017.46 0.00 164,017.46 0.00 164,021.38 164,021.89 0.34 0.00

opm8 164,018.65
p

164,018.65 0.00 164,018.65 0.00 164,023.73 164,027.29 1.60 0.00

a Considering CPLEX mipgap tolerance 610�5, except for opm3, which used mipgap tolerance 610�4.

Fig. 4. Evolution of upper and lower bounds in CPLEX – instance opm2.
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the 30 executions of GGVNS algorithm, gap is computed for each in-
stance i for the CPLEX optimizer ðgapCPLEX

i Þ and for GGVNS ðgapGGVNSi Þ
in Eqs. (28) and (29), respectively.

gapCPLEX
i ¼ f CPLEX

i � f �i
f �i

; ð28Þ

gapGGVNSi ¼
�f GGVNSi � f �i

f �i
: ð29Þ

As can be seen in Table 3, considering the time limit of two min-
utes, CPLEX was able to prove the optimality of the solution only in
two of the eight instances. In addition, for another two instances
(opm2 and opm5), CPLEX presented very high gap. For the other
hand, GGVNS presented near best known solutions (gap < 1.5%) in
all instances, even with the time limit constraint. A remarkable re-
sult for GGVNS appeared in the hard instances opm2 and opm5. In
these instances, CPLEX could not provide a solution satisfying pro-
duction goals within 2 minutes, while GGVNS always produced
solutions satisfying this requirement in the restricted time. In in-
stances 3, 4, 7 and 8 the solutions presented a very high cost. We
observed that this happens due to a waste production goal which
cannot be satisfied, generating a constant in the objective function.
We decided to not change this goal to maintain compatibility with
previous works.

One important result would be the discovery of the optimal
solution for the remaining instances 1–6. This motivated us to per-
form the longer runs (two hours) of the CPLEX optimizer. Within
this time limit, CPLEX found the optimal solution for two addi-
tional instances: opm3 and opm4. In Figs. 3–5 we plotted the evo-
lution of the lower and upper bounds during CPLEX search for
Fig. 3. Evolution of upper and lower bounds in CPLEX – instance opm1.

Fig. 5. Evolution of upper and lower bounds in CPLEX – instance opm5.
some instances. As can be seen, although CPLEX heuristics man-
aged to improve the upper bounds, the lower bounds remained
stable. After a certain amount of time, both lower and upper
bounds stagnated, which led us to believe that longer execution
times would not suffice to produce optimal solutions using our
formulation.

Below we analyze the results of the proposed algorithm with re-
gard to the quality of the control parameters. For each instance,
considering the 30 executions of GGVNS, we calculated the largest



Fig. 6. Deviation of the control parameters in the mixture for the instance opm2.

Fig. 7. Deviation of the control parameters in the mixture for the instance opm3.
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absolute error between the recommended percentage prj for the
control parameter j in the blending and the encountered percent-
age epji for this control parameter in all executions i of the GGVNS.
For this calculation we chose the solution of the i th execution of
the GGVNS in which the percentage epji is the farthest from the rec-
ommended percentage prj. The symbol + in the Figs. 6 and 7 repre-
sents the biggest absolute error for the instances opm2 and opm3,
respectively. We also calculated the absolute error between the
recommended percentage prj for the control parameter j in the
blending and the average of the encountered percentages epj for
this control parameter in the GGVNS solutions. The symbol h in
the Figs. 6 and 7 represents this error for the instances opm2 and
opm3, respectively.

While the absolute errors for the instance opm2 (Fig. 6) vary
from 0.32% up to 11.49%, they reach 40.53% in the instance opm3
(Fig. 7). This is because the minimum and maximum allowable
percentages for the control parameters in the mixture vary from
one instance to another. In the instance opm3 these values are,
respectively, 0% and 100%, that is, the percentage of each control
parameter can vary from 0% to 100% in the solution. On the other
hand, in the instance opm2, the difference between the minimum
and maximum allowable percentages is smaller, so forcing the
encountered percentages for the control parameters to be closer
to the recommended percentages. For the remaining instances,
the error behavior is similar to the one obtained for opm2 or opm3.
8. Conclusions

This work dealt with the operational planning of mines consid-
ering the dynamic allocation of trucks. Because of the complexity
of this combinatorial problem, we proposed a hybrid heuristic
algorithm, called GGVNS, which combines the heuristic procedures
GRASP and General Variable Neighborhood Search to solve it.

Using instances from literature, the proposed heuristic algo-
rithm was compared to the optimizer CPLEX 11.0.1 applied to a
mathematical programming model, also developed in this work.
It was found that the GGVNS algorithm is competitive with CPLEX
solver, since GGVNS is able to find good quality solutions quickly
with low variability. Since staff decisions have to be made quickly,
the results validate the use of the proposed algorithm as a tool for
decision support.

As future works we consider to integrate the mathematical pro-
gramming solver with GGVNS, with the aim of combining the fast
solution times of GGVNS with the systematic exploration of the
search tree of exact solvers. We are also studying the improvement
of GGVNS by adding a Path Relinking strategy to work with an elite
pool of solutions.
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