
Electronic Notes in Theoretical Computer Science �� ������
URL� http���www�elsevier�nl�locate�entcs�volume���html �� pages

Towards Higher�Order Types

Carlos Camar�ao

Departamento de Ci�encia da Computa�c�ao� Universidade Federal de Minas Gerais�

����	
	�	 Belo Horizonte� Brasil

Luc��lia Figueiredo

Departamento de Computa�c�ao� Universidade Federal de Ouro Preto�

���		
			 Ouro Preto� Brasil

Abstract

This article explores the use of types constrained by the de�nition of functions

of given types� This notion supports both overloading and a form of subtyping�

and is related to Haskell type classes and System O� We study an extension of the

Damas�Milner system� in which overloaded functions can be de�ned� The inference

system presented uses a context�independent overloading policy� speci�ed by means

of a predicate used in a single inference rule� The treatment of overloading is less

restrictive than in similar systems� Type annotations are not required� but can be

used to simplify inferred types� The work motivates the use of constrained types as

parameters of other� higher�order types�

� Introduction

The problems with the treatment of overloading in languages with support

for polymorphism and type inference� such as for example Miranda ���� and

SML ������ have been discussed elsewhere ������� In SML� for example� one

cannot write	

square x � x � x

the reason coming from the fact that ��� is overloaded for integers and reals�

Equality is treated di
erently in SML� by the introduction of a special poly�

morphic type variable� constrained so that its instances must admit equality�

For example� the type of a function member� that tests membership in a list�

is given as follows	

c����� Published by Elsevier Science B� V� Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/


Camar�ao � Figueiredo

��a list �� ��a �� bool

In Miranda� this type is not constrained in this way� but applying member to

lists whose elements are functions generates a run�time error�

Type classes ��� are used in Haskell ����� to deal with problems like these�

A type class is introduced to specify types of overloaded functions� as in	

class Num a where

��	
 ��	�� a �� a �� a

� � �

and	

class Eq a where

���	�� a �� a �� bool

Instance declarations then specify which types are instances of this class� and

give de�nitions of overloaded functions for this type� as in	

instance Num Int where

��	 � PrimAddInt

� � �

and	

instance Eq Int where

���	 � PrimEqInt

� � �

and also	

instance Eq a
b �� Eq �a
b	 where

�a
b	 �� �c
d	 � �a��c	 � �b��d	

The last example illustrates subclassing	 if equality is de�ned on a and b� then

it is de�ned on the product type �a
b	�

System O ��� aimed at some improvements in relation to type classes	

� With type classes� inferred types depend on class declarations� This is in

constrast with the Damas�Milner system� for which all type declarations

�



Camar�ao � Figueiredo

can be removed from any typeable program and the program still remains

typeable�

� Type classes cannot be de�ned to be formed by polymorphic type instances	

for example� one cannot de�ne a type class formed by product types �a
b	�

�a
b
c	� � � � � all having� say� a projection function first� �

System O uses universally quanti�ed types� with possibly a constraint on

the quanti�ed variable that is a �possibly empty� set of bindings o 		 � � � �

indicating that there must exist an overloaded operator o 		 p � �� �� 	� p���

for an instance p of ��
�

The main di
erence of our system in relation to System O is that we

eliminate some restrictions imposed in System O in the de�nition and use

of overloaded symbols� System O requires explicit declaration of the type of

an overloaded function �our system does not�� Thus� there is no inference of

types of overloaded symbols in System O� In System O� the argument of an

overloaded function must be of a type that is constructed from a given type

constructor �including �� the constructor of function types�� and all the ar�

gument type constructors of overloaded functions must be �pairwise� distinct�

As an example� functions with the following types cannot be overloaded in

System O	

sort 	 ��� �� Bool�� ���� ���

and

sort 	 ��� Int�� ���� ���

We say that a quanti�ed constrained type is a class type� A class type

may be viewed as representing a collection of �lower�order� types� the set of its

instances� all having given �overloaded� functions that operate on parameters

of corresponding types� These instance types may be concrete and abstract

types� �The implications of using class types as the type of abstract types

are not dealt with in this paper� being left as a topic for further work�� In a

system with type declarations� class types can be used in type annotations to

simplify inferred types� as illustrated in Section ��

The rest of the paper is organized as follows� Section � explores some uses

of class types� Section � introduces the type rules of our system� Section 

presents the type inference algorithm� Section � gives a semantics for terms

and type expressions of System CT� Section � concludes�

� Where first�a�b� � a� first�a�b�c� � a� � � �

� The notation ��� �� � � indicates the usual textual substitution�

�



Camar�ao � Figueiredo

� Examples

In this section we explore some uses of class types� using a Haskell�like nota�

tion�

��� Types with Equality and Ordering Relations

We consider �rst the possibility of de�ning a type that represents any type

over which equality �say ����� is de�ned	

The equality class type is as follows	

type Eq t � t f ���	�� t �� t �� Bool g

Type Int is automatically an instance of Eq t if there is a built�in oper�

ator ���� with the required type� Type Eq t can be seen � in a language

supporting class types and type de�nitions of this form � as an abbreviation

for �t f���	 	 t � t � Boolg� t �

A function member to test membership on lists of elements that can be

compared on equality can be written as follows	

member�� Eq t� �� t �� Bool

member � � false

member a �b�x	 � �a��b	 �� member a x

Using class types� the mechanism corresponding to Haskell instance declara�

tions is not used �it would correspond to an explicit declaration of subtyping��

Types with an ordering relation �say ���� are treated analogously	

type Ord t � t f ��	� t� t� Bool g

As with equality� type Int is an instance of Ord t if there is an operator

��� with type Int�Int�Bool� For any t� that is an instance of Ord t� type

t�� becomes �automatically� an instance of Ord t by de�ning	

� � � false

� � � true

�a��x�	 � �a��x�	 � if a��a� then x��x� else false

The inferred type of this particular de�nition of ��� can be Ord t��t��
Bool� The constraint information �Ord� needs to occur only once� The type





Camar�ao � Figueiredo

Ord t��t�� Bool can be seen as an abbreviation for

�tf��� 	 t� t� Boolg� �t�� �t�� Bool

��� Arithmetic Operations

For an example of a class type Num constraining types with arithmetic opera�

tions� consider	

type Num t � t f ��	
 ��	�� t �� t �� t

negate�� t �� t � � � g

A square function can be written as	

square�� Num t �� t

square x � x � x

The type annotation is used to indicate a more speci�c type �a subtype�� and

provides an abbreviated notation� but is not required �see Section ��

We can then write	

squares�� �Num a
 Num b
 Num c	 �� �a
 b
 c	

squares �x
y
z	 � �square x
 square y
 square z	

Finally� note that class types can also be used as �super�types of abstract

types� in a type system that allows the use of alternative abstract type imple�

mentations for a given abstract type signature� based on the overloading of

functions and constants de�ned in these alternative implementations�

� Type System

We use a kernel language that is almost identical to Core�ML ������ We include

value constructors �k � K� and type constructors �C � C� and assume �for

simplicity� that overloaded variables are distinct from value constructors and

non�overloaded variables� All lambda�bound variables are non�overloaded�

Term variables �x � X� are considered to be divided into three groups	

of overloaded �o � O�� non�overloaded �u � U�� and value constructors �k �

K�� the latter being considered as constants� having a value �xed in a global

environment� Figure � gives the syntax of pre�terms and types of system CT�

Types are modi�ed �with respect to the type system of Core�ML� to include

class types� A class type ��fo� 	 ��� � � � � on 	 �ng� � represents all types

��� 	� � � constrained to have functions with types o� 	 �
�

�
� � � � � on 	 � �

n
� where

� �

i
� �i�� 	� � �� for i � �� � � � � n�

�



Camar�ao � Figueiredo

Terms e � E e 		� x j �u�e j e e
� j let x � e in e

�

Simple Types � � T � 		� � j � � �
� j C �� � � � �n �n � ��

Types � � T � 		� � j ��fo� 	 ��� � � � � on 	 �ng� � �n � ��

Fig� �� Abstract Syntax of system CT

�� x 	 � � x 	 � �VAR�

�� u 	 � � e 	 � �

� � �u� e 	 � � � �
�ABS�

� � e 	 � � � � � � e
� 	 � �

� � e e� 	 �
�APPL�

� � e 	 � �� x 	 � � e
� 	 �

� � let x � e in e� 	 �
�LET�

�� oi 	 �i � e 	 �

� � e 	 ��foi 	 �ig� �
� �� tv��� �GEN�

� � e 	 ��foi 	 �ig�� � � oi 	 �i�� 	� � �

� � e 	 ��� 	� � �
�INST�

Fig� �� Type Rules of System CT

The type rules are given in Figure �� A typing context � is a set of pairs�

written as x 	 �� In our system� a variable x can occur more than once in a

typing context� if x � O� A pair x 	 � is called a typing for x� The notation

�x indicates a typing context for which it is assumed that x does not appear

�this does not cause any restrictions due to the possibility of renaming bound

variables��

The overloading policy is controlled by a predicate �� used in rule �LET��

The value given by ����� ��� is true if ��� and �� can be types of overloaded

function symbols�� The evaluation of ����� ��� basically tests if �� and ��

are not uni�able� for a context�independent overloading policy the following

additional conditions must hold	

�



Camar�ao � Figueiredo

� the uni�cation of argument types of functions must fail� and

� if the argument types are functional types� they must be such that they

cannot be the types of overloaded functions �in other words� uni�cation of

the argument types of the argument types must not fail��

Predicate � is de�ned by	

����� ��� �

�����������������������������������
����������������������������������

unify�f�� � ��g� fails and

if �� � ��a � ��r and if �� � �� � �
�

�
�

�� � ��a � ��r� then �� � �� � �
�

�

unify�f��a � ��ag� does not fail

����

�
� ��� if �� � ��foi 	 �ig� �

�

�
�

�� � T

����

�
� ��� if �� � ��foi 	 �ig� �

�

�
�

�� � T

����

�
� �

�

�
� if �� � ��foi 	 �ig� �

�

�
�

�� � ���fo�

j
	 � �

j
g� ��

�

Quanti�ed type variables in a given type are assumed to be distinct from

other type variables �possibly by renaming��

We also use a function tc 	 T � TC� that gives the constructor of a type

given as parameter� de�ned below� where we let TC � C � f�� 	g	

tc���foi 	 �ig� �� � tc���

tc��� � 	

tc�� � �
�� ��

tc�C �� � � � �n� � C

We use the notation �� x 	 � to stand for	

�



Camar�ao � Figueiredo

�� x 	 � �

�����
����

�x � fx 	 �g if x � U

� � fx 	 �g if x � O and tc��� �� and

fx 	 ��g � �
 ���� ���

The condition �tc��� � ��� which implies that only functions may be

overloaded� simpli�es the semantics and implementation of the system� since

it enables a direct unique identi�cation of the function to be called� in a

context�independent way�

We use	 �� �xi 	 �i�i�f����� �ng as an abbreviation for �� x� 	 ��� � � � � xn 	

�n and assume systematically that i ranges from � to n� where n � �� to

write only �� xi 	 �i� analogously� � � �xi 	 �i� is used as an abbreviation

for � � x� 	 �� � � � � � xn 	 �n� and j is assumed systematically to range

from � to m� where m � �� to write ��jfoi 	 �ig� � as an abbreviation for

�������� � � ���mfo� 	 ��� � � � on 	 �ng� ��

The notation tv��� stands for the set of free type variables of ��

� Type inference

Figure � presents the type inference algorithm� Function PP computes princi�

pal pairs �type and context� for a given term� together with a set of constraints

for the computed type� We write algorithms using a pattern�matching nota�

tion� resembling modern functional programming languages�

Our algorithm PP works only with simple types� for simplicity� Quanti�ed

types are equivalent to simple types with a set of constraints oi 	 �i� We can do

this simpli�cation because lambda�bound variables always have simple types

and because we can type an expression let x � e in e
� by �rst �nding the

possibly polymorphic principal typing for e� and then using instances of this

type for each occurrence of x in e
��

For simplicity� we do not consider ��substitutions and assume that if a

variable is let�bound� then it is not lambda�bound� We can see that this

assumption is important in examples for which the assumptions does not hold�

like let x � �� in �x� x or true� for which PP would fail� and let x �

�� in �x� x� for which PP would not give a principal typing�

Variable 	 is used to denote a set of constraints� We use typing environ�

ments A� which are sets of pairs written in the form x 	 ��� 	���� where the

second element is a triple �whose �rst element is a simple type� the second is

a set of constraints and the third is a typing context�� We write A�x� for the

set of triples ��x� 	x��x� such that x 	 ��x� 	x��x� � A�

A type substitution �or simply substitution� is a function from type vari�

ables to types� If � is a type and S is a substitution� then S� is used to denote

the type obtained by replacing each free type variable � in � with S���� Sim�

�



Camar�ao � Figueiredo

ilarly� for a typing context �� the notation S� denotes fx 	 S� j x 	 � � �g�
and for a set of constraints 	� the notation S	 denotes fo 	 S� j o 	 � � 	g�

Functions lcg� unify and sat� also used by algorithm PP � are de�ned be�

low� Function lcg computes the type that is the least common generalisation

for a set of types� Function unify computes the most general unifying substi�

tution for a set of equations between type expressions� Function sat�	�A� is

a constraint satisfaction function	 it returns true if constraints 	 are satis�ed

in typing environment A� and false otherwise� The functions are as follows�

� lcg is de�ned by	

lcg�f�g� � � �i�e� lcg of a singleton is the single element�

lcg�S � fC �� � � � �n� C
� � �

�
� � � � �

n
g� �

if C �� C �

then �� where � is a fresh type variable

else lcg�S � fC lcg� � � � lcgng�

where lcgi � lcg�f�i� �
�

i
g�� for i � �� � � � � n

and type variables are renamed so that � � �� whenever

there are �a� �b with lcg�f�a� �bg� � � and lcg�f�a� �bg� � ��

lcg�S � f�g� � �

lcg�S � f�� � ��� �
�

�
� � �

�
g� � analogous as above�

with ��� as the type constructor

Function lcg takes into account the fact that� for example� lcg�fInt �
Int� Bool � Boolg� is � � �� for some type variable �� and not � � ���

for some other type variable �� �� ��

� unify is given by	

unify��� � �

unify�E � fC �� � � � �n � C � � �

�
� � � � �

n
g� �

if C �� C �

then fail

else unify�E � f�� � � �

�
� � � � � �n � � �

n
g�

unify�E � f� � �g� �

if � � � then unify�E�

else if � occurs in � then fail

else unify�E�� 	� � �� � f� � �g

unify�E � f�� � �� � � �

�
� � �

�
g� � unify�E � f�� � � �

�
� �� � � �

�
g�

�



Camar�ao � Figueiredo

PP �u�A� �
if A�u� � ��� 	���� for some �� 	��� then ��� 	���
else ��� �� fu 	 �g�� where � is a fresh type variable

PP �o� A� �
if A�o� �� � then

�
�� fo 	 �g� �

�

where A�o� � f��i� 	i��i�g� � �
S

�i and � � lcg�f�ig�
else ��� �� fo 	 �g�� where � is a fresh type variable

PP ��u�e� A� �
let PP �e� A� � �� �� 	��� in

if u 	 � � �� for some �

then �� � � �� 	� �� fu 	 �g�
else �� � � �� 	� ��� where � is a fresh type variable

PP �e e�� A� �
let PP �e� A�� ��� 	���

PP �e�� A� � �� �� 	������ with type variables renamed
to be di
erent from those in ��� 	���

S � unify�f� � �� j x 	 � � � and x 	 �� � ��g � f� � � � � ���g��
where ��� is a fresh type variable

in if sat�S	�A� then
�
S���� S	 � S	�� S� � S��

�
else fail

PP �let x�e in e�� A� �
let PP �e� A� � ��� 	���

if x � O and tc��� �� and
�
fx 	 �� �� 	�����g � A
 ���� � ��

�

then A� � A � fx 	 ��� 	���g
else if x � U

then A� � Ax � fx 	 ��� 	���g
else A� � �

in if A� � � then fail else PP �e�� A��

Fig� �� Type inference for system CT

� sat�	�A� is de�ned by	
For each o 	 � in 	� we have	 there exists o 	 �� �� 	����� in A such that
unify�� � � �� does not fail and� in this case� letting S � unify�f� � � �g��
sat�S	�� A� fo 	 �� �� 	�����g� also holds�

� Semantics

Following ���� we use an applicative structure A that is a tuple	

A � �UA

�
� UA

�
�App��� �

� I�

where	

� UA

�
� fA�g is the collection of sets A� constructed inductively as follows	

��



Camar�ao � Figueiredo

� Base case	 � � C �i�e� C �� � � � �n� where n � ��� Let K� be the set of all

value constructors k that yield a value in � � Then A
� � fI�k� j k � K�g�

� Inductive cases	

� � C �� � � � �n� where n 
 � and A
�� � � � � � A

�n
� U

A
�
	 let K� be the set

of all value constructors that yield a value in � � Then� for all vi � A
�i �

i � �� � � � � arity�k�� A� �
S

k�Kc

I�k� v� � � � varity�k��

� � �� � ��� where A
�� � A

�� � U
A
� 	 then A

� � A
�� � A

�� � the set of

functions from A
�� to A

�� �

� U
A
� � fA

�
g is the collection of sets A� constructed inductively as follows	

� Base case	 A�
� U

A
� � then A

� � A
�
� U

A
� �

� Inductive case	 A�� � A
�� � U

A
� � then A

� � A
�� � A

�� � U
A
� �

� App���
�

is the function

App���
�

	 A���
�

� �A�
� A

�
�

�

from A
���

�

to functions from A
� to A

�
�

� de�ned by	

App���
�

f x � f�x�

� I 	 K �

S
��UA

�

A
� assigns values to value constructors�

An environment is a mapping

� 	 V ariables � U
A
� �

�

��UA

�

A
�

where V ariables include �term� variables and type variables� for every type

variable � we have ���� � U
A
� � and for every variable x we have ��x� � A

��

for some ��

The meaning ������ of a type expression � in environment � is de�ned in�

ductively as follows	

������ � ����

��� � �
���� � ff j x � ��� ��� 
 f�x� � ��� ����g

��C �� � � � �n��� �
S
fI�k� v� � � � vn j vi � ���i���� for all i � �� � � � � ng

����foi 	 �ig� ���� �
T
f����� 	� � ���� j � is such that ��oi� � ���i�� 	� � ����g

��



Camar�ao � Figueiredo

The denotation of� for example� Int� Bool is a set that includes denota�

tions of overloaded functions f 	 � for which Int is an instance of the argument

type of � and Bool is an instance of the result type of �� The intersection

used in the denotation of ��fxi 	 �ig� � �selects� thus overloaded functions�

If � is a typing context� we say that an environment � satis�es � if ��x� �

������� for every x 	 � � �� The notation � j� � abbreviates ���x� � ������� for

every x 	 � � ���

The meaning of a term e in an environment � is de�ned by induction on

typing derivations � � e 	 �� for typing contexts � such that � j� �� as follows	

���� x 	 � � x 	 ���� � ��x�

��� � e e� 	 � ��� � App� ��� ���� � e 	 � � � � ���� ���� � e� 	 � �����

��� � �u� e 	 � � � ���� �

the unique f � A � B� where A � ��� ��� and B � ��� ����� such that

for all a � A�App��� �

f a � ���� u 	 � � e 	 � �����u � a�

��� � let x � e in e� 	 � ��� �

if x � U then ���� x 	 � � e� 	 � ����x � d�

else ���� x 	 � � e� 	 � ����

where d � ��� � e 	 ����

�� � ��x � extend���x�� d��

extend�f� g� � �x� if x � dom�g� then g�x� else f�x�

� Conclusion

In extensions of the Damas�Milner type system� class types� as presented in

this paper� provide a simpli�ed treament of overloading� In system CT� the

overloading policy is controlled by means of a predicate used in a single infer�

ence rule� Types can be inferred� without the need for any type annotations�

and there is an algorithm for computing most general typings� The use of

type annotations can simplify inferred types� though�

��



Camar�ao � Figueiredo

System CT has less restrictions than existing similar systems that extend

ML�like polymorphic type systems with context�independent overloading� For

example� in System CT types of overloaded functions can be such that they

have the same argument type constructor�

More experience is needed on the use of overloading and class types to�

gether in a system with polymorphism and type inference� The main motiva�

tion for our study came out from the idea of de�ning a form of higher�order

types� that can be used as types of �lower�order� abstract and concrete types�

Lower�order types would be instances of higher�order types� We intend to

explore the use of class types together with higher�order types� following the

idea that higher�order types are types parameterised on other� possibly con�

strained types� We think this idea can enhance a functorial view of modules

as parameterised types�

Further explorations of this system involve incorporating the concept of

class types in a functional programming language� like Haskell or SML� study�

ing the implications of this concept with regards to the subtyping relation and

program development� and studying its relation to intersection types �����

References

��	 Damas� Luis and Robin Milner� Principal type schemes for functional programs�
Proc �th ACM Symp on Principles of Programming Languages� pages �
������
����

��	 Hall� C�� K� Hammond� S�P� Jones and P� Wadler� Type Classes in Haskell�
Proc �th European Symposium on Programming� pages �������� ��� Springer
LNCS ����

��	 Jones� Mark� Quali�ed Types� Cambridge University Press� ���

��	 Jones� Simon Peyton et al�� Report on the Programming Language Haskell�
ACM SigPlan Notices� ������ ���

��	 Milner� Robin� A theory of type polymorphism in programming� Journal of

Computer and System Sciences� ����������� ����

��	 Milner� Robin� Mads Tofte and Robert Harper� The De�nition of Standard ML�
MIT Press� ���

��	 Mitchell� J�C�� Foundations for programming languages� MIT Press� ���

��	 Odersky� M�� P� WadlerM� and M� Wehr� A Second Look at Overloading�
Conference Record of Functional Programming and Computer Architecture�
���

�	 Paulson� L�C�� ML for the Working Programmer� Cambridge University Press�
��� �nd edition�

��



Camar�ao � Figueiredo

��
	 Simon Thompson� Haskell� The Craft of Functional Programming� Addison�
Wesley� ���

���	 Turner� D� A�� A non�strict functional language with polymorphic types� In
Proceedings of the �nd International Conference on Functional Programming

and Computer Architecture� IEEE Computer Society Press� ����

���	 van Bakel� S�� Essential Intersection Type Assignment� In R�K� Shyamasunda�
editor� Proc ��th Conf Foundations of Software Technology and Theoretical

Computer Science� LNCS ��� ����� pp� ������

���	 Wadler� Philip� How to make ad
hoc polymorphism less ad hoc� Conf Record

of the ��th ACM Symposium on Principles of Programming Languages� ���

�


