
Electronic Notes in Theoretical Computer Science �� ������
URL� http���www�elsevier�nl�locate�entcs�volume���html �� pages

A Type System for Context�dependent
Overloading

Carlos Camar�ao

Departamento de Ci�encia da Computa�c�ao� Universidade Federal de Minas Gerais�

����	
	�	 Belo Horizonte� Brasil

Luc��lia Figueiredo

Departamento de Computa�c�ao� Universidade Federal de Ouro Preto�

���		
			 Ouro Preto� Brasil

Abstract

This article presents a type system for context�dependent overloading� based on

the notion of constrained types� These are types constrained by the de�nition of

functions or constants of given types� This notion supports both overloading and

a form of subtyping� and is related to Haskell type classes ������� System O �	� and

other systems with constrained types �
���� We study an extension of the Damas�

Milner system����� with constrained types� The inference system presented uses a

context�dependent overloading policy� which is speci�ed by means of a predicate

used in a single inference rule� The idea simpli�es the treatment of overloading�

enables the simpli�cation of inferred types 
by means of class type annotations��

and is adequate for use in a type system with higher�order types�

� Introduction

In a previous work by the authors� presented at the First Workshop on For�

mal Foundations of Software Systems � � a type system for context�independent

overloading was presented� which removed some restrictions imposed by exist�

ing systems with support for polymorphism� type inference and overloading�

The article also made preliminary comments on the idea of de�ning types pa�

rameterised on constrained polymorphic types� This article presents a more

powerful type system� that adopts a context�dependent overloading policy�

Using this policy� overloading is resolved when �and if� there is enough infor�

mation provided by the relevant context� Consider the following example�

� Sponsored by the National Science Foundation �NSF� and Conselho Nacional de De�

senvolvimento Cient���co e Tecnol�ogico �CNPq� and held in the Pontif��cia Universidade

Cat�olica do Rio de Janeiro on ��� May �����

c����� Published by Elsevier Science B� V� Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/


Camar�ao � Figueiredo

let one � � in

let one � ��� in � � �

In our core system� called CT� the type assigned to one in a context after the

let�bindings above is�

fone � �g� �

where � is a fresh type variable� That indicates� informally� a type for which

there is a constant one of that type� In a context after the let�bindings�

requiring a value of type Int� one will behave as an Int� In this context� Int

�as well as Real� is an instance of such type�

In a typing context � that has also an overloaded symbol f� with typings

f � Int� Real� f � Real� Int� System CT infers the following typings�

f � ff � �� �g� �� �

f one � ff � �� �� one � �g� �

where � and � are fresh type variables� The typing for f one indicates that�

in context �� this expression works like an overloaded constant	 it can be used

in a context requiring either a value of type Int or Real�

Consider now a typing context where we have� g � Int� Int� g � Real�
Int� one � Int and one � Real� We have the inferred type�

g � fg � �� Intg� �� Int

Expression g one generates a type error� No context containing this expression

can 
resolve the overloading�� We will discuss this example further on Section

��

In CT� as in System O� and in constrast to Haskell type classes� a pro�

gram can be assigned a meaning independent of its types� and every typeable

program has a single most general type�

The rest of the paper is organized as follows� Section 
 introduces the

type rules of System CT� Section � presents some examples of type deduction�

Section � presents the type inference algorithm� Section � concludes�

� Type System

We use a kernel language that is similar to Core�ML ������� ��� Section ���
��

We include value constructors �k � K� and type constructors �C � C� and






Camar�ao � Figueiredo

Terms e ��� x j �u� e j e e
� j let x � e in e

�

Simple Types � ��� � j � � �
� j C �� � � � �n �n � ��

Constrained Types � ��� foi � �ig� � �n � ��

Types � ��� ��i�� �n � ��

Fig� �� Abstract Syntax of system CT

assume �for simplicity� that overloaded variables are distinct from value con�

structors and non�overloaded variables	 in particular� all lambda�bound vari�

ables are non�overloaded�

Term variables �x � X� are divided into three groups� overloaded �o � O��

non�overloaded �u � U�� and value constructors �k � K�� the latter being

considered as constants� having a value �xed in a global environment�

Meta�variables � and � are used for type variables� Meta�variable � is

used to denote a set of pairs foi � �ig� which is called a set of constraints�

The notation tv��� stands for the set of free type variables of �� We assume

systematically that index i in� say� xi� indicates the sequence x�� � � � � xn� and

similarly for index j� ranging from � to m �where m�n � ��� For example

foi � �ig and f�jg are abbreviations for fo� � ��� � � � � on � �ng and f��� � � � � �mg�
respectively�

Figure � gives the syntax of pre�terms and types of system CT�

Types are modi�ed �with respect to the type system of Core�ML� to include

constrained types� Quanti�ed constrained types are restricted to types of let�

bound variables in typing contexts�

Renaming of bound variables in quanti�ed types yield syntactically equal

types� Types ��j�k� � and ��j� � are also syntactically equal if tv�f�kg� �
tv��� � �� A constrained type with a constraint that has no type variables is

syntactically equal to one without this constraint� In particular� a constrained

type �� � for which � � � is syntactically equal to � �

The type rules are given in Figure 
�

A typing context � is a set of pairs� written as x � �� In our system� a

variable x can occur more than once in a typing context� if x � O� A pair

x � � is called a typing for x� The notation �x indicates a typing context for

which it is assumed that x does not appear �this does not cause any restrictions

due to the possibility of renaming bound variables��

A type substitution �or simply substitution� is a function from type vari�

ables to types� If � is a type and S is a substitution� then S� is used to denote

the type obtained by replacing each free type variable � in � with S���� Sim�

ilarly� for a typing context �� the notation S� denotes fx � S� j x � � � �g�
and for a set of constraints �� the notation S� denotes fo � S� j o � � � �g�

The overloading policy is based on uni�cation of simple types� Function

�



Camar�ao � Figueiredo

Unify�E� V � computes the most general unifying substitution for the set of
equations E between type expressions� considering that type variables in V

are not uni�able� We de�ne �C is considered below to include the � type
constructor��

unify�E� � Unify�E� ��

Unify��� V � � �

Unify�E � fC �� � � � �n � C � � �

�
� � � � �

m
g� V � �

if C �	 C �
then fail

else Unify�E � f�� � � �

�
� � � � � �n � � �

n
g� V � �where m � n�

Unify�E � f� � �g� V � �
if � 	 � then Unify�E� V �
else if � occurs in � then fail

else if � � V then

if � 	 �� where � �� V

then Unify�E�� �� ��� V � 
 �� �� ��
else fail

else Unify�E�� �� � �� V � 
 �� �� ��

The overloading policy is controlled by predicate 	� used in rule �LET��
The value given by 	���� ��� means 
�� and �� can be types of overloaded
symbols�� The evaluation of 	���� ��� basically tests if the simple types in ��
and �� are not uni�able	 it is de�ned by�

	���� ��� �

��������
�������

unify�f�� � ��g� fails if �� 	 ��i� ��� ��� �� 	 ��j� ��� ���

tv���� � f�ig and tv���� � f�jg

false otherwise

Quanti�ed type variables in a given type are assumed above to be distinct
from other type variables �possibly by renaming��

The notation tv��� stands for the set of free type variables of ��

The notation �� x � � stands for�

�� x � � �

�
�
�

�x � fx � �g if x � U

� � fx � �g if x � O 
 fx � ��g � �� 	��� ���

A type of an overloaded symbol cannot contain a free type variable �in
other words� it can only be a closed type�� This forbids 
local overloading��

�



Camar�ao � Figueiredo

so that x cannot be overloaded� using let x � e in e
�
� if a free type variable

occurs in the type of e�

Function lcg computes the type that is the least common generalisation

for a set of types� lcg is de�ned by �where C is considered below to include

the � type constructor��

lcg�f��jfoi � �ig� �g � S� � lcg�f�g � S�

lcg�f�g� � �

lcg�fC �� � � � �n� C
�
�

�

�
� � � �

�

ng � S� �

if C �	 C
�
then �� where � is a fresh type variable

else lcg�S � fC lcg� � � � lcgng�

where lcgi � lcg�f�i� �
�

ig�� for i � �� � � � � n and type variables

are renamed so that � 	 �
�
whenever there exists

�a� �b such that lcg�f�a� �bg� � � and lcg�f�a� �bg� � �
�

lcg�f�g � S� � �
�
� where �

�
is a fresh type variable

Function lcg takes into account the fact that� for example� lcg�fInt �

Int� Bool � Boolg� is � � �� for some type variable �� and not � � �
�
� for

some other type variable �
� �	 ��

Function pt� used in rule �VAR�� uses function lcg to give constrained types

for overloaded symbols�

The value pt�x��� is given as follows� If x � U � let �� be the typing for x

in �	 otherwise �x � O� let fx � ��� � � � � x � �ng be the set of all typings for x

in �	 we have�

pt�x��� �

��
�

�� if x � U

lcg�f�ig� otherwise

For any given typing context �� we de�ne an instance relation � � for this

context� between simple and class types� by�

� � � � �
�
if there exists S such that � 	 S�

�
	

� � � � ��j� �� �
�
if there exists S such that � 	 S�

�
and sat�S���� �� ��

Function sat����� returns a set of substitutions that uni�es types of over�

loaded symbols in � with the corresponding types for these symbols in ��

Function sat is used in the side�conditions of rules �APPL� and �INST� to

control overloading resolution� It is de�ned by�

sat�foi � �ig��� � fS j dom�S� � tv�f�ig� and

S�i � � �i� for some oi � �i � �g

�



Camar�ao � Figueiredo

� � x � pt�x��� �VAR�

� � e � �� � �� o � close��� ���� � e
� � ��

� �
�

� � let o � e in e� � � � ��� � �
sat�� � �

�
��� �� � �LET�

� � e � �� �

� � e � S��� ��
fSg � sat����� �INST��

�� u � �� � � e � ��
� �

�

� � �u� e � � � ��� � � � �
�ABS�

� � e � �� � � � e
� � ��

� �
�

� � e e� � S�� � ��� ��
S � Unify�f� � �

� � �g� tv����

ss�S�� � �
�
� �����

�APPL�

where � is a fresh type variable

Fig� �� Type Rules of system CT

Predicate ss �for single substitution�� used in rule �APPL�� controls the

instantiation of constrained types by application� The value ss��� ���� is

de�ned by�

sat����� �� �� and

tv����� � tv��� � � implies that sat����� is a singleton

Rule �LET� uses function close� to quantify simple and constrained types

over type variables that are not free in a typing context� close����� � ��j���

where f�jg � tv���� tv����

� Examples

In this section we present simple illustrative examples of type derivations in

System CT�

�



Camar�ao � Figueiredo

��� Application to Overloaded Constant

Consider a typing context � with typings

g � Int� Int�

g � Real� Int�

one � Int� and

one � Real

The following are derivable� from �VAR��

� � g � fg � � � Intg� � � Int

� � one � fone � �g� �

can be inferred�

Now� g cannot be applied to one� because ss�Int� fg � � � Int� one �

�g� Int��� cannot be satis�ed� since sat�fg � � � Int� one � �g��� is a set

with two substitutions� namely� �� �� Int� and �� �� Real��

An application of g to a constant c of type Int �or Real� would generate

a correct typing g c � Int�

An application to a constant of a di�erent type� other that Int or Real�

would constitute a type error� since ss would be false due to sat being empty�

��� Overloaded Division

Consider a typing context � with typings

�
� � Int� Int� Int�

�
� � Int� Int� Real�

�
� � Real� Real� Real�

��� � Int� Int� Int� and

��� � Real� Real� Real

Figure � presents a type derivation for

��
��
��
�� � � � Bool

in System CT� In this �gure we use I� R and B for Int� Real and Bool�

respectively	 sequents are abbreviated� by writing only terms and their types�

since the typing context is always ��

�



Camar�ao � Figueiredo

�� �� � I�B

� � f� � ������
g� ������

� � I � � f� � �����g� �����

���� � f� � I�I��g� I�� � � I

��� � f� � I �I ��g� �

�������� � f� � I�I��� � � ������
g� ����

��� � f� � I�I���
g� ��

����������� � f� � I�I��� � � ������
g� ��

����������� � � � f� � I�I ��� � � ����Ig� B
�APPL�

����������� � � � B
�INST��

Fig� �� Illustrative type derivation for System CT

From this typing derivation� it is easy to see that

��
��
��
�� � ��� � Bool

is not typable� since sat�f
 � Int � Int � �� 
 � � � � � Realg��� �

f�� �� Int�� �� �� Real�g �not a singleton��

� Type inference

Figure � presents the type inference algorithm� Function PP computes prin�

cipal pairs �type and context� for a given term�

For simplicity� we do not consider ��substitutions and assume that if a

variable is let�bound� then it is not lambda�bound� We can see that this

assumption is important in examples for which the assumptions do not hold�

for let x � �� in �x� x or true� PP would fail� and for let x � �� in �x� x�
PP would not give a principal typing�

Algorithm PP uses typing environments A� which are sets of pairs written

in the form x � ������ We write A�x� for the set of triples ��x��x� such that

x � ��x��x� � A�

� Conclusion

In extensions of the Damas�Milner type system� constrained types and class

types� as de�ned and used in System CT� provide a simpli�ed treament of

overloading�

In System CT the overloading policy is controlled by means of a single

predicate �	�� used in rule �LET��

Types can be inferred� without the need for any type annotations� and

there is an algorithm for computing most general typings�

We are currently working on a denotational semantics for terms and types

of System CT� We are also working on a proof that algorithm PP given in

this paper indeed computes most general typings�

System CT has less restrictions than existing similar systems that extend

ML�like polymorphic type systems with overloading� for example by allow�

ing that types of overloaded functions have a type variable as the outermost

type� and overloaded non�functional values� System CT also allows overloaded

�



Camar�ao � Figueiredo

PP �u�A� �
��� fu � �g�� where � is a fresh type variable

PP �o� A� �
if A�o� � f���j� � ����g� for some f�jg� �� ���

then ��� ����
else if A�x� � f��i��i�g� for some f��i��i�g

then
�
pt�x� fx � �ig��

S
�i

�

PP ��u�e� A� �
let PP �e� A� � ��� ���� in

if u � � � � �� for some � �

then ��� � � � �� �� fu � � �g�
else ��� � � �� ��� where � is a fresh type variable

PP �e� e�� A� �
let PP �e�� A�� ���� ������

PP �e�� A� � ���� ������� with type variables renamed
to be di�erent from those in ���� ������

S � unify�f�u � � �

u j u � �u � �� and u � � �

u � ��g � f�� � �� � �g��
where � is a fresh type variable

� � S�� � S��
in if ss�S��� � ��� ��� �� then

if sat�S��� � ������ � fS�g� for some S��
then �S� S��� � ��� �����
else �S��� � ��� �����

else fail

PP �let o � e� in e�� A� �
let PP �e�� A� � ���� ������

� � close���� ������
in if 	g

�
��At�o�

�
then

let A� � A �
�
o �

�
��� � fo � �g

��

PP �e�� A
�� � ���� ������

S � unify�f�u � � �

u j u � �u � �� and u � � �

u � ��g�
� � S�� � S��

in if sat�S��� � ������ � � then fail
else

�
S��� � ��� ������ fo � S���� ���g

�

else fail

Fig� �� Type inference for system CT

functions or constants to be used as arguments of other �possibly overloaded�
functions�

We intend to explore the use of constrained types together with a concept
of higher�order types� that is� types that are parameterised on other types�
which can be constrained parameters� We think this enhances a functorial
view of modules as parameterised types�

�



Camar�ao � Figueiredo

Further explorations of this system involve incorporating the concept of

class types in a functional programming language� studying the implications of

this concept with regards to the subtyping relation and program development�

and studying its relation to intersection types �������

References

��� Damas� Luis and Robin Milner� Principal type schemes for functional programs�
Proc� 
th ACM Symp� on Principles of Programming Languages 
�
���� ��	�
����

��� Hall� C�� K� Hammond� S�P� Jones and P� Wadler� Type Classes in Haskell�
Proc� �th European Symposium on Programming 
�

��� �������� Springer
LNCS 	���

��� Jim� Trevor� What are principal typings and what are they good for�
Conf� Record of POPL�
�� the ��rd ACM SIGPLAN�SIGACT Symposium on
Principles of Programming Languages� �

�� pp� ������

��� Milner� Robin� A theory of type polymorphism in programming� Journal of
Computer and System Sciences �� 
�
	��� �����	��

��� Mitchell� J�C�� Polymorphic type inference and containment� Information and
Computation �� 
�
���� no� ���� ������
�

��� � Foundations for programming languages� MIT Press� �

��

�	� Odersky� M�� P� Wadler andM� Wehr� A Second Look at Overloading� Conference
Record of Functional Programming and Computer Architecture 
�

���

��� Palsberg� Jens and Scott Smith� Constrained Types and Their Expressiveness�
ACM TOPLAS �� 
�

��� no� �� ��
���	�

�
� Smith� Geo�rey S�� Polymorphic Type Inference for Languages with Overloading

and Subtyping� Ph�D� thesis� Cornell University� �

��

���� van Bakel� S�� Essential Intersection Type Assignment� Proc� ��th Conf�
Foundations of Software Technology and Theoretical Computer Science 
R�K�
Shyamasunda� ed��� LNCS ��� 
�

��� pp� ������

���� Wadler� Philip� How to make ad
hoc polymorphism less ad hoc� Conf� Record of
the ��th ACM Symposium on Principles of Programming Languages 
�
�
��

��


