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Abstract

Inspired by models for A + A → A(0) reactions with non-Brownian di1usion, we suggest a
possible analytical explanation for the phenomena of anomalous coalescence of bubbles found
in one-dimension (1d) by Josserand and Rica through numerical work [Phys. Rev. Letters 78
(1997) 1215]. The explanation ;rstly requires an exponent �, which is sometimes used to
describe anomalous di1usion. Here it displays an explicit dependence on the dimensionality
(�= �(d)= 4=d for d6 2). So we have dc = 2, coinciding with the upper critical dimension of
A+ A → A(0) reactions (Mod. Phys. Lett. B 13 (1999) 829; Mod. Phys. Lett. B 15(26) (2001)
1205) with Brownian di1usion condition (� = 2). Thus anomalous coalescence emerges, only
below the critical dimension (d¡ 2). We show that the typical size of the structures (bubbles)
grows as R(t) ∼ t1=4 in 1d. An alternative explanation could also be thought as a di1usion con-
stant D which depends on the average concentration (〈n〉), namely D=D0〈n〉�. It is introduced
into an e1ective action for A+A → A(0) reactions. Therefore we are also able to reproduce the
anomalous behavior for n(t) and R(t) in 1d, being � = 0 for d¿ 2 (mean ;eld behavior) and
� = 2(2− d)=d2 for d6 2.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Motivated by the possible relevance on understanding superFuid He4 cavitation, ;l-
amentation on nonlinear optics and Bose–Einstein condensation in Li7, Josserand and
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Rica (JR) [1] have studied the nonlinear Schroedinger equation (NLSE) with the
addition of a quintic term. As pointed out by them [1], the physical behavior ob-
served in their numerical investigation is very analogous to the formation of droplets
in a “dynamical” ;rst-order phase transition. The starting point of JR [1]
is the NLSE

i
9�
9t =−1

2
∇2� − 2�c|�|2� + |�|4� : (1)

In (1) |�|2 is the order parameter and �c is related to the critical density for cav-
itation, that is, when the sound speed vanishes. When |�|2 ≈ �c, the presence of the
quintic term in (1) is necessary, and when |�|2��c, it can be neglected.
As noticed by JR, the rich dynamics which emerges from the numerical analysis

of (1) develops itself in three stages. In the ;rst one, starting from an initial uniform
density �o slightly less than �c, density variations grow exponentially in time, creating
a cellular modulation with length scale of the fastest growing mode. As pointed out
by JR, this very short scale modulation expels matter from one domain to another,
creating regions with more stable densities, and leading to a splitting of space onto
well-de;ned domains with large (∼�c) and small (∼0) stable densities. The second
intermediary stage is short in time: the pressure di1erence between the low density
(gas) and the large density (liquid) phases contracts the liquid phase, until the liquid
density reaches 3

2 �c, the point where pressure equilibrium is established. Finally JR
observed a third stage, with slow spatiotemporal dynamics, where the stable droplets
and bubbles coalesce. Trying to understand this last step, JR wrote a rate equation
(mean ;eld-like) to describe the time evolution of the number of bubbles. However
the mean ;eld equation has failed in describing the observed behavior. We think that
an appropriate rate equation limited by an anomalous di1usion could overcome this
diMculty. The present paper will address the understanding of JR’s third step, in order
to explain droplets and bubbles anomalous coalescence in 1d through Thompson’s
scaling approach [2].
In 1976, Thompson [2] proposed a simple heuristic method as a means to study

the critical behavior of a system undergoing second-order phase transition. He started
from a Landau–Ginsburg–Wilson free energy or hamiltonian, and was able to get an
explicit relation for the correlation length critical exponent (�) as a function of the
lattice dimensionality (d). If one accepts that this �4-theory is within the same class
of universality of the Ising model, Thompson’s work reproduces the exact results for
�(d= 2) = 1 and �(d= 1) → ∞.
Let us enumerate some applications of Thompson’s method. First we have the eval-

uation of the correlation length critical exponent of the Random Field Ising Model by
Aharony et al. [3] and by one of the present authors [4]. Thompson’s method was also
used to evaluate the correlation critical exponent of the N-vector Model [5]. Yang–Lee
edge singularity critical exponents [6] have also been studied by this method. Fur-
thermore, we can mention that such a heuristic approach was recently applied to the
critical dynamics of the Ising Model [7]. In a more recent paper [8], it was applied to
study the di1usion limited chemical reaction A + B → 0 with di1erent initial concen-
trations of the two species. Anomalous di1usion conditions are also considered [9,10]
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by including coalescence. It is important to mention that some other di1usion reaction
models were already considered before [11–14].

2. A + A → A(0) anomalous coalescence through Thompson’s method

An e1ective action to describe A+A → A(0)(k=2) reaction with Brownian di1usion
condition was proposed by the present author [15,16], namely

A=
∫
ld
ddr

[
1
2
D(∇n)2 − hn+

1
3
Kn3 +

1
2
9(n2)
9t

]
; (2)

where n is a concentration and K a reaction rate. k represents the number of particles
which coalesce. In the particular case (2) above, we have k =2 (see Ref. [10]). h and
D are constants associated with source and di1usion of species, respectively.
By imposing �A = 0 for a constant t in (2), Nassif and Silva [2] obtained the

following di1usion di1erential equation:

9n(r; t)
9t = D∇2n+ h�(r)− Kn2 ; (3)

where h�(r) is a source term proposed by Krug [17], Kn2 being the reaction term.
More recently, the present authors [10] obtained the following di1usion equation for

A+ A → A(0) reactions with anomalous di1usion condition (�):

9n(r; t)
9t = D∇�n+ h�(r)− Kn2 : (4)

The equation above is a fractional di1erential equation (k = 2) [10,18]. For � = 2,
we recover Eq. (3) for Brownian di1usion condition.
From (4), we have the e1ective action

A� =
∫
ld
ddr

[
1
2
D(∇�=2n)2 − hn+

1
3
Kn3 +

1
2
9(n2)
9t

]
: (5)

If �¡ 2, we have superdi1usion. If �¿ 2, we have subdi1usion.
In order to treat (5), we proceed in an analogous way to Thompson’s reasoning [2]

(see also Ref. [16]), which states the following scaling assumption for each term of
the action above. First term:∣∣∣∣

∫
ld
ddr

[
1
2
D(∇�=2n)2

]∣∣∣∣ ∼ ld−�〈n2〉 ∼ 1 ; (6)

so that the mean squared value of n (〈n2〉) behaves as

〈n2〉 ∼ l�−d : (7)

For the fourth term in (5), we have∣∣∣∣
∫
ld
ddr

[
1
2
9(n2)
9t

]∣∣∣∣ ∼ 〈�〉〈n2〉ld ∼ 1 ; (8)
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where we have considered that

n(t) = n0 exp(−�t) : (9)

By introducing (7) into (8), we obtain

〈�〉−1 ≡  ∼ l� : (10)

We observe that (10) points out to the signature of the non-Brownian charac-
ter of these di1usion limited reactions [9,10]. Actually when we consider �¡ 2 in
(10), we have conditions beyond Brownian motion, which correspond to superdi1usion
conditions.
For the second term in (5) we have∣∣∣∣−

∫
ld
ddr(hn)

∣∣∣∣ ∼ 〈h〉〈n〉ld ∼ 1 : (11)

Making 〈h〉 ∼ 1, from (11) and (10), we obtain the following scaling behavior:

〈n〉 ∼ l−d ∼  −(d=�) : (12)

For the third term in (5), with the plausible hypothesis 〈n3〉 ∼ 〈n2〉〈n〉 [8–10,15,16],
and by using (12) above, we obtain

〈K〉 ∼ ld−� ∼ (l�)d=�−1 ∼  d=�−1 ∼  d=dc−1 ; (13)

where

dc = � ; (14)

for k = 2 (see Ref. [10]).

3. An interpretation for anomalous coalescence of bubbles and droplets in 1d

Let us take n, the density of particles A, to represent bubble (or domain) concentra-
tion [1] which behaves like n ∼ t−d=�, according to (12). It is customary to consider �
as a free parameter, where �¡ 2 (�¿ 2) is used to describe superdi1usion (subdi1u-
sion) conditions and � = 2 to designate the more usual Brownian di1usion. However,
we can assume, for instance, � to be a function of the dimensionality (d). As it is the
case of the coalescence phenomena treated by JR, the concentration behavior (number
of bubbles per volume) for d¿ 2 is n(t) ∼ t−1, which corresponds to a mean ;eld
regime. But, for d6 2, in particular for d = 1, they found an anomalous behavior,
namely n ∼ t−1=4. So, in order to explain JR’s numerical analysis, we have to take
into account Eq. (14) by considering � = �(d) through the following ansatz, where �
depends on the dimensionality:

�= �(d) =




2; d¿dc ;
a
d
; d6dc :

(15)
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If we make dc=2, according to JR’s result, and according to A+A → A coalescence
model, then we have �(dc) = dc = 2 = a=2 ⇔ a= 4. So we write

�= �(d) =




2; d¿ 2 ;

4
d
; d6 2 ;

(16)

in such a way that we have in fact dc = 2 (upper critical dimension). Indeed this
happens because, due to the condition (16) and also to the relation (14), we get the
following consistency relation:

dc = �(dc) =
4
dc

⇔ dc = 2 : (17)

Thus, for d= dc = 2, we have �= 2 (Brownian di1usion condition), and for d= 1
we have �=4 (a kind of subdi1usion condition). Starting from the condition for d=1,
here we want to show that the ansatz proposed by relation (16) leads to a kind of
anomalous di1usion behavior for d¡ 2, such that we will be able to explain the “lack
of theoretical explanation” mentioned by JR, for the case d=1. In order to do that, we
consider two basic assumptions. The ;rst one is that the center of mass of the bubble
coalesces through an anomalous di1usion process characterized by a certain di1usion
length. The second one is that, simultaneously, each bubble increases its radius, being
constrained by the conservation of its mass. Thus below the critical dimension (dc=2),
we can write:

l ∼ R ; (18)

where R is the radius of the bubble, and l the di1usion length.
The assumption above will be better justi;ed ;rstly taking into account a conserva-

tion law for bubbles mass, which states that nRd ∼ 1 (constant), where n represents a
homogeneous density of bubbles and Rd its volume. When n decreases, then R increases
such that n ∼ R−d, taking into account a mean radius value R(t) which increases in
time. Now we can observe that this scaling law for the radius of the bubble is similar
to the scaling obtained before by Thompson’s approach (nld ∼ 1) (Eq. (12)). How-
ever it must be stressed that the similarity between these two scaling relations will be
restricted to dimensions below the upper critical dimension (d¡dc = 2). This is the
main point to be understood.
In other words, we want to point out the fact that the particle A has an internal

structure R(t), namely an internal degree of freedom, which just scales like l, only
for d6 2. That is because when we consider lower dimensionalities (d6 2), as for
instance d=1, the radius of each bubble increases fast enough to ;ll the empty space
l that exists between the centers of mass of its nearest neighbors. Indeed, based on
ansatz (16), we obtain �=4 for d=1, which really represents a subdi1usion condition,
i.e., �¿ 2 [10].
On the other hand, for d¿ 2 (mean ;eld regime), according to ansatz (16), the

Brownian di1usion plays its role in such a way that the scale l increases faster than the
radius R of the bubble, so that we have the following scaling law: nl2 ∼ 1, being l ∼
t1=2. In this condition we get l�R, and thus bubbles could pratically be seen as point
particles A when they are compared with the length scale l of the di1usion process.
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Therefore, since this corresponds to an expected behavior for point-like bubbles, we can
understand why, only at d= 1, an anomalous behavior was detected by JR numerical
analysis.
Substituting (16) into (12), we ;nally obtain

n(t) ∼
{

t−1; d¿dc = 2 (mean ;eld condition) ;

t−(d2=4); d6dc = 2 :
(19)

If we make d=1 in (19), we ;nally obtain n(t) ∼ t−1=4. This is just the anomalous
result [1], lacking a satisfatory explanation according to JR.
According to (10), we have l ∼ t1=�; then by introducing (16) into this scaling

relation (10), we obtain the following scaling relation for l(t):

l= l(t) ∼
{

t1=2; d¿ 2 ;

R(t) ∼ td=4; d6 2 :
(20)

We already know that l(t) can be thought of as the radius of the bubble, only for
d6 2, that is, l(t) ∼ R(t) ∼ td=4. On the other hand, for d¿ 2, we have l ∼ t1=2 and
R ∼ t1=d. This means that, above two dimensions, we have di1erent scalings for the
di1usion length l, and the bubble radius R. Finally, based on relation (20) above, we
verify that, for d = 1, we have R ∼ t1=4, which corresponds to the anomalous result
found in JR’s numerical work [1].

4. An equivalent interpretation for JR results by using a di%usion constant depending
on concentration of bubbles

Let us consider a di1usion constant D = D0〈n〉� to be put into an e1ective action
A� in order to replace the description provided by the exponent �. Actually these two
descriptions must be equivalent, giving the same behavior for n(t) and l(t). So we can
write the following equivalent action to replace the ;rst one (action (5)):

A� =
∫
ld
ddr

[
1
2
D0〈n〉�(∇n)2 − hn+

1
3
Kn3 +

1
2
9(n2)
9t

]
; (21)

D0 is a constant. In (21), 〈n〉 means average concentration on the scale l.
From the ;rst term of (21), we get the following scaling relation:

〈n〉�〈n2〉ld−2 ∼ 1 : (22)

For the fourth term we obtain
〈n2〉ld

 
∼ 1 : (23)

From the second term we get

〈n〉ld ∼ 1 ⇒ l ∼ 〈n〉−1=d : (24)

By comparing (22) with (23), being  ∼ l�, we obtain

〈n〉� ∼ l2−� ⇒ l ∼ 〈n〉�=(2−�) : (25)

For �= 2 we have �= 0 (mean ;eld regime).
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By comparing (25) with (24), we obtain the following relation by the equality of
their exponents

�=
(
�− 2
d

)
: (26)

Finally, by introducing the ansatz (16) for �(d) into (26), we get

�=




2(2− d)
d2 ; d6 2 ;

0; d¿ 2 :
(27)

For d=1, we have �=2, leading to D=D0〈n〉2. This corresponds to an equivalent
explanation for the anomalous coalescence condition found by JR.
For d¿ 2, �=0 ⇒ D=D0 (constant), which represents the mean ;eld regime with

Brownian di1usion condition. It is worth stressing that below the critical dimension,
for instance, in d = 1 (D = D0〈n〉2), the e1ective di1usion coeMcient depends on the
density of bubbles. We interpret this fact as follows: for higher densities, the bubbles
are squeezing each other and in this way, enhancing the di1usion; for lower densities,
this process is attenuated, leading to a weakening of the di1usion rate.
According to (26), we have �= 2+ �d. Thus, by introducing this relation into (12)

to replace �, we can also write an equivalent scaling relation for the concentration,
namely:

n ∼ t−d=(2+�d) : (28)

According to (27), if �= 2, we have d= 1. Therefore, by putting these two results
into the scaling (28) above, we simply verify by consistency, that n ∼ t−1=4. This is
in agreement again with the JR’s result. Indeed we have an equivalent description for
anomalous coalescence of bubbles by using a di1usion constant, which depends on the
concentration (n).
Now by putting (28) into (24), we obtain

l(t) ∼ t1=(2+d�) : (29)

Making � = 2(d = 1) in (29) above, we also recover the scaling relation obtained
for the bubble growth as in JR’s result, that is

l(t) ∼ R(t) ∼ t1=4 : (30)

For �= 0, (d¿ 2), we recover the Brownian scaling condition l(t) ∼ t1=2.

5. Conclusions and prospects

In this paper, we have used Thompson’s approach in order to interpret the anomalous
coalescence of domains (bubbles) found by Josserand and Rica [1] in their numerical
treatment of the NLSE by the addition of a quintic term. By proposing an explicit
dependence on the dimensionality (d) for the parameter of anomalous di1usion (�),
we were able to show that this anomaly is restricted to dimensions smaller than two. So
below two dimensions, both the radius of the bubble and the di1usion length are scaled
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in the same way. Above two dimensions, Brownian di1usion condition is recovered.
So the bubble radius and the di1usion length are scaled in di1erent ways with respect
to time.
Alternatively, it was possible to describe the anomalous behavior of the bubbles by

considering a di1usion equation where the di1usion coeMcient depends on the density
of bubbles.
Finally, a re;nement of the numerical results of JR [1], just at dc = 2, could lead

to a logarithmic correction for the growth of the bubble radius, as always happens
at the upper critical dimensions of the various kind of di1usion-controlled reactions
[8,10,15,16].
In another paper, we extend the method applied here to study scalar ;eld theories

[19]. We also treat ;eld theories described by Grassmann ;elds [20]. Our purpose in the
latter was to work out, for instance, the QED4 running coupling constant dependence
on the energy scale.
Finally, Thompson’s method, which was applied to various kinds of reactions limited

by di1usion [8,10,15,16] seems to be appropriated to study various features of the
growth of a polymer chain. As Thompson’s method is essentially a scaling approach,
it can be successfully employed in this task as an alternative way to the RG formalism.
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