Electronic Notes in Theoretical Computer Science 14 (1998)
URL: http://www.elsevier.nl/locate/entcs/volumel4.html 10 pages

A Type System for Context-dependent
Overloading

Carlos Camarao

Departamento de Ciéncia da Computacdo, Universidade Federal de Minas Gerais,
31270-010 Belo Horizonte, Brasil

Lucilia Figueiredo

Departamento de Computacdo, Universidade Federal de Quro Preto,
35400-000 Ouro Preto, Brasil

Abstract

This article presents a type system for context-dependent overloading, based on
the notion of constrained types. These are types constrained by the definition of
functions or constants of given types. This notion supports both overloading and
a form of subtyping, and is related to Haskell type classes [11,2], System O [7] and
other systems with constrained types [9,8]. We study an extension of the Damas-
Milner system[4,1] with constrained types. The inference system presented uses a
context-dependent overloading policy, which is specified by means of a predicate
used in a single inference rule. The idea simplifies the treatment of overloading,
enables the simplification of inferred types (by means of class type annotations),
and is adequate for use in a type system with higher-order types.

1 Introduction

In a previous work by the authors, presented at the First Workshop on For-
mal Foundations of Software Systems ', a type system for context-independent
overloading was presented, which removed some restrictions imposed by exist-
ing systems with support for polymorphism, type inference and overloading.
The article also made preliminary comments on the idea of defining types pa-
rameterised on constrained polymorphic types. This article presents a more
powerful type system, that adopts a context-dependent overloading policy.
Using this policy, overloading is resolved when (and if) there is enough infor-
mation provided by the relevant context. Consider the following example:

1 Sponsored by the National Science Foundation (NSF) and Conselho Nacional de De-
senvolvimento Clientifico e Tecnoldgico (CNPq) and held in the Pontificia Universidade
Catdlica do Rio de Janeiro on 5-9 May 1997.

@1998 Published by Elsevier Science B. V. Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

CAMARAO & FIGUEIREDO

1 in
1.0 in ...

let one
let one

In our core system, called CT, the type assigned to one in a context after the
let-bindings above is:

{one : a}. «

where « is a fresh type variable. That indicates, informally, a type for which
there is a constant one of that type. In a context after the let-bindings,
requiring a value of type Int, one will behave as an Int. In this context, Int
(as well as Real) is an instance of such type.

In a typing context [' that has also an overloaded symbol £, with typings
f : Int — Real, f : Real — Int, System CT infers the following typings:

f:{f:a—>p}a—p

fone:{f:a— (,one:a}.j

where o and [are fresh type variables. The typing for f one indicates that,
in context I', this expression works like an overloaded constant; it can be used
in a context requiring either a value of type Int or Real.

Consider now a typing context where we have: g : Int — Int, g : Real —
Int, one : Int and one : Real. We have the inferred type:

g:{g:a— Int}. @ — Int

Expression g one generates a type error. No context containing this expression
can “resolve the overloading”. We will discuss this example further on Section
3.

In CT, as in System O, and in constrast to Haskell type classes, a pro-
gram can be assigned a meaning independent of its types, and every typeable
program has a single most general type.

The rest of the paper is organized as follows. Section 2 introduces the
type rules of System CT. Section 3 presents some examples of type deduction.
Section 4 presents the type inference algorithm. Section 5 concludes.

2 Type System

We use a kernel language that is similar to Core-ML [4,1,5] [6, Section 11.2].
We include value constructors (k € K) and type constructors (C' € C) and

2

CAMARAO & FIGUEIREDO

Terms ex=z| Mu.e| ee | letx=eine

Simple Types ro=a|l T=7|Cn...1y (n >0)
Constrained Types A = {0; : ;}. T (n>0)
Types o=V A (n>0)

Fig. 1. Abstract Syntax of system CT

assume (for simplicity) that overloaded variables are distinct from value con-
structors and non-overloaded variables; in particular, all lambda-bound vari-
ables are non-overloaded.

Term variables (z € X)) are divided into three groups: overloaded (o € O),
non-overloaded (u € U), and value constructors (k € K), the latter being
considered as constants, having a value fixed in a global environment.

Meta-variables v and [are used for type variables. Meta-variable k is
used to denote a set of pairs {o; : 7;}, which is called a set of constraints.

The notation tv(o) stands for the set of free type variables of 0. We assume

systematically that index ¢ in, say, x;, indicates the sequence z,... ,x,, and
similarly for index j, ranging from 1 to m (where m,n > 0). For example
{0; : 7;} and {«;} are abbreviations for {0y : 71,... ,0, : T, } and {a, ... , an },
respectively.

Figure 1 gives the syntax of pre-terms and types of system CT.

Types are modified (with respect to the type system of Core-ML) to include
constrained types. Quantified constrained types are restricted to types of let-
bound variables in typing contexts.

Renaming of bound variables in quantified types yield syntactically equal
types. Types Va; 8. A and Voy. A are also syntactically equal if tv({8;}) N
tv(A) = (0. A constrained type with a constraint that has no type variables is
syntactically equal to one without this constraint. In particular, a constrained
type k. 7 for which x = () is syntactically equal to 7.

The type rules are given in Figure 2.

A typing context T is a set of pairs, written as x : 0. In our system, a
variable z can occur more than once in a typing context, if x € O. A pair
x : o is called a typing for x. The notation ', indicates a typing context for
which it is assumed that 2 does not appear (this does not cause any restrictions
due to the possibility of renaming bound variables).

A type substitution (or simply substitution) is a function from type vari-
ables to types. If o is a type and S is a substitution, then So is used to denote
the type obtained by replacing each free type variable « in o with S(«). Sim-
ilarly, for a typing context I', the notation ST denotes {z : So | x:0 € '},
and for a set of constraints x, the notation Sk denotes {0: ST | o:7 € k}.

The overloading policy is based on unification of simple types. Function

3

CAMARAO & FIGUEIREDO

Unify(E,V) computes the most general unifying substitution for the set of
equations F between type expressions, considering that type variables in V'
are not unifiable. We define (C' is considered below to include the — type

constructor):
unify(E) = Unify(E,0)

Unify(,V)=0

Unify(FEU{Cr ..., =C"1{...7,.},\V) =
if C#C' then fail
else Unify(FU{n =1{,...,7n=17,},V) (where m =n)

Unify(EU{a=1}V)=
if =7 then Unify(E,V)
else if « occurs in 7 then fail
elseif « € V' then
if 7=0, where g ¢V
then Unify(E[f :— a],V)o (6~ «a)
else fail
else Unify(Ela:— 7],V)o (o T)

The overloading policy is controlled by predicate p, used in rule (LET).
The value given by p(oy,0,) means “o; and oy can be types of overloaded
symbols”. The evaluation of p(oy, 03) basically tests if the simple types in oy
and oy are not unifiable; it is defined by:

)
unify({m = n}) fails if oy =Veay. k1. 71,00 = V6. Ka. o,

plor,09) =X tv(r) € {a;} and tv(m) C {5}

\ false otherwise

Quantified type variables in a given type are assumed above to be distinct
from other type variables (possibly by renaming).

The notation tv(I") stands for the set of free type variables of T'.

The notation I', z : o stands for:

F,U{z:0}ifzxelU

Iz:0=
FU{z:0} ifxeOAN{z:0'} €l = p(o,0)

A type of an overloaded symbol cannot contain a free type variable (in
other words, it can only be a closed type). This forbids “local overloading”,

4

CAMARAO & FIGUEIREDO

so that = cannot be overloaded, using let x = e in €/, if a free type variable
occurs in the type of e.

Function [cg computes the type that is the least common generalisation
for a set of types. lcg is defined by (where C' is considered below to include
the — type constructor):

leg({Voy{oi : 1} T} US) =leg({T} U S)

leg({r}) =7

leg{Cm...m, C' 1] .. T} US) =
if C # C" then «a, where « is a fresh type variable
else lcg(SU{Clcg; ... lcg,})
where lcg; = leg({m;, 7]}), for i =1,... ,n and type variables
are renamed so that a = o/ whenever there exists
Ta, Tp Such that lcg({7,, 7}) = a and leg({r,, 7}) = &

leg({a} US) = o/, where o is a fresh type variable

Function lcg takes into account the fact that, for example, lcg({Int —
Int,Bool — Bool}) is aw — «, for some type variable «, and not o — o, for
some other type variable o/ Z «.

Function pt, used in rule (VAR), uses function lcg to give constrained types
for overloaded symbols.

The value pt(z,T’) is given as follows. If z € U, let 75 be the typing for x
in I'; otherwise (x € O) let {x : 0y,... ,2 : 0,} be the set of all typings for
in I'; we have:

To ifzelU
pt(x,T) =
leg({o;}) otherwise

For any given typing context I', we define an instance relation <r for this
context, between simple and class types, by:

o 7 <rp 7' if there exists S such that 7 = S7';
o 7 <r Vo,. k. 7" if there exists S such that 7 = S7' and sat(Sk, ") # 0.

Function sat(k,T") returns a set of substitutions that unifies types of over-
loaded symbols in k with the corresponding types for these symbols in T
Function sat is used in the side-conditions of rules (APPL) and (INST) to
control overloading resolution. It is defined by:

sat({o; : ;},T) ={S | dom(S) C tv({r;}) and
St; <r o;, for some o0; : 0; € I'}

5

CAMARAO & FIGUEIREDO

I'Fa:pt(x,T) (VAR)

F'Fe:k.T [o:close(k.T,T') e k.7

t(kUK,T LET
FFleto=eine : kUK. T sat(kUK T)£0 ()

'Fe:k. 1
'Fe:S(k.7)

{S} = sat(k,T) (INSTA)

Dou:k.the: k.7
F'FXu.e:kUK.T— 7

(ABS)

I'kFe:k.7 'ée:k.7
F'Fee:S(kUK. a)

S =Unify({r =7 — a},tv(l')) (APPL)
ss(S(kUK. «),T)
where « is a fresh type variable

Fig. 2. Type Rules of system CT

Predicate ss (for single substitution), used in rule (APPL), controls the
instantiation of constrained types by application. The value ss(k. 7,T) is
defined by:

sat(k,T') # 0, and
tv(r,T') Ntv(k) =) implies that sat(k,T’) is a singleton

Rule (LET) uses function close, to quantify simple and constrained types
over type variables that are not free in a typing context: close(A,I') = Vo, A,
where {a;} = tv(A) — to(T).

3 Examples

In this section we present simple illustrative examples of type derivations in
System CT.

CAMARAO & FIGUEIREDO

3.1 Application to Overloaded Constant

Consider a typing context [" with typings

g : Int — Int,
g : Real — Int,
one : Int, and

one : Real

The following are derivable, from (VAR):

'Fg:{g:a— Int}.a — Int

['F one: {one: a}. «

can be inferred.

Now, g cannot be applied to one, because ss(Int,{g : @« — Int,one :
a}. Int,T") cannot be satisfied, since sat({g : & — Int,one : a},T') is a set
with two substitutions, namely, (o« — Int) and (a +— Real).

An application of g to a constant ¢ of type Int (or Real) would generate
a correct typing g c : Int.

An application to a constant of a different type, other that Int or Real,
would constitute a type error, since ss would be false due to sat being empty.

3.2 Qwerloaded Division

Consider a typing context [with typings

/) : Int — Int — Int,

/) : Int — Int — Real,

(

(

(/) : Real — Real — Real,
(=) : Int — Int — Int, and
(

) : Real — Real — Real

Figure 3 presents a type derivation for
(4/2)/(5/2) =1 : Bool

in System CT. In this figure we use I, R and B for Int, Real and Bool,
respectively; sequents are abbreviated, by writing only terms and their types,
since the typing context is always I'.

CAMARAO & FIGUEIREDO

4:1 /:{/:a—ma—>pB}.aosa—>f

4/):{/:1=-1=8}.158 2:1
/:{/:a=a=ad}a=sa—=a 4/2:{/:1 -1 —p3}.8
(4/2)/):{/ :1=1=p,/:8=5B—a’'}. B=a’ 5/2:{/:1>1—p8'}.8'
(=1): 1B (4/2)/(8/2) : {/ :1=1=8,/:B—=B8—=a’}.a’

(4/2)/(8/2) =1:{/:1-1—8,/:8—->B—1}.B (APPL)

(&/2)/(5/2) =1 :8

(INSTA)
Fig. 3. Ilustrative type derivation for System CT

From this typing derivation, it is easy to see that
(4/2)/(5/2) = 1.0 : Bool

is not typable, since sat({/ : Int — Int — 3,/ : f — [— Real}l, ') =
{(# + Int), (B — Real)} (not a singleton).

4 Type inference

Figure 4 presents the type inference algorithm. Function PP computes prin-
cipal pairs (type and context) for a given term.

For simplicity, we do not consider a-substitutions and assume that if a
variable is let-bound, then it is not lambda-bound. We can see that this
assumption is important in examples for which the assumptions do not hold:
for let x = 10 in Az. x or true, PP would fail, and for 1let x = 10 in A\x. x,
PP would not give a principal typing.

Algorithm PP uses typing environments A, which are sets of pairs written
in the form = : (0,I'). We write A(x) for the set of triples (o,,T";) such that
z: (0, 1s) € A

5 Conclusion

In extensions of the Damas-Milner type system, constrained types and class
types, as defined and used in System CT, provide a simplified treament of
overloading.

In System CT the overloading policy is controlled by means of a single
predicate (p), used in rule (LET).

Types can be inferred, without the need for any type annotations, and
there is an algorithm for computing most general typings.

We are currently working on a denotational semantics for terms and types
of System CT. We are also working on a proof that algorithm PP given in
this paper indeed computes most general typings.

System CT has less restrictions than existing similar systems that extend
ML-like polymorphic type systems with overloading, for example by allow-
ing that types of overloaded functions have a type variable as the outermost
type, and overloaded non-functional values. System CT also allows overloaded

8

CAMARAO & FIGUEIREDO

PP(u,A) =
(a, {u : @}), where « is a fresh type variable

PP(o,A) =
if A(o) = {(Ve. £ 7,T)}, for some {a;}, k,7,T
then (k. 7,T)
else if A(x) = {(0y,T;)}, for some {(o;,T;)}
then (pt(z, {z : 0;}),UT)
PP(A\u.e, A) =
let PP(e,A) = (k.7,T) in
ifu:7" €T, for some 7/
then (k.7 — 7, ' — {u:7'})
else (k. « — 7, '), where « is a fresh type variable
PP(ej ey A) =
let PP(ey, A)= (k1. 71,T1)
PP(ey, A) = (ka. T2, '3), with type variables renamed
to be different from those in (7, k1, ')
S=unify{{ry =7, u:mpe€liandu: 7, € D} U{m =mn — a}),
where « is a fresh type variable
['=ST,UST,
in if ss(S(k1 U k.), I') then
if sat(S(k1 U ke),I') = {Sa}, for some Sa,
then (Sa S(k1 U ky. @), T)
else (S(k1 U k.),)
else fail

PP(let o =¢€; in ey, A) =
let PP(ey, A) = (k1. 71,11)
o = close(ky. 11,11)
in if p,(0, A,(0)) then
let A'=AU{o: (0,TU{o:0})}
PP(eg, A') = (Kg. 72,T9)
S=unify({ry=71,| u:m, €l and u: 7, € Ty},
F == SFI U SFQ
in if sat(S(k1 Ukg),[') =0 then fail
else (S(k1U ke 1), —{o: S(k1.71)})
else fail

Fig. 4. Type inference for system CT

functions or constants to be used as arguments of other (possibly overloaded)
functions.

We intend to explore the use of constrained types together with a concept

of higher-order types, that is, types that are parameterised on other types,
which can be constrained parameters. We think this enhances a functorial
view of modules as parameterised types.

9

CAMARAO & FIGUEIREDO

Further explorations of this system involve incorporating the concept of
class types in a functional programming language, studying the implications of
this concept with regards to the subtyping relation and program development,
and studying its relation to intersection types [10,3].

References

[1] Damas, Luis and Robin Milner, Principal type schemes for functional programs,
Proc. 9th ACM Symp. on Principles of Programming Languages (1982), 207
212.

[2] Hall, C., K. Hammond, S.P. Jones and P. Wadler, Type Classes in Haskell,
Proc. 5th European Symposium on Programming (1994), 241-256, Springer
LNCS 788.

[3] Jim, Trevor, What are principal typings and what are they good for,
Conf. Record of POPL’96: the 23rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 1996, pp. 42-53.

[4] Milner, Robin, A theory of type polymorphism in programming, Journal of
Computer and System Sciences 17 (1978), 348-375.

[5] Mitchell, J.C., Polymorphic type inference and containment, Information and
Computation 76 (1988), no. 2/3, 211-249.

[6]

[7] Odersky, M., P. Wadler and M. Wehr, A Second Look at Overloading, Conference
Record of Functional Programming and Computer Architecture (1995).

, Foundations for programming languages, MIT Press, 1996.

[8] Palsberg, Jens and Scott Smith, Constrained Types and Their Expressiveness,
ACM TOPLAS 18 (1996), no. 5, 519-527.

[9] Smith, Geoffrey S., Polymorphic Type Inference for Languages with Overloading
and Subtyping, Ph.D. thesis, Cornell University, 1991.

[10] van Bakel, S., Essential Intersection Type Assignment, Proc. 13th Conf.
Foundations of Software Technology and Theoretical Computer Science (R.K.
Shyamasunda, ed.), LNCS 761 (1993), pp. 13-23.

[11] Wadler, Philip, How to make ad-hoc polymorphism less ad hoc, Conf. Record of
the 16th ACM Symposium on Principles of Programming Languages (1989).

10

