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Cigarette smoking throughout life causes serious health issues in the lungs. The electronic cigarette (E-Cig) use increased, since it was
first introduced in the world. This research work compared the short-term exposure consequences to e-cigarette vapor and cigarette
smoke inmalemice. Forty-five C57BL/6mice were randomized into control (C) in an ambient air exposition cigarette smoke (CS) and
aerosol electronic cigarette (EC), both were exposed to 120 puffs, 3 times/day during five days. Then, in the experimental protocol, the
euthanized mice had their tissues removed for analysis. Our study showed that CS and EC resulted in higher cell influx into the
airways, and an increase in macrophage counts in CS (209.25± 7.41) and EC (220.32± 8.15) when compared to C (108.40± 4.49)
(p < 0:0001). The CS (1.92± 0.23) displayed a higher pulmonary lipid peroxidation as opposed to C (0.93± 0.06) and EC
(1.23± 0.17) (p < 0:05). The EC (282.30± 25.68) and CS (368.50± 38.05) promoted increased levels of interleukin 17 when
compared to C (177.20± 10.49) (p < 0:05). The EC developed shifts in lung histoarchitecture, characterized by a higher
volume density in the alveolar air space (60.21; 55.00-65.83) related to C (51.25; 18.75-68.75) and CS (50.26; 43.75-62.08)
(p=0.002). The EC (185.6± 9.01) presented a higher respiratory rate related to CS (133.6± 10.2) (p < 0:002). Therefore, our
findings demonstrated that the short-term exposure to e-cig promoted more acute inflammation comparing to cigarette
smoke in the ventilatory parameters of the animals.

1. Introduction

Tobacco and electronic smoking are a public health issue
and a leading cause of death; thus, it is estimated that about
6 million people die worldwide each year from smoking;
therefore, the mortality from smoking is expected to rise to
8 million people by 2030 [1]. Tobacco is consumed in a vari-
ety of ways, including regular cigarette, electronic cigarette

(e-cig), cigar, and waterpipe, among others [2, 3]. Usually,
or in general, the tobacco consumption is mainly performed
with cigarettes. The burning cigarettes generate cigarette
smoke (CS) and this is a complex blend, which contains
more than 4500 chemical substances including carcinogens,
toxins, and oxidizing compounds such as benzo-α-pyrenes,
acrolein, carbon monoxide, nicotine, acetone, and ammonia
[4]. Cigarette smoke induces the airways and lung

Hindawi
BioMed Research International
Volume 2022, Article ID 9938179, 9 pages
https://doi.org/10.1155/2022/9938179

https://orcid.org/0000-0002-3885-0356
https://orcid.org/0000-0002-2535-2737
https://orcid.org/0000-0002-9815-1370
https://orcid.org/0000-0001-8102-7720
https://orcid.org/0000-0001-9542-871X
https://orcid.org/0000-0001-5226-6378
https://orcid.org/0000-0003-3817-3858
https://orcid.org/0000-0002-1061-6445
https://orcid.org/0000-0002-6685-6229
https://orcid.org/0000-0002-7398-0834
https://orcid.org/0000-0002-0804-5196
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/9938179


parenchyma to elevated concentrations of reactive species; a
single cigarette smoke puff contains 1015 to 1017 free radicals
[4]. Regarding the elevated concentrations of reactive oxy-
gen species (ROS), cigarette smoke depletes the antioxidant
defenses [5], promoting a higher level of oxidative damage
both in the short [6] and long exposition to CS [7]. In addi-
tion to inducing redox imbalance, smoking causes a higher
inflammatory cell influx to the lung, mainly, macrophages
and neutrophils [8]. CS activates a signaling cascade medi-
ated by nuclear factor kappa B (NF-κB) [8]; hence, this pro-
cess stimulates cytokine production, proteases, and reactive
oxygen species, and together, these current biomarkers
increase inflammation and redox imbalance [9]. Combined,
this process is a trigger for the pathophysiology of the
chronic obstructive pulmonary disease (COPD) [9].

Considering that smoking is a great cause of mortality
and comorbidity, strategies of cessation and prevention
may improve this public health issue [10]. In this context,
E-Cig are apparatuses capable of spraying a solution con-
taining nicotine, without exposing individuals to the high
content level of toxic components generated by burning
tobacco [11]. The tobacco companies began introducing E-
Cig as an attempt to control or lessen smoking, which has
been attracting a growing number of users from all around
the world [12]. In 2020, about 4.4% of adults in the United
States reported using electronic nicotine delivery systems
[11]. In the National Youth Tobacco Survey 2020, about
19.6% of students in high school and 4.7% of middle school
students reported recurrent E-Cig usage [13].

The aerosol of electronic cigarettes contains propylene
glycol, glycerin, and flavorings, as well as aldehydes and
heavy metals such as nickel, copper, and other substances
[14]. Once aerosolized, the compounds in the liquid go
through chemical reactions, thus forming new ingredients
not previously found such as carbonyl compounds [15]. In
spite of being introduced as a safer form of smoking, recent
results do not support the claims of decreased health risks.
In animal models, exposure to E-Cig vapor is associated with
cardiac inflammation and oxidative stress [16], exacerbation
of the asthma inflammatory response [17], altered breast
milk composition, and also the biochemical and hormonal
profile in dams and offspring [18] in addition to impaired
memory [19]. In humans, studies show that E-Cig vapor
induces inflammation, increased risk of coughing and
wheezing, promoting asthma exacerbation, as well as sup-
pression of host defenses [20, 21]. Moreover, acute eosino-
philic and lipoid pneumonia clinic manifestations have
been related to E-Cig use [22]. Recently, vaping-induced
lung injury cases were published, and this is a clinical condi-
tion characterized by acute and subacute lung injury, airway
collapse, fluid accumulation, diffuse alveolar damage, inter-
lobular septal thickening, and fibrosis [23]. Therefore, the
focus of this study was to compare the effects of short-
term exposure to EC vapor and CS in the adult mice.

2. Methods

2.1. Animals. Forty-five adult male mice (11-12 weeks old)
were housed in standard laboratory cages (Laboratory of

Experimental Nutrition, at UFOP, in Brazil) and had ad libi-
tum access to water and food. The animals were separated
into three groups (n=15 per group): control (C) ambient
air exposition; 120 puffs/day of CS. This study had animals
who were approved by Ethics Committee from UFOP
(#2015/09).

2.2. Cigarette Smoke and Electronic Cigarette Vapor
Exposure. The mice were subject to a whole-body exposure
and the in vivo exposure systems were performed with a
fixed number of puffs (120 puffs/day). In the first smoking
chamber, the mice in the CS (n=15) were exposed to 6 com-
mercial full-flavor filtered Virginia cigarettes, 40 puffs per
exposure, corresponding to 120 puffs/day, for five consecu-
tive days, according to the method described by Campos
et al. [24].

In the second inhalation chamber, EC (n=15) were
exposed to 120 puffs/day by electronic cigarette aerosol,
divided into 3 separate times (morning, afternoon, and eve-
ning/40 puffs per exposure) during five consecutive days.
The E-Cig exposures were generated from Blu-brand
(Blu®, Charlotte, North Carolina, USA) disposables with
nicotine (24mg per cartridge) and purchased from a retail
source. This protocol was adapted from Campos et al. [24].

The animals were placed in their respective exposure
(40 cm/length, 30 cm/width, and 25 cm/height, 30 L) inside
an exhaustion chapel. The cigarette or the e-cig was each
attached to a 60-mL syringe at separate times, where the
CS or aerosol from the EC was injected inside the inhaling
chamber. The Carboxyhemoglobin (COHb) levels (%) were
measured, the level of COHb in CS had a range between
0.53% and 1.97%, and EC had a range between 0.43% and
0.70%, while C ranged between 0.36% and 0.65%. The con-
trol animals were allocated in a different inhalation chamber
and were exposed to ambient air [25, 26].

2.3. Ventilatory Parameters. After 24 h from the last expo-
sure, the mice were sedated using a mixture of ketamine
(100mg/kg) and xylazine (20mg/kg) administered intraper-
itoneally. The procedures for collecting ventilatory parame-
ters were performed in regard to the methodology
demonstrated by Araújo et al. [6, 27].

2.4. Blood Collection and Euthanasia. Ketamine (130mg/kg)
and xylazine (0.3mg/kg) were utilized to euthanize the mice.
Then, the animals were positioned in dorsal decubitus and a
heparinized syringe (Monovette®, Sarstedt) was inserted into
the third intercostal space for sample blood collection anal-
yses. This was performed by PRIME +® VET gasometer
device (Nova Biomedical, Waltham, Mass). Subsequently,
the levels of COHb were determined [28].

2.5. Bronchoalveolar Lavage Fluid (BALF). The BALF was
analyzed as previously described by Campos et al. [26].
The thorax was taken apart, then the trachea was cannulated
using an 18G catheter; subsequently, the left main bronchus
was clamped and the right lung was washed with 1.5mL (3 x
500μL) of saline solution (0.9% NaCl). The total leukocytes
count was performed in a Neubauer chamber. For the differ-
ential cell count in BALF, samples were centrifuged at 1000
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RPM for 1 minute using cytocentrifuge (Shandon, Waltham,
MA, USA) and the samples were stained using a rapid staining
kit. Relative cell count was performed under an optical micro-
scope with immersion oil. The total and differential cell counts
were performed by two trained researchers [27, 29].

2.6. Lung Collection. After the BALF collection, the left lung
was perfused with buffered formalin, the samples were proc-
essed, and the obtained slides were stained with hematoxylin
and eosin solution (H&E). The slides were used for mor-
phometric and histopathological measurements. The left
lung from each mouse was removed, homogenized in phos-
phate buffer (pH= 7.5), and centrifuged for 10 minutes at
10000 RPM. The supernatant was collected and stored in
freezer -80°C to perform the analyses of inflammatory bio-
markers and oxidative stress markers [26].

2.7. Morphometric Analyses. The H&E-stained slides were
used for stereological and morphometric analyses. The
photomicrographs were obtained using a microscope
equipped with a digital camera (Carl Zeiss AG, Oberkochen,
Germany) coupled with capture software. Photomicro-
graphs were taken using a 40x microscope objective. Twenty
images from each animal were randomly obtained, and the
presence and intensity of the following lesions were evalu-
ated in a semi-quantitative manner: septal thickening, alveo-
lar expansion, hyperemia/capillary congestion, pneumonitis,
atelectasis, septal destruction, anthracosis, hemosiderosis,
edema, and hemorrhage. Lesions present were classified as
absent, mild, moderate, and intense, as described by de
Castro et al. [30].

In regard to the semi-quantitative analysis, the volume
density of the alveolar septa (Vv [sa]) and the volume den-
sity of the alveolar air space (Vv [a]) were evaluated. The
analysis entailed the use of a testing system composed of
16 points and a familiar area reported by Mandarim-de-
Lacerda [31].

2.8. Inflammatory Biomarkers on Pulmonary Parenchyma.
The levels of tumor necrosis factor alpha (TNF-α), interleu-
kin 17 (IL-17), and chemokine ligand 5 (CCL5) were deter-
mined in the lung parenchyma by the ELISA method.
Immunoassays were performed using industrial kits from
Peprotech (Ribeirão Preto, Brazil), according to the proce-
dure described previously by Penitente et al. and Ramos
et al. [32, 33].

2.9. Redox Status in Lung Homogenates. The levels of lipid
peroxidation (TBARS) were determined according to the
method described by Buege and Aust [34], in which, the oxi-
dized lipid reacts with thiobarbituric acid and can be read on
a spectrophotometer at 535 nm. The protein oxidation was
determined according to the method described by Reznick
and Packer [35]. Catalase (CAT) activity was measured from
the decrease rate of hydrogen peroxide at 240nm [36].
Superoxide dismutase (SOD) activity was measured accord-
ing to the Marklund method [37], which is based on the
ability of the enzyme to inhibit the auto-oxidation of pyro-
gallol. Total protein analysis was performed by the Bradford
method [38].

2.10. Statistical Analyses. The sample sizes were calculated
using BioEstat 5.3 software; a statistical power of 95% and
a significance level of 5% were established in a pilot study.
The variable used to calculate power was superoxide dismut-
ase activity [39]. The data were expressed as mean± stan-
dard error of the mean. The data normality evaluation was
performed using the Kolmogorov-Smirnov test. Univariate
analysis of variances (ANOVA one-way) followed by
Tukey’s post-test was used for the parametric data. The
Kruskal-Wallis test and then Dunn’s post-test were utilized
for discrete data and expressed as median, minimum, and
maximum values. The difference was considered significant
when p < 0:05. All analyses were performed using GraphPad
Prism software version 5.00 for Windows 7, GraphPad
Software (San Diego, CA, USA).

3. Results

3.1. Ventilatory Parameters of Experimental Groups. Elec-
tronic cigarette (EC) exposition led to an increased RR
(ANOVA, p < 0:002) when compared to CS. No significant
differences were found when compared to Control (Table 1).

3.2. Influx of Inflammatory Cells in BALF. The inflammatory
cells (ANOVA, p < 0:0001) were higher in CS and EC
compared to C (p < 0:0001). Macrophage counts (ANOVA,
p < 0:0001) were also higher in both CS and EC when com-
pared to control (p < 0:0001). The neutrophil counts
(ANOVA, p = 0:01) were higher in EC when compared to
C and CS (p < 0:05). Finally, no difference was found
between groups in regard to lymphocyte counts (Table 2).

3.3. Inflammation Biomarkers in the Pulmonary Parenchyma.
The TNF-α, IL-17, and CCL5 were investigated to determine
the inflammatory status of the lungs (Table 3). TNF-α levels
(ANOVA, p = 0:03) increased in CS in comparison to C
(p < 0:05), while IL-17 (ANOVA, p = 0:001) was higher in
CS (p < 0:0001) and EC (p<0:05) compared to C. Finally,
CCL5 levels were higher (ANOVA, p = 0:03) in EC when
compared to C (p < 0:05) (Table 3).

3.4. Biochemical Analysis. The oxidative damage in the lungs
was analyzed by enzyme activity and oxidative damage
(Table 3). The lipid peroxidation (ANOVA, p = 0:004)
increased in CS compared to C (p < 0:01) and EC (p < 0:05).
Protein oxidation (ANOVA, p = 0:008) was higher in EC
compared to C (p < 0:01). The activity of SOD (ANOVA,
p = 0:0002) was decreased in CS compared to EC (p < 0:01)
and C (p < 0:0001). The activity of CAT (ANOVA, p = 0:002)
was higher in CS when compared to EC (p < 0:05) and C
(p < 0:01) (Table 3).

3.5. Histopathological Analyses. The semi-quantitative evalu-
ated the existence and severity of pulmonary injuries in
every group. We observed that the C had almost completely
preserved lung histology (Figure 1 and Table 4). The CS and
EC resulted in changes in the lung parenchyma including
alveolar septal thickening, alveolar lumen expansion, atelec-
tasis, hyperemia, pneumonitis, and septal destruction
(Figure 1 and Tables 4 and 5). These lesions ranged from
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mild to intense in severity (Table 5). Septal thickening, alve-
olar expansion, hyperemia, and pneumonitis were observed
in all the groups; however, these lesions were more frequent
in the animal groups exposed to CS and EC (Table 4). The
septal thickening, atelectasis, hyperemia, and pneumonitis
presented a distribution that varied mainly from mild to
moderate in both, CS and EC (Table 5). On the other hand,
alveolar expansion was more intense mainly in the group
exposed to electronic cigarette (Table 5). Moreover, anthra-
cosis, hemosiderosis, edema, and hemorrhage were not
found in the mice studied (Table 4).

3.6. The Lung Parenchyma Analyses. The alveolar airway
volume density (K-W, p = 0:002) was higher in EC (60.21;
55.00-65.83) compared to the C (51.25; 18.75-68.75) and
CS (50.26; 43.75-62.08) (Figure 1(a)). We also observed that
the alveolar septa volume density (K-W, p = 0:002)
was lower in EC (39.79; 34.17-44.27) in comparison
to C (48.55; 31.25-81.25) and CS (49.53; 37.92-56.35)
(Figure 1(b)). The images from the animals that inhaled
the EC vapor show the increased Vv of alveolar space and
decreased Vv of alveolar septa in the lung (Figure 1).

4. Discussion

The habit of smoking is the greatest avoidable risk factor for
developing COPD [40, 41]. The impact of smoking has been
widely studied; cigarette smoking is prevalent worldwide.
More recently, e-cig is becoming more popular, especially
with young people [13]. The results showed an increase in
the number of leukocytes and inflammatory markers.

Individuals that reported the use of e-cig products usu-
ally at the time of hospitalization are often hypoxic and meet
systemic inflammation. In a recent research work by Layden
et al. [42], in the beginning, recorded vital signs showed an
abnormally rapid breathing (tachypnea) in 43% of the
patients. We demonstrated for the first time that the animals
exposed to E-Cig presented a higher RR when comparing
the CS exposure to the mice. A higher RR occurs as a conse-
quence from a short expositional period of the E-Cig, an
effort to re-establish ventilatory balance.

We observed a higher influx of leukocytes and macro-
phages in BALF from the animals exposed to both CS and
EC. Studies have reported that repeated CS exposition can
promote prolonged lung inflammation related to leukocytes

Table 1: Analysis of pulmonary function parameters.

C CS EC p value

RR (breaths/min) 163.0± 2.5 133.6± 10.2 185.6± 9.01b p < 0:002
VT (mL) 0.28± 0.01 0.33± 0.05 0.35± 0.03 p = 0:41
Vmin (mL/min) 46.18± 1.35 45.74± 8.6 55.7± 3.8 p = 0:38
Body mass (g) 29.0± 0.9 30.2± 0.5 29.2± 0.7 p = 0:46
C: control; CS: cigarette smoke; EC: electronic cigarette; RR: respiratory rate; VT: tidal volume; Vmin: minute ventilation. (b) represents a difference compared
to CS. Data were expressed as mean ± SEM and were analyzed by one-way ANOVA followed by Tukey’s post-test (p < 0:05).

Table 2: Effects of cigarette smoke and electronic cigarette aerosol on the influx of cells in bronchoalveolar lavage.

C CS EC p value

Leucocytes (x103/mL) 118.00± 5.53 220.00± 6.49a 234.00± 7.02a p < 0:0001
Macrophages (x103/mL) 108.40± 4.49 209.25± 7.41a 220.32± 8.15a p < 0:0001
Lymphocytes (x103/mL) 7.81± 2.28 8.52± 1.79 8.89± 1.74 p = 0:92
Neutrophils (x103/mL) 1.80± 3.44 2.23± 6.67 4.79± 1.00a,b p = 0:01
C: control; CS: cigarette smoke; EC: electronic cigarette. The letter (a) represents a significant difference compared to C; the letter (b) represents a significant
difference compared to CS. Data were expressed as mean ± SEM and were analyzed by one-way ANOVA followed by Tukey’s post-test (p < 0:05).

Table 3: Immunoenzymatic assay and biochemical evaluation on pulmonary parenchyma.

C CS EC p value

TNF-α (pg/mL) 92.86± 10.88 157.00± 21.40a 128.50± 11.24 p = 0:03
IL-17 (pg/mL) 177.20± 10.49 368.50± 38.05a 282.30± 25.68a p = 0:001
CCL5 (pg/mL) 157.80± 10.63 264.80± 34.52 343.60± 66.58a p = 0:03
TBARS (nmol/mg protein) 0.93± 0.06 1.92± 0.23a,c 1.23± 0.17 p = 0:004
Protein carbonyl (nmol/mg protein) 3.68± 0.47 5.71± 0.62 7.24± 0.84a p = 0:008
SOD(U/mg protein) 120.80± 4.76 72.59± 8.84a,c 112.30± 2.82 p = 0:0002
CAT (U/mg protein) 2.94± 0.18 5.59± 0.48a,c 3.50± 0.56 p = 0:002
C: control; CS: cigarette smoke; EC: electronic cigarette. The letter (a) represents a significant difference compared to C; (c) represents a significant difference
compared to EC. Data were expressed as mean ± SEM and were analyzed by one-way ANOVA followed by Tukey’s post-test (p < 0:05).
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infiltration [24, 26]. Previously, Campos et al. observed the
higher influx of leukocytes, especially macrophages into the
airways starting from 2 days of cigarette smoke exposure
[24]. Araujo et al. also demonstrated a greater influx of mac-
rophages into the airways after five days of exposure to CS
[6]. Our results corroborate with earlier findings and showed
that exposure to CS, regardless of the time and number of
cigarettes, is capable of promoting the recruitment of inflam-
matory cells to the airways.

Regarding the E-Cig, Garcia-Arcos et al. showed that E-
Cig aerosol promoted increased cell numbers in BALF, with
macrophages being the most abundant cell type [43]. Sussan
et al. noticed a 58% increase of macrophages in BALF when
exposed to E-Cig aerosols, but it did not show an impact of
neutrophils, eosinophils, or lymphocytes infiltration in
C57BL/6 mice [44]. Higham et al. [45] suggest that exposing
cells to the aerosols from e-cig induced a neutrophil inflam-
matory response causing an increased release of metallopro-

teinase 9 and chemokine C-X-C motif ligand 8. In our
research work, we determined that short-term exposition
to e-cig led to macrophages and neutrophils influx into the
BALF, raising questions about the usage security of these
products once activated, since neutrophils recruited to the
airways can produce mediators such as interleukin 8, ROS,
and proteases as neutrophil elastase [46].

The inflammatory cell influx into the airways like neu-
trophils and monocytes is related to the increased produc-
tion of inflammatory mediators. In our study, this reported
increased levels of TNF-α in CS-exposed mice. TNF-α is a
powerful pro-inflammatory cytokine, which acts by regulat-
ing cell apoptosis, cytotoxicity, and production of other
cytokines [47]. This is a cytokine implicated in the inflam-
matory disease pathogenesis, as the COPD [48, 49]. Ramos
et al. observed increased levels of TNF-α in the BALF in
mice exposed to cigarette smoke for a short period [33].
Khabour et al. also reported higher levels of TNF-α in BALF
and the mice lungs when subjected to waterpipe tobacco [3].
The synthesis of this cytokine is highly controlled and its
expression is related to the mechanism via Nf-κB [49]. Pos-
sibly, the increased levels of TNF-α in our study are related
to the signaling pathways activation as the Nf-κB pathway.

Exposure to e-cig promoted increased levels of the che-
mokine CCL-5. The CCL5 is a chemokine family member
that mediates the immunological reaction. It is released by
fibroblasts, platelets, monocytes, and macrophages as a
result of inflammatory diseases, thus leading to the expres-
sion of inflammatory cytokines [50]. Higher levels in CCL5
were observed beforehand in the BALF of patients with
COPD [51]. Few studies have evaluated the role of CCL-5
in the inflammatory response induced by e-cig aerosol.

Vv
 al

ve
ol

ar
 ai

rs
pa

ce
 (%

)

Vv
 al

ve
ol

ar
 se

pt
a (

%
)100

A, B
80

60

40

20

0
C CS

(a) (b)
EC

100

A, B

80

60

40

20

0
C CS EC

Figure 1: Assessments of alveolar airspace and alveolar septa. Representative images of the lung stained with H&E. Bar =50 μm, 400x
augmentation. (a) Vv of alveolar airspace. (b) Vv of alveolar septa. (a) represents a significant difference in comparison to C. (b)
represents a significant difference when compared to CS. Results were expressed as median (minimum and maximum) and were
analyzed by the Kruskal-Wallis test followed by Dunn’s post-test (p < 0:05, n=10 each group). C: control; CS: cigarette smoke; EC:
electronic cigarette.

Table 4: The existence of injuries in the experimental groups.

Injuries
C

n=10 (%)
CS

n=10 (%)
EC

n=10 (%)

Septal thickening 3 (30.0) 8 (80.0) 6 (60.0)

Alveolar expansion 2 (20.0) 5 (50.0) 10 (100.0)

Atelectasis 0 (0.0) 6 (60.0) 3 (30.0)

Hyperemia 2 (20.0) 4 (40.0) 4 (40.0)

Pneumonitis 3 (30.0) 7 (70.0) 8 (80.0)

Destruction septal 0 (0.0) 10 (100.0) 10 (100.0)

C: control; CS: cigarette smoke; EC: electronic cigarette.
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Pham et al. noticed that E-Cig exposure promoted increased
expression of CCL-5 in a breast cancer model; however,
when compared to the findings from our study, it was a dif-
ficult comparison since the response to cancer cells to a
stimulus is different than that of healthier cells [52]. How-
ever, Pan et al., while evaluating the function of CCL5
in vivo, recognized that increased levels of this cytokine pro-
moted increased neutrophil recruitment to the airways and
exacerbation of asthma [53]. This is related to the results
detected in our study, and it suggests that E-Cig acts by reg-
ulating CCL5 expression, and the increase in this chemokine
causes the recruitment into the lungs.

Furthermore, we showed that a brief exposition to CS
and EC vapor promoted in higher interleukin 17 levels. IL-
17 is a cytokine originally identified as playing a main role
in the defense against microorganisms [54]. Moreover, this
cytokine is identified in the pulmonary biopsies of patients
with COPD and in the sputum of patients during exacerba-
tions of the disease [55], suggesting that although our model
is a short exposure, the increase in IL-17 levels induced by
conventional and e-cig may increase the risk of EC might
elevate the risk of COPD development.

In order to evaluate the outcome of CS and EC exposure
in the lung, we assessed the redox imbalance in the lung
parenchyma. CS has a variety of free radicals per puff, and
it is a powerful source of oxidative stress. In our previous
studies, we demonstrated that exposition to CS is capable
of modifying the activity of antioxidant enzymes, conse-
quently causing oxidative injury to the cellular constituents
as lipids, proteins, and DNA [24, 26]. However, the effects
of exposition to EC vapor on the redox status in the lung
are still uncertain.

SOD is considered the first line of enzymatic defense of
an organism, as it was responsible for the dismutation of
the superoxide anion in hydrogen peroxide, a substrate for

the enzyme CAT. In our research work, the SOD activity
decreased in the mice subjected to EC, thus suggesting that
the exposure caused an increase in O2

– concentration since
this enzyme has reduced activity when there is an overload
of its substrate. It is also important to emphasize that nico-
tine is responsible for an increase in O2

- concentration
through the activation of the NADPH oxidase (NOX)
enzyme complex so that when it binds to nicotinic acetyl-
choline receptors, nicotine promotes entry of Ca2+ into the
cells activating the protein kinase C, which in turn activates
NOX, leading to oxidative stress [56]. The excess O2 may
have been directed to the peroxynitrite pathway in a reaction
that occurs three times faster than the SOD catalyzed reac-
tion favoring lipid peroxidation [57]. Our data corroborate
with Campos et al., where we observed that a brief CS expo-
sure is associated with oxidative stress and a decrease in
SOD activity [24]. Interestingly, we noticed an increased
activity of CAT in the mice subjected to CS, which also
revealed a raised level in the antioxidant defense system
against the insults offered through E-Cig and CS.

A brief exposure to CS and e-cig induces damage to cell
macromolecules. Previously, Campos et al. demonstrated
elevated lipid peroxidation in animals exposed to CS [24].
Mayyas et al. observed increased levels of lipid peroxidation
in the mice subjected to EC vapor [16]. In our study, we did
not find any additional lipid oxidation in the E-Cig exposed
group; however, increased levels of protein oxidation were
measured. Our results corroborate previous findings and
demonstrate that e-cig also act to promote oxidative damage.

The animals subjected to inhaled CS did not show
changes in lung histoarchitecture. Therefore, we believe that
the five-day exposure was not enough to produce alterations
in the alveoli structure using only 6 commercial cigarettes
per day. Recently, Araújo et al. showed that short-range/or
shorter-term exposure using the 12 commercial cigarettes

Table 5: Semi-quantitative analysis of lung injuries from the animals that inhaled in the CS and EC.

Injuries
None
n (%)

Light
n (%)

Medium
n (%)

Severe
n (%)

Total%

Septum thickening

CS 2 (20) 3 (30) 4 (50) 1 (10) 100

EC 3 (30) 4 (40) 3 (30) 0 (00) 100

Alveolar expansion

CS 5 (50) 1 (10) 3 (30) 1 (10) 100

EC 0 (00) 2 (20) 3 (30) 5 (50) 100

Atelectasis

CS 5 (50) 3 (30) 1 (10) 1 (20) 100

EC 7 (70) 2 (20) 1 (10) 0 (00) 100

Hyperemia

CS 6 (60) 4 (40) 0 (00) 0 (00) 100

EC 6 (60) 4 (40) 0 (00) 0 (00) 100

Pneumonitis

CS 3 (30) 4 (40) 1 (10) 2 (20) 100

EC 2 (20) 4 (40) 4 (40) 0 (00) 100

CS: cigarette smoke; EC: electronic cigarette.
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per day promoted damage to the lung parenchyma charac-
terized by an alveolar volume density increase and an alveo-
lar septal volume density decrease [6].

However, the E-Cig was able to induce structural change
in the pulmonary architecture of C57BL/6 mice during only
five days and this is the first time that any study has shown
these structural changes. Lerner and collaborators [58]
showed that human pulmonary fibroblasts exhibited both
straining and morphological abnormalities/alterations/shifts
in reaction to E-Cig in a short exposure model; moreover,
after 24 hours, the fibroblasts exhibited various morpholog-
ical alterations suggesting that E-Cig affects inducing a
straightforward manner to the pulmonary cells that affect
the morphology of the cells, thus promoting a phenotype
strain and therefore contributing to the inflammative reac-
tion in a way which depends on the nicotine concentration
amount and taste preference. Our research work estimated
that the EC has led to structural changes in the lungs as a
consequence of the redox and inflammation response in
pulmonary cells exposed to the aerosol, and also, we suggest
that these shifts in lung architecture promoted by a short
exposition to E-Cig reflected a modified respiration-
controlled equilibrium, once we demonstrated that E-Cig
showed a higher pulmonary rate in comparison to the CS.

The current study presents some limitations. Firstly, in
general, we showed the inflammatory and oxidative effects;
however, we believe that the mechanisms associated in the
responses stimulated by the cigarettes are different; there-
fore, further studies are needed. Secondly, even though there
are more inflammatory mediators associated with the
recruitment of inflammatory cells into mice lungs. Further-
more, another potential limitation includes a unique gender
used, the short duration of cigarette exposures, and the
absence of a methodology for detecting the actual concentra-
tion of nicotine contained in the vapor. This research needs
to be acknowledged and further investigations ought to be
performed in the future.

In conclusion, these findings suggest the potential
dangers in pulmonary biology associated with cigarette and
E-Cig use even after a few days of exposure.
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