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AbstTact- Scatter search is a n  evolutionary heuristic, pro- 
posed two decades ago, t h a t  uses linear combinations of a 
population subset to  create  new solutions. A special oper- 
a tor  is used to  ensure their  feasibility and t o  improve their  
quality. In  this paper,  we propose a scat ter  search approach 
t o  t h e  Q A P  problem. T h e  basic method is extended with 
intensification and  diversification stages and we present a 
procedure t o  generate good scattered initial solutions. 

A‘eywoTds- Evolutionary Algorithms, Heuristic Methods,  
Quadratic Assignment Problem (QAP). 

I.  INTRODUCTION 

NTRODUCED in 1977 by Fred Glover [l] (see also [2], I [3]), Scatter Search has been largely overlooked for about 
twenty years. Nevertheless, the method has the same kind 
of features as most of modern and efficient heuristics. It 
furthermore easily allows one to introduce advanced tech- 
niques like adaptative memory programming, strategic os- 
cillation etc (see [2] for an interesting discussion on these 
topics). Therefore, Scatter Search appears to be a very 
appealing framework for the design of a heuristic method. 

Basically, the Scatter Search method starts with a col- 
lection of feasible solutions. At each step, some of the best 
solutions are extracted from the collection to be combined. 
A “trial ” point is then created as a linear combination of 
the extracted points and an operator is applied to the trial 
point. This operator has two purposes. In many cases, a 
linear combination of integer points will not result in an 
integer point. The first purpose of the operator is thus to 
produce an integer (feasible) solution from the trial point. 
The second purpose is to  improve the quality of the created 
solution. As a result of the operator, a new feasible solu- 
tion is obtained which might be included or not (according 
to some criteria) in the collection. 

There are some great differences between Scatter Search 
and Genetic Algorithms although, in both of them, a set of 
feasible solutions evolves. First of all, there is no metaphor 
with nature’s behavior in Scatter Search. Its rationale is 
rather of a geometric or analytic type : by taking a linear 
combination of good solutions, one might expect to obtain 
a new good solution. Second, this is the very first method 
which allows combining more than two solutions. There- 
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fore, a t  each step, Scatter Search gets more informatioll 
that a Genetic Algorithms does. On the othfr hand, this 
information might be more difficult to analyze or t.o esploit~. 
For instance, by combining a large number of solutions. 
one might combine different subregions of the feasible set, 
and get a trial point with no particular signification. Note 
however that in this case the operator could lead to a sub- 
region not explored yet. Overall, as indicated by its name, 
the method induces a real willingness for maintaining the 
collection points as scattered as possible, hence to have a 
good diversification (the operator being in charge of inten- 
sification). However, as emphasized in [2]. int,ensification 
(resp. diversification) can also be achieved by  identifying 
clusters in the collection and by combining points from the 
same cluster (resp. from different clusters). 

The aim of this paper is to illustrate how Scatter Search 
could be used for solving the Quadratic Assignment, Prob- 
lem (QAP). 

For the sake of simplicity. we will refer to t,he QAP as 
the problem of assigning n firms to n sites and a feasible 
solution will be represented by a n x n matris AY such that, 

n 

i= l  
n 

and X,I,  = 1 means that firm IC is assigned to sit,e i. 
Obviously, the QAP which is still one of the most irn- 

portant and challenging 0-1 quadratic problems. has been 
widely studied. Heuristic methods for the QAP include 
Tabu Search [4], [ 5 ] ,  [B], [’i], Genetic Hybrid Algorithms [8]. 
Simulated Annealing [9] among others. 

SCATTER SEARCH 
Generate init ial population (section V) 
WHILE not StopCondition DO 

Select solutions t o  be  combined (section II) 
Generate new solution* (section II) 
Apply operator t o  improve new solution* (section Ill) 
Insert new solution in population (section I l l )  

*According to the iteration, one might use different procedures to 
perform intensification or diversification (section I V ) ,  

Fig. 1. High level description of Scatter Search procedure. 

The remaining of the paper is organized according to the 
main steps of the algorithm (Fig. 1). 
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11. COMBINING SOLUTIONS 

As indicated above, at each step, Scatter Search extracts 
some of the best solutions. For this purpose, a subset (let’s 
say the Elite subset) of the collection of points, containing 
the best available solutions, is maintained. The cardinality 
of the Elite subset E is a parameter of the method. An- 
other parameter R concerns the maximum number of solu- 
tions one wishes to combine. In practice, E might be quite 
large while R should be relatively small (R N 5 ,  /El N n) .  
Given these parameters, a number P in {2, 3 ,  ..., R}  is ran- 
domly chosen, according to a uniform distribution. Then, 
also following a uniform distribution, T points (let’s say 
X’, ..., X‘) are drawn in E.  

For the selection process, we also carried out some nu- 
merical tests with a roulette wheel selection over the whole 
collection of points but the results appeared to be worse 
than with the above elitist strategy. This can be explained 
by the fact that the main advantage of a roulette wheel 
strategy is that it prevents from selecting almost always 
the same points, and hence, increases the diversification in 
the population. It happens that,  in a Scatter Search ap- 
proach, the diversification is ensured by many other rules 
(described below). Therefore, the roulette wheel selection 
loses its main interest. 

Once X1,X’, ..., X‘ are selected, we have to combine 

them to obtain a trial point T = XlX’,  where XI E R, 
I = 1, ..., T.  T is thus a linear combination of the selected 
points and is generally not feasible. We then have to deduce 
from T a feasible solution. A natural way to reach this goal 
is to find out the feasible solution X which is the closest 
to T, that is, we have to solve the problem. 

r 

I=1 

n 

n 

k = l  

where IlX-TII is the euclidean distance between X and T .  
Actually, as shown below, such a problem reduces to a 

linear assignment problem : 

n n  

i = l  k = l  
n n  

The last two terms are constants since for any feasible 

2 TA does not 
n n  n n  

solution we have 

depend on X .  

X 3  = n,  and 
i=l k = l  i = l  k = l  

It follows that X is simply an optimal solution of: 

n n  

m a x x  rl;.kXik 

(21, (3), (4). 

Although this linear assignment problem can be solved 
in O(n3),  we prefer to  solve it by the “not-so-greedy” heu- 
ristic described in Fig. 2. 

/* Initialization */ 
Availablesites = (1, ..., n} 
AvailableFirms = (1, ..., n }  

/* Main Steps */ 
FOR t = l , n  DO 

X i k = O ,  i = l ,  ..., 71 k = l ,  ..., 71 

Choose a t  random (according t o  a uniform distribution) 

Choose a t  random (according t o  a uniform distribution) 
a site i E Availablesites 

a f irm k E A r g m a x { z k l b  E AvailableFirms} 
xak = 1 

D Availablesites = AvailableSites-{i} 
AvailableFirms = AvailableFirms-{k} 

Fig. 2. Heuristic for combining solutions. 

The heuristic constructs a feasible solution X from T 
in O(n2) .  Furthermore, it will be explained in section IV 
how this method easily allows introducing some diversity 
in the whole process. Another interesting feature relies 
on its random nature: if we apply it several times to  the 
same T ,  it will probably construct different feasible solu- 
tions X .  Hence, even if the same X‘, X 2 ,  ..., X p  are drawn 
a t  two different iterations of the process, we might expect 
to construct two different new solutions. 

We must point out that we tried several other heuristic 
procedures for obtaining a feasible solution X without any 
significative change in the numerical results. 

In practice, we just fix XI  = 1, 1 = 1, ..., T .  

111. THE OPERATOR 

Since we obtained an integer feasible solution, the aim 
of the operator is now only to improve the cost of this 
solution. It was then decided to use a very basic Tabu 
Search method for a fixed number of iterations. 

In this method, a move consists in exchanging the firms 
located on sites i and j ,  and the neighborhood of a given 
point is defined as the set of solutions which can be reached 
in one move from the given solution. Once a move, which 
locates firm k l  on i2 and firm k2 on il has been done, 
the opposite move (which consists of leading back kl on i l  
and k2 on i2) will be considered as tabu (prohibited) for 
a given number of T iterations, except if it improves the 
overall best solution. Note that this is probably the most 
unrestrictive tabu list (for instance it is still allowed to  
exchange firms on il and i2 if firm on il is no more b2 or if 
firm on i2 is no more kl). We designed such an unrestrictive 
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Tabu Search since, in our opinion, the operator plays a role 
of intensification in the whole process. 

In practice, we observe that T had almost no practical 
effect for small size problems (let’s say n 5 90) while T 2: 

200 seems to  work well for large size problems. 
As a result of the operator, a new solution Y is obtained 

and compared with the worst element of the population 
(collection of points). The  new solution is included in the 
collection if it is better than the worst element. In a earlier 
version of the algorithm, the new point Y was compared 
with its closest point in the collection. The results were 
slightly worse. One more time, this can be explained by the 
fact that the main advantage of such a criteria is to enhance 
the diversity of the collection of points (in particular, it en- 
sures of not generating a point which is yet in the popula- 
tion). However, as mentioned earlier for the roulette wheel 
selection strategy, the diversification is ensured on the one 
hand by the heuristic procedure for combining the points 
and, on the other hand, by some additional rules which are 
stated in the next section. Therefore, this strategy loses 
its main advantage and has the drawback of suppressing 
points which might be good. 

IV.  ADDING DIVERSIFICATION AND INTENSIFICATION 

The first way to keep the collection of points as scattered 
as possible is to prevent that some points, maybe slightly 
better than the others, are too often used for combination. 
This can easily be achieved by assigning a tabu status, for 
a given number of iterations (let’s say n ) ,  to  a point which 
has been used for combination. Such an idea was used 
in [ 3 ] .  

Another way of maintaining a certain level of diversity 
in the population is to consider] from time to  time, some 
assignments of firms to sites which have not been used 
frequently before. For this purpose, a frequency matrix 
(n  x n) F is updated at each iteration of the Scatter Search 
process. Fzk reports on the number of times where firm k 
was assigned to site i in the starting points of the Tabu 
Search (operator). Hence, each time a point X is computed 
by the heuristic of section 11, F is updated by F = F + X .  
Whenever we wish to increase the diversity of the collec- 
tion of points, the procedure of Fig. 3 is used to  create 
a partial solution with rcn1 ( c  is a parameter in [0,1], in 
practice c 2i 0.05) assignments of firms to  sites which were 
not frequently used. 

The remaining n - [cnl assignments of firms to  sites are 
then computed by the heuristic of section I1 (based on the 
combination of points). As usual, the generated point will 
be the starting point of the Tabu Search. 

It is also interesting to add some intensification in the 
whole process. This is done by increasing the number of 
iterations in the Tabu Search procedure. Hence, the Tabu 
Search procedure runs I1 iterations (in practice I1 2: 80 in 
an ordinary diversification Scatter Search iteration and I 2  
iterations ( I 2  N 1200) in an intensification Scatter Search 
iteration. 

In the whole process, we alternate between the three 
types of iteration, that  is:  we first carry out (Y ordinary 

/* Initialization */ 
Availablesites = { 1, ..., n} 
AvailableFirms = (1, ..., n} 
X i k = O ,  i = l  ,..., n k = l ,  ..., n 
/* Main Steps */ 
FOR t = 1, rcnl DO 

Choose a t  random (according to a uniform distribution) 

Choose at  random (according to a uniform distribution) 
a site i E Availablesites 

a f i rm  k E Argmin{Fik lk  E AvailableFirms} 
0 Xik = 1 
6 Availablesites = AvailableSites-{i} 

AvailableFirms = AvailableFirms-{k) 

Fig. 3. Procedure for adding diversification. 

iterations, then /3 intensification iterations and then y di- 
versification iterations and this cycle is repeated until the 
maximum number of iterations of Scatter Search procedure 
is reached. Good values for a ,  and y seem to be 7, 1, 1. 

V. GENERATING THE I N I T I A L  COLLECTION O F  POINTS 

An aspect of evolutionary algorithms which might be 
sometimes neglected is the generation of the initial popula- 
tion : most of the methods generate it randomly. However, 
our opinion is that the initial collection of points should 
meet the following criteria : 

I Since all along the algorithm, points which are issued 
of the initial population are combined, all the possi- 
bilities should be contained in the initial population. 
In other words, using the Genetic Algorithms termi- 
nology, all the possible genes should be represented in 
the population. For the QAP, this means that for any 
firm k and any site i there should be a point in the 
initial collection for which the firm k is located on the 
site i. 

2. Since the subregion containing the optimal solution 
is generally unknown, the initial collection of points 
should cover as good as possible the feasible set, in 
order to be able to  reach any of its subregions. There- 
fore, the initial population should be as scattered as 
possible. This can be achieved by generating a pop- 
ulation which maximizes the euclidean minimum dis- 
tance between any couple of points. For the QAP, 
we therefore should try to generate points such that 
the distance between any two points is fi (i.e. the 
maximum distance between two feasible points). 

In order to satisfy these criteria, we first generate at ran- 
dom a feasible solution X1. Let now T be a circular permu- 
tation of (1, ..., n}. A second solution X2 is constructed by 
assigning ~ ( k : )  to site i, where kr is the firm located on the 
site i in X ’ ,  and a third solution X3 is then constructed 
by assigning T ( @ )  to  site i, where lea? is the firm located on 
the site i in X 2 ,  etc. The process is repeated n - 1 times 
and it can be easily shown that these n solutions satisfy the 
criteria. If one wishes, as we do, to generate more than n 
solutions, a new random solution is created and the above 
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procedure might be used again. In practice, we generate 
an initial collection of 2n points. The Tabu Search opera- 
tor (section 111) is then applied to every solution before its 
insertion in the population. 

Although this procedure is valid for any circular per- 
mutation x, we compute a permutation A as indicated in 
Fig. 4. Its computation is based on the observation that in 

Tabu List=@ 
i = l  
Set site 1 as used 
REPEAT n - 1 TIMES 

Search f irst x-i such tha t  x - i  is not used and d ( i ,  A - i )  
is no t  tabu 
IF ,B(T - i) THEN 
- TabuList=@ /* reinitialization */ 
- Search first ?r - i such tha t  x - i is not used 

0 x ( i )  = x - i 
Set 7r - i as used 
Insert d(i, x - i) i n  TabuList 

0 L = T - l  

?r( 1) = i 

Fig. 4. Computation of T 

the QAP the distance matrix plays a central role, inducing 
the existence of symmetric solutions (see [lo] for a discus- 
sion on this topic). Therefore, in order to obtain a good 
cover of the feasible set, the permutation A is computed in 
such a way that it prohibits whenever it is possible for a 
couple of firms to be located at  the same distance in two 
different solutions. 

VI.  NUMERICAL RESULTS 

We first would like to emphasize that ,  due to a lack of 
time, we did not fully exploit the Scatter Search opportu- 
nities. In particular, our intensification iterations consist 
in using the same Tabu Search procedure as in an ordinary 
iteration but for a higher number of steps. Our feeling is 
that the intensification proposed in [2] could improve the 
results. 

The above Scatter Search procedure has been imple- 
mented in C++ and numerical tests were performed on 
some problems of QAPLIB [11]. The results are reported 
in table 1. The first column indicates the problem name and 
the columns 1, 50, 100, 500, 1000, 2500 report on the nu- 
merical results after respectively, l ,  50, 100, 500, 1000, 2500 
iterations of the Scatter Search procedure. For each col- 
umn, the first line gives the average value (over ten runs) of 
the best solutions found and the second line reports on the 
value of the best solution over the ten runs. I t  appears that 
the algorithm finds quite quickly the best known solution 
for most of the test problems. It also finds some solutions 
which are better than the solution reported in QAPLIB as 
the best known solution for problems tho150 and tai256c. 
However, for the problems tailOOa and tail50b, the method 
does not find the best known values. Even in these 
cases, the best values found are within 0.099% for tailOOa, 

within 0.024% for tail50b. These gaps could probably be 
eliminated by a better tuning of the parameters. The com- 
putational times are very fast for the small size problems 
(els19, bur26a and kra30a) while they stay reasonable for 
the big size problems (lipa90b, tailOOa, thol50, tail50b 
and tai256c). For instance, 2500 iterations were performed 
in about 16000 seconds for problem tho150 on a DEC Al- 
phaStation 500/400Mhz. 

According to our opinion, these numerical results show 
that Scatter Search is an extremely competitive meta- 
heuristic method, a t  least for the Quadratic Assignment 
Problem. 
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TABLE I 
COMPUTATIONAL RESULTS. 

Tai256c 

I Problems I 1 50 100 500 1000 

Best 504014559 504014559 501 165936 499560242 499468095 499468095 
Avg. 45207903 44865244 44851341 44828651 

I I Best I 44824542 I 44824542 I 44823712 I 44822924 I I I 
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