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Abstract: Long non-coding RNAs are frequently found to be dysregulated and are linked to car-
cinogenesis, aggressiveness, and chemoresistance in a variety of tumors. As expression levels of
the JHDM1D gene and lncRNA JHDM1D-AS1 are altered in bladder tumors, we sought to use their
combined expression to distinguish between low-and high-grade bladder tumors by RTq-PCR. In
addition, we evaluated the functional role of JHDM1D-AS1 and its association with the modulation
of gemcitabine sensitivity in high-grade bladder-tumor cells. J82 and UM-UC-3 cells were treated
with siRNA-JHDM1D-AS1 and/or three concentrations of gemcitabine (0.39, 0.78, and 1.56 µM),
and then submitted to cytotoxicity testing (XTT), clonogenic survival, cell cycle progression, cell
morphology, and cell migration assays. When JHDM1D and JHDM1D-AS1 expression levels were
used in combination, our findings indicated favorable prognostic value. Furthermore, the combined
treatment resulted in greater cytotoxicity, a decrease in clone formation, G0/G1 cell cycle arrest,
morphological alterations, and a reduction in cell migration capacity in both lineages compared
to the treatments alone. Thus, silencing of JHDM1D-AS1 reduced the growth and proliferation of
high-grade bladder-tumor cells and increased their sensitivity to gemcitabine treatment. In addition,
the expression of JHDM1D/JHDM1D-AS1 indicated potential prognostic value in the progression of
bladder tumors.

Keywords: bladder cancer; JHDM1D-AS1; long non-coding RNAs

1. Introduction

According to the Global Cancer Observatory, bladder cancer accounted for
212,536 cancer-related deaths worldwide in 2020. It is approximately four times more
prevalent in men than in women and is the 6th most prevalent cancer in men worldwide [1].
Urothelial tumors (tumors on the urothelial cells, specialized transitional bladder cells)
account for 90% of bladder cancer subtypes, of which 75% are non-muscle-invasive and
25% are muscle-invasive, attacking the bladder’s musculature and adjacent structures. The
classification of high- or low-grade for tumors refers to the degree of cell differentiation
and is an important prognostic factor. Non-muscle-invasive bladder cancers (NMIBC) are
typically superficial, low-grade tumors with favorable prognoses but high recurrence rates;
their treatment consists primarily of transurethral resection and intravesical therapies. In
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contrast, muscle-invasive tumors (MIBC) are high-grade neoplasias that are associated with
worse prognosis, especially when evolving metastasis to pelvic lymph nodes [2–5].

The most common therapies used for neoadjuvant chemotherapy are MVAC
(methotrexate, vinblastine, doxorubicin, and cisplatin) and CG (cisplatin and gemcitabine).
The CG regimen is related to a higher pathological complete response and a better toxicity
profile when compared to the MVAC regimen [6,7]. Gemcitabine is a prodrug that is similar
to the nucleoside deoxycytidine and is used in CG protocols. Its active form, gemcitabine
triphosphate, exerts an antitumor effect by weakly inhibiting DNA polymerase, depleting
deoxyribonucleotide reserves, and interrupting DNA strands by its repair-resistant incor-
poration. The toxic effects of gemcitabine include myelosuppression and hepatotoxicity [8].

Long non-coding RNAs (lncRNAs) show highly specific expression patterns in several
tissues and biological contexts, revealing their regulatory roles in physiological processes
(such as embryogenesis and cell differentiation) and pathological processes. LncRNAs
can regulate gene expression via chromatin interactions and epigenetic regulation, but
also at transcriptional and post-transcriptional levels, interacting with genes, other RNAs,
or specific proteins [9–11]. Some lncRNAs are often found dysregulated in several tu-
mors, and an increasing number of studies have demonstrated their roles as oncogenic
or tumor suppressors [12]; lncRNAs are also related to chemoresistance processes [13].
The abnormal expression of over 2000 lncRNAs in bladder tumors demonstrates a clear
association with tumor progression, invasiveness, and drug resistance. Therefore, lncR-
NAs can be investigated as potential biomarkers, prognostic indicators, and therapeutic
targets in bladder cancer [14]. The bladder cancer-specific lncRNA UCA1 (urothelial cancer
associated 1) was also associated with tumor progression, invasiveness, and chemoresis-
tance in bladder cancer cell lines, by competing with tumor-suppressing miRNAs and
modulating signaling pathways [15–17]. Overexpression of the lncRNA MALAT-1 was also
observed in bladder cancer cells, which was related to increased cell migration and inva-
sion, and chemoresistance, by activation of the Wnt pathway and subsequent promotion of
epithelial–mesenchymal transition, and by sponging miR-125b [18,19]. Overexpressed
MALAT-1 was also associated with higher-grade and metastatic bladder tumors, making it
a good diagnostic and prognostic biomarker for these cases [20].

Long non-coding RNAs can also take part in carcinogenesis by regulating the angiogen-
esis processes that are mediated by inflammatory mechanisms. The histone demethylase
JHDM1D (also known as KDM7A) is an epigenetic regulator found to be evolved in growth,
drug resistance, and progression in several tumors [21–23]. The lncRNA JHDM1D-AS1,
an antisense transcript of the JHDM1D gene (Figure S1), is also overexpressed in tumor
cells and tissues under nutritional stress. This transcript is related to tumor growth by
stimulating angiogenesis via the activation of pro-inflammatory and pro-angiogenic fac-
tors. Increased expression of JHDM1D-AS1 has been found in gastric and lung cancer
cells [24,25]. The platform “The Atlas of Non-Coding RNAs in Cancer (TANRIC)” revealed
the expression of the lncRNA JHDM1D-AS1 in bladder cancer cell lines, including J82
and UM-UC-3, and showed higher expression of this lncRNA in higher-grade tumoral
tissues than in low-grade tumors. In addition, data found on the TANRIC platform indicate
that higher expression of JHDM1D-AS1 is associated with a lower survival probability in
patients with bladder cancer [26].

Thus, this study aimed to elucidate the functional role of the lncRNA JHDM1D-AS1
and its association with the modulation of gemcitabine sensitivity in J82 and UM-UC-3
high-grade bladder-tumor cells. Furthermore, we investigated whether gene/lncRNA
expression in urothelial carcinoma tissues can be used to distinguish between low- and
high-grade tumors. We intend to search for novel therapeutic strategies and biomarkers for
the classification and prognosis of bladder cancer.
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2. Results
2.1. JHDM1D-AS1 and JHDM1D Expression in Bladder Tumor Samples

Despite the higher expression of lncRNA JHDM1D-AS1 in high-grade tumor samples,
no significant difference was observed (Figure 1a). Nevertheless, JHDM1D gene expres-
sion was 2.01 times greater in high-grade tumors than in low-grade tumors (p = 0.0392)
(Figure 1b). The analysis of the correlation between JHDM1D and JHDM1D-AS1 expression
revealed a moderately positive correlation (r = 0.7204, p < 0.0001) (Figure 1c). In addition,
analysis of ROC curves showed that the combination of JHDM1D and JHDM1D-AS1 had
potential prognostic value (p = 0.028), demonstrating their ability to distinguish between
low- and high-grade tumors (Figure 1d).
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2.2. Cell Viability and Morphology 

Figure 1. Expression of the JHDM1D gene (a) and JHDM1D-AS1 lncRNA (b) in patients with low- and
high-grade bladder tumors. (c) Moderately positive correlation between JHDM1D and JHDM1D-AS1
expression (r = 0.7204) in low- and high-grade bladder tumor samples (Spearman correlation analysis).
(d) Receiver operating characteristics (ROC) curves using the combination between JHDM1-AS1 and
JHDM1D to distinguish between low- and high-grade bladder tumors. * p < 0.05.

2.2. Cell Viability and Morphology

Compared to untreated and siRNA-JHDM1D-AS1 treated cells, J82 cells treated with
1.56 µM of gemcitabine exhibited a significant reduction in viability. In addition, in cells
treated with siRNA-JHDM1D-AS1 combined with 0.39 and 0.78 µM gemcitabine, there
was a significant reduction compared to the respective gemcitabine concentration alone
(Figure 2a). Compared to untreated cells, cell viability decreased significantly in all treated
UM-UC-3 cells (Figure 2b).
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Figure 2. Percentage of viability in J82 (a) and UM-UC-3 (b) cell lines after treatment with gemcitabine,
siRNA-JHDM1D-AS1, or gemcitabine combined with siRNA-JHDM1D-AS1. Control: untreated cells;
gem: gemcitabine. a: p < 0.05 compared to control; b: p < 0.05 compared to siRNA; c: p < 0.05
compared to respective gemcitabine concentration alone.

Figure 3 shows that treatments with siRNA-JHDM1D-AS1 alone or in combination
with gemcitabine significantly reduced the cell density of J82 and UM-UC-3 lines compared
to untreated cells. Furthermore, the treatments induced alterations in cell morphology,
including long cell extensions, irregular appearance, rounding, and death.
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Figure 3. Morphologies of J82 (a) and UM-UC-3 (b) cells after treatment with gemcitabine, siRNA-
JHDM1D-AS1, or gemcitabine combined with siRNA-JHDM1D-AS1. Control: untreated cells; gem:
gemcitabine. Black arrows: elongated cells; white arrows: round cells; red arrows: dead cells.
Phase-contrast microscope, ×200.
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2.3. Clonogenic Survival

All treatments significantly decreased the clonogenic survival of J82 cells relative to
untreated cells. Compared to cells treated with siRNA-JHDM1D-AS1, clonogenic survival
was significantly reduced in this cell line after treatment with gemcitabine at 0.78 and
1.56 µM and after treatment with all gemcitabine and siRNA-JHDM1D-AS1 combinations.
In addition, the combinations of gemcitabine 0.39 and 1.56 µM with siRNA-JHDM1D-AS1
caused a significant reduction in the cell colony formation compared to the respective
concentration of gemcitabine alone (Figure 4a).

Molecules 2023, 28, x FOR PEER REVIEW 5 of 17 
 

 

 

Figure 3. Morphologies of J82 (a) and UM-UC-3 (b) cells after treatment with gemcitabine, siRNA-

JHDM1D-AS1, or gemcitabine combined with siRNA-JHDM1D-AS1. Control: untreated cells; gem: 

gemcitabine. Black arrows: elongated cells; white arrows: round cells; red arrows: dead cells. Phase-

contrast microscope, ×200. 

2.3. Clonogenic Survival 

All treatments significantly decreased the clonogenic survival of J82 cells relative to 

untreated cells. Compared to cells treated with siRNA-JHDM1D-AS1, clonogenic survival 

was significantly reduced in this cell line after treatment with gemcitabine at 0.78 and 1.56 

µM and after treatment with all gemcitabine and siRNA-JHDM1D-AS1 combinations. In 

addition, the combinations of gemcitabine 0.39 and 1.56 µM with siRNA-JHDM1D-AS1 

caused a significant reduction in the cell colony formation compared to the respective 

concentration of gemcitabine alone (Figure 4a). 
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In UM-UC-3 cells, all treatments led to a significant decrease in clonogenic survival
compared to untreated cells. In all combination treatments, clonogenic survival was
reduced compared to siRNA-JHDM1D-AS1 alone and the respective concentration of
gemcitabine alone (Figure 4b).

2.4. Cell Cycle Progression

In the J82 cell cycle analysis, cell cycle arrest was observed at the G0/G1 phase in
the cells treated with all concentrations of gemcitabine and with gemcitabine and siRNA-
JHDM1D-AS1. Cell cycle arrest at the G0/G1 phase was significantly higher in the groups
submitted to the combined treatment with gemcitabine and siRNA-JHDM1D-AS1, when
compared to the groups treated solely with the respective gemcitabine concentrations.
This interference was accompanied by a diminished population of cells in S and G2/M
phases. In addition, there was an increase in the sub-G1 content in the cells treated with
gemcitabine and siRNA-JHDM1D-AS1 alone (Figures 5 and S3).

Similarly, in the UM-UC-3 cell line, there was mild cell cycle arrest at the G0/G1 phase
in the cells treated with all concentrations of gemcitabine and with gemcitabine and siRNA
JHDM1D-AS1. The combined treatment led to a significant increase in cell populations
in the S phase, when compared to cells treated solely with the respective gemcitabine
concentrations and to the untreated control. Additionally, an increase in the sub-G1 content
was observed in the cells treated with gemcitabine alone. In the UM-UC-3 cells treated with
siRNA JHDM1D-AS1 alone, there was cell cycle arrest at the S phase (Figures 6 and S4).
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Figure 5. Representative histograms and percentages of J82 cells in each phase after treatment with
gemcitabine, siRNA JHDM1D-AS1, or gemcitabine combined with siRNA JHDM1D-AS1. Control:
untreated cells; gem: gemcitabine; IP: propidium iodide. * p < 0.05 compared to control.
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Figure 6. Representative histograms and percentages of UM-UC-3 cells in each phase after treat-
ment with gemcitabine, siRNA JHDM1D-AS1, or gemcitabine combined with siRNA JHDM1D-AS1.
Control: untreated cells; gem: gemcitabine; IP: propidium iodide. * p < 0.05 compared to control.

2.5. Cell Migration

In J82 cells, we could observe that all treatments reduced the cell migration compared
to untreated cells, in both analyzed times. In 24 h, there was also a significant reduction in
the migration process after the treatment with gemcitabine at 0.39 and 0.78 µM and with
the two highest combination treatments when compared to siRNA-JHDM1D-AS1 alone.
The association of gemcitabine 1.56 µM and siRNA-JHDM1D-AS1 also reduced the J82
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cell migration significantly compared with the same concentration of gemcitabine alone
(Figure 7a,b). After 48 h of treatment, there was a consistent reduction in cell migration
compared to untreated cells, for all treatments. In addition, all the combined treatments
reduced cell migration significantly when compared to the groups treated solely with
gemcitabine (Figure 7a,c).

Molecules 2023, 28, x FOR PEER REVIEW 9 of 17 
 

 

2.5. Cell Migration 

In J82 cells, we could observe that all treatments reduced the cell migration compared 

to untreated cells, in both analyzed times. In 24 h, there was also a significant reduction 

in the migration process after the treatment with gemcitabine at 0.39 and 0.78 µM and 

with the two highest combination treatments when compared to siRNA-JHDM1D-AS1 

alone. The association of gemcitabine 1.56 µM and siRNA-JHDM1D-AS1 also reduced the 

J82 cell migration significantly compared with the same concentration of gemcitabine 

alone (Figure 7a,b). After 48 h of treatment, there was a consistent reduction in cell migra-

tion compared to untreated cells, for all treatments. In addition, all the combined treat-

ments reduced cell migration significantly when compared to the groups treated solely 

with gemcitabine (Figure 7a,c). 

 

Figure 7. Photographs (a) and quantification (b,c) of cell migration in J82 cells after treatment with 

gemcitabine, siRNA JHDM1D-AS1, or gemcitabine combined with siRNA JHDM1D-AS1. Control: 

untreated cells; gem: gemcitabine. a: p < 0.05 compared to control; b: p < 0.05 compared to siRNA; c: 

p < 0.05 compared to respective gemcitabine concentration alone. 

For UM-UC-3 cells, a reduction in the migration process was observed after all 24 h 

treatments compared to the untreated cells (Figure 8a,b). After 48 h, this effect was main-

tained in the cells treated with siRNA-JHDM1D-AS1, with gemcitabine at 1.56 µM, and 

with all combinations of gemcitabine and siRNA-JHDM1D-AS1. In addition, there was a 

significant reduction in the number of migrated cells after treatment with 0.39 or 0.78 µM 

of gemcitabine combined with siRNA-JHDM1D-AS1 compared with the respective con-

centration of the chemotherapy compound alone (Figure 8a,c). Importantly, although 

there was no inhibition of migration after treatment with gemcitabine, it is possible to 

observe a reduction in cell density, which is consistent with the results of cell viability 

(Figure S6). 

Figure 7. Photographs (a) and quantification (b,c) of cell migration in J82 cells after treatment with
gemcitabine, siRNA JHDM1D-AS1, or gemcitabine combined with siRNA JHDM1D-AS1. Control:
untreated cells; gem: gemcitabine. a: p < 0.05 compared to control; b: p < 0.05 compared to siRNA;
c: p < 0.05 compared to respective gemcitabine concentration alone.

For UM-UC-3 cells, a reduction in the migration process was observed after all 24 h
treatments compared to the untreated cells (Figure 8a,b). After 48 h, this effect was main-
tained in the cells treated with siRNA-JHDM1D-AS1, with gemcitabine at 1.56 µM, and
with all combinations of gemcitabine and siRNA-JHDM1D-AS1. In addition, there was a
significant reduction in the number of migrated cells after treatment with 0.39 or 0.78 µM
of gemcitabine combined with siRNA-JHDM1D-AS1 compared with the respective con-
centration of the chemotherapy compound alone (Figure 8a,c). Importantly, although
there was no inhibition of migration after treatment with gemcitabine, it is possible to
observe a reduction in cell density, which is consistent with the results of cell viability
(Figures S5 and S6).
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Figure 8. Photographs (a) and quantification (b,c) of cell migration in UM-UC-3 cells after treatment
with gemcitabine, siRNA JHDM1D-AS1, or gemcitabine combined with siRNA JHDM1D-AS1. Con-
trol: untreated cells; gem: gemcitabine. a: p < 0.05 compared to control; b: p < 0.05 compared to
siRNA; c: p < 0.05 compared to respective gemcitabine concentration alone.

3. Discussion

Non-coding long RNAs play an important role in carcinogenesis [24,27]. Therefore,
a better understanding of the functional role of lncRNAs could help in cancer diagnosis,
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prognosis, and treatment. Based on this, first, we conducted a marker lesion study using
JHDM1D and lncRNA JHDM1D-AS1 expression to distinguish between low-and high-
grade bladder tumors. The results showed different expression levels of JHDM1D in low-
and high-grade tumors, suggesting a possible role of this gene in bladder tumor progression.
This gene regulates many biological processes, including differentiation, development,
and the growth of several cancer cells [23,28]. JHDM1D was found to be upregulated
in prostate cancer tissue, and its chemical inhibition reduced proliferation and induced
apoptosis of prostate cancer cells [22]. Nevertheless, Osawa et al. [29] demonstrated that
this gene is overexpressed in tumor cells under nutritional stress and is associated with the
suppression of tumor growth via down-regulation of pro-angiogenic factors in cancer cells
and xenograft mouse models. This discrepancy may indicate a different role of JHDM1D in
different tumor conditions and stages [23].

Antisense lncRNAs are transcribed from the promoter regions of the coding gene
and can affect not only the expression of sense genes but also the expression of distant
genes [30]. Similarly to Kondo et al. [31], we also identified a long noncoding antisense
transcript, JHDM1D-AS1, whose expression increased proportionally to JHDM1D levels.
The expression JHDM1D-AS1 did not differ between low- and high-grade samples, even
though higher expression levels of the referred lncRNA are observed in high-grade tumors.
The number of tissue samples analyzed may have been a limitation of the present study.
A greater number of bladder tumor specimens could enable a clearer demonstration of
the different expression levels of lncRNA JHDM1D-AS1. Indeed, data available from The
Cancer Genome Atlas (TCGA), comprising a total of 252 tumors and 19 normal samples,
show higher expression of this lncRNA in high-grade tumors compared to low-grade
tumors. However, when JHDM1D and JHDM1D-AS1 expression levels were used in com-
bination, potential prognostic value for the progression of bladder tumors was indicated.
Thus, JHDM1D-AS1 silencing in high-grade cell lines, subsequently resulting in changes in
biological behavior, should be considered.

Nowadays, gemcitabine is present in several standard protocols for muscle-invasive
bladder cancer chemotherapy due to its efficacy and better toxicity profile [32]. Chemother-
apy resistance is a significant barrier to cancer treatment, as it drastically reduces the
efficacy of treatment and is strongly associated with tumor progression and recurrence.
Several studies have demonstrated the influences of lncRNAs in the modulation of cellular
pathways involved in chemoresistance, including in bladder cancer [13,19,33–35]. Despite
the increased levels of lncRNA JHDM1D-AS1 in bladder cancer cells, there were no studies
investigating the functional relevance of this lncRNA in high-grade bladder cancer cells or
the connection of this lncRNA to gemcitabine treatment in these tumors. Consequently,
in the second part of this study, we examined the functional role of JHDM1D-AS1 and the
effects of combining various gemcitabine concentrations with JHDM1D-AS1 inhibition on
high-grade bladder-tumor cell lines and their chemosensitivity.

Initially, the effect of silencing JHDM1D-AS1 expression was examined. Cytotoxicity
related to the knockdown of this lncRNA in bladder carcinoma cells was observed. Some
authors have observed that this lncRNA can be targeted to inhibit other tumor types.
Wu et al. suggested that lncRNA JHDM1D-AS1 promote gastric cancer progression by
upregulating oncogenic PRAF2 level by trapping miR-450a-2-3p [24]. Moreover, Yao et al.
showed that, in small cell lung cancer, JHDM1D-AS1 binding attenuates proteasome-
mediated degradation of DHX15, an ATP-dependent RNA helicase involved in ribosome
biogenesis, enhancing growth and metastasis [25]. In comparison to the isolated chemical, it
was observed that gemcitabine combined with siRNA-JHDM1D-AS1 decreased the viability
of J82 cells, but not of UM-UC-3 cells. Additionally, the clonogenic survival assay was
performed to establish the long-term effects of the treatment. Evaluation of the clone
formation is one of the most important tests for determining the effect of a chemotherapy
drug on tumor cells, as it indicates if the cells lost the ability to divide and proliferate [36].
In the two investigated cell lines, the combinations of gemcitabine and the siRNA for
JHDM1D-AS1 decreased the proliferative capacity of the cells relative to the drug alone
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and the treatment with the siRNA alone. These findings indicate that silencing JHDM1D-
AS1 improved the sensitivity of tumor cells to chemotherapy. It should be noted that, in
both cells, treatment with siRNA alone or in combination led to a reduction in colony
formation that was greater than the XTT-observed reduction in cell viability. These results
also indicate that the treatment’s impact is mediated by DNA-damaging processes that
comprise the reproductive integrity of cells. In particular, Da Silva et al. [37] showed
that, in bladder cancer cell lines, gemcitabine induces cytostatic effects that, according to
the findings of the present investigation, seem to be more apparent following lncRNA
suppression. Consistently with previous findings, morphological changes indicative of
loss of adhesion and cell death, such as cells with irregular and rounded shapes and the
presence of cell debris, were more pronounced after the combined treatment of gemcitabine
and siRNA-JHDM1D-AS1, along with a decrease in cell density, compared to treatments
with the isolated compounds.

Cell migration plays an essential role in tumor invasion and metastasis, and can be
assessed by observing cell migration, after treatment, through a gap in the cell mono-
layer [38]. The relationship between long non-coding RNAs and tumor cell metastasis
has already been reported by Dhamija et al. [39]. In addition to modulating the regula-
tion of genes related to metastasis, these molecules contribute to the regulation of the
epithelial–mesenchymal transition (EMT) process and act on in vitro cell invasiveness and
migration [39]. Furthermore, lncRNA JHDM1D-AS1 has been linked with the develop-
ment and metastasis of non-small cell lung cancer and the proliferation and migration
of gastric cancer cells [24,25]. In the present study, JHDM1D-AS1 silencing reduced cell
migration in both cell lines when compared to the untreated control. Moreover, gemcitabine
concentrations combined with JHDM1D-AS1 silencing led to a decrease in cell migration
when compared to treatment with gemcitabine alone or with siRNA in both cell types,
and the effects become more pronounced after 48 h. Thus, it appears that the lncRNA
JHDM1D-AS1 is associated with the metastatic process and enhances the anti-migratory
effects of gemcitabine in high-grade bladder-carcinoma cells.

Studies on the impact of gemcitabine on the cell cycle have yielded apparently incon-
sistent results about cell cycle kinetics [37,40]. G1/G0-phase arrest was detected in the two
TP53-mutant cell lines treated with gemcitabine, and it was slightly but significantly in-
creased in J82 cells when gemcitabine was combined with JHDM1D-AS1 silencing. Despite
a slight increase in UM-UC-3 cell population in the G1/G0 phase, the most pronounced cell
cycle perturbations detected following the combined treatment were cell cycle arrests in
the S and G2/M phases. Thus, the more pronounced alterations in cell cycle kinetics were
observed after treatment with gemcitabine and lncRNA inhibition.

In conclusion, our findings indicate that the long non-coding RNA JHDM1D-AS1
may be related to high-grade bladder cancers. In J82 and UM-UC-3 high-grade bladder-
cancer cell lines, the silencing of this lncRNA produced decreased in cell viability and
clone formation, morphological alterations, and decreased cell migration. In addition, the
silencing of JHDM1D-AS1 combined with gemcitabine treatment resulted in enhanced
cytotoxicity, higher rates of cell death, lower cell migration capacity, and cytostatic effects
when compared to treatment with the isolated compound. Therefore, it appears that
JHDM1D-AS1 plays an important role in the progression of bladder cancer, and its silencing
increases the gemcitabine sensitivity of high-grade tumor cells. In future investigations,
inhibiting this lncRNA may be considered as a strategy for achieving a therapeutic response
with a lower concentration of gemcitabine, hence decreasing side effects.

4. Materials and Methods
4.1. Clinical Samples

A total of 30 fresh bladder cancer tissue samples, 20 histologically diagnosed as
high-grade tumors and 10 as low-grade tumors, were collected at the University of Sao
Paulo Biorepository (Sao Paulo, Brazil) and Amaral Carvalho Hospital’s tumor repository
(Jau, Sao Paulo, Brazil). All tumor samples were collected via transurethral resection and
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histopathologically classified by a pathologist. The grading and stage were determined
according to the World Health Organization (WHO) systems and Tumor-Node-Metastasis
(TNM) 2017. All patients were male.

The study was approved by the Ethics Committee of the Sao Paulo State University
(protocol 48193715.6.0000.5411), and all methods were performed following the approved
guidelines.

4.2. Cell Lines, Culture Conditions, and Reagents

Two urothelial bladder cancer cell lines, acquired from the Cell Bank of Rio de Janeiro,
Brazil, were used in the in vitro experiments: i. J82, J82, derived from high-grade (grade
III) tumor with three point mutations in the TP53 gene (two in exon 8 (codon 271: Glu
(GAG)→ Lys (AAG); codon 274 Val (GTT)→ Phe (TTT)) and one in exon 9 (codon 320 Lys
(AAG)→ Asn (AAC)) [41–43]; ii. UM-UC-3, derived from a high-grade tumor with a point
mutation at TP53 (exon 4, codon 113: Phe (TTG)→ Cys (TCG)) [41–43].

Both cell lines were cultivated in monolayers, using DMEM culture medium supple-
mented with 10% bovine serum and 100 U/mL of penicillin G, 100 U/mL of streptomycin
(Sigma-Aldrich, Saint Louis, EUA), and 2.5 µg/mL of amphotericin B (Cristália, Itapira,
Brazil), and maintained at 37 ◦C in an atmosphere of 5% CO2. All experiments were
performed with exponentially growing cells [37]. Gemcitabine (Gemzar) was obtained
from Eli Lilly do Brazil Ltd.a. Treatment with gemcitabine was set to 24 h. Dilutions were
performed in nuclease-free water.

4.3. Expression and Knockdown Assays

Tissue biopsies were snap-frozen and stored at −80 ◦C. Total RNA was isolated using
the RNeasy Mini Kit® (Qiagen, Hilden, Germany) according to the manufacturer’s protocol.
RNA concentration and purity were determined using a NanoDrop spectrophotometer
(Thermo Scientific, Waltham, MA, USA). RNA quality was analyzed using a 2100 Bioana-
lyzer (Agilent, Santa Clara, CA, USA), and only samples with an RNA integrity number
(RIN) ≥ 6.0 were used. Complementary DNA (cDNA) was synthesized using the High
Capacity Kit (Applied Biosystems, Waltham, MA, USA) with random priming accord-
ing to the manufacturer’s instructions. Expression levels of the JHDM1D/KDM7A gene
and JHDM1D-AS1 lncRNAs were analyzed using RT-qPCR. Endogenous reference genes
(HSPCB and ACTB) were selected using the NormFinder software, version 5 [44].

For lncRNA JHDM1D-AS1 knockdown, J82 and UM-UC-3 cells were transfected with
SMARTpool Lincode Human JHDM1D-AS1 siRNA (Horizon Discovery Ltd., Cambridge,
UK), specific to human JHDM1D-AS1. Lipofectamine RNAiMAX (Invitrogen Life Tech-
nologies) was used as transfection agent for the siRNA-JHDM1D-AS1, according to the
manufacturer’s protocol. Cells transfected with lincode non-targeting control siRNAs were
used as a negative control. JHDM1D-AS1 knockdown in the two cell lines was confirmed
72 h post-transfection, by RT-qPCR (Figure S2). Total RNA was extracted with Quick-RNA™
MicroPrep ZymoSpin™ IC Columns kit and dosed in NanoDrop®. cDNA was confectioned
using High Capacity® kit (Applied Biosystems), according to the manufacturer’s protocol.
RTq-PCR was performed using SYBR Green (Thermo Fisher Scientific). GAPDH gene was
used as endogenous control for normalization. Treatment time with siRNA-JHDM1D-AS1
was set to 48 h.

4.4. Cytotoxicity Assay (XTT)

The XTT assay (Cell Proliferation Kit II, ROCHE Diagnostics, Mannheim, Germany)
was first used to define three concentrations of gemcitabine to be used in later experiments
with J82 and UM-UC-3 cells. Gemcitabine concentrations were defined as 0.39, 0.78, and
1.56 µM. To evaluate the cytotoxic effects after treatment with gemcitabine + si-JHDM1D-
AS1, 1 × 104 cells were seeded into 24-well culture plates, and 24 h later, treated with
siRNA-JHDM1D-AS1 (10 pmol). Forty-eight hours later, cells were treated with three
different concentrations of gemcitabine (0.39 µM, 0.78 µM, and 1.56 µM) for 24 h. Untreated
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cells; cells treated with non-targeting siRNA, used as controls; and cells treated only with
si-JHDM1D-AS1 or only with gemcitabine, were cultured in parallel. After treatment,
cells were washed with Hank’s solution (0.4 g KCl, 0.06 g KH2PO4, 0.04 g Na2HPO4,
0.35 g NaHCO3, 1g glucose, and 8 g NaCl in 1000 mL H2O) and incubated at 37 ◦C with
tetrazolium salt XTT (ROCHE Diagnostics, Mannheim, Germany) for 5 h. Immediately
after incubation, absorbance was read in a spectrophotometer at a wavelength of 450 nm.
Experiments were performed in technical triplicate.

4.5. Clonogenic Survival Assay

In order to evaluate the long-term effects of the treatment on J82 and UM-UC-3 cells,
a clonogenic survival assay was performed. First, 3 × 105 cells were seeded into 12-well
culture plates and incubated for 24 h at 37 ◦C in an atmosphere of 5% CO2. After 24 h,
cells were treated with siRNA-JHDM1D-AS1 (10 pmol) for 48 h and then treated with
0.39, 0.78, or 1.56 µM of gemcitabine for 24 h. Untreated cells and cells treated with non-
targeting siRNA, used as controls, along with cells treated only with si-JHDM1D-AS1
or only with gemcitabine, were cultured in parallel. Past treatment time, the cells were
washed with Hank’s solution, trypsinized, re-plated (1 × 103 cells) into 12-well culture
plates, and incubated at 37 ◦C in an atmosphere of 5% CO2. After 10 days (when untreated
controls reach maximum confluence for colony formation experiences), the culture medium
was removed, and cells were washed with Hank’s solution, fixed with 4% formaldehyde
solution for 20 min, hydrated with 100% methanol for 20 min, and stained with crystal
0.5% violet solution dissolved in 25% methanol. A 33% acetic acid solution was used to
remove the dying solution, and the contents of the plates were transferred to a 96-well
plate. Absorbance was measured in a spectrophotometer at a wavelength of 570 nm [45]
and was used to assess the percentage of colonies formed, that is, the reproductive capacity
of the cells. Experiments were performed in technical triplicate.

4.6. Cell Morphology

To observe the effects of gemcitabine + si-JHDM1D-AS1 treatment on the morphologies
of J82 and UM-UC-3 cells, 2 × 105 cells of each cell line were seeded into 12-well culture
plates, incubated for 24 h, and treated as described above. After treatment, the cells
were observed and photographed under a phase-contrast optical microscope, at 200×
magnification [46]. Experiments were performed in technical triplicate.

4.7. Wound Healing Assay

The wound healing assay was used to appraise cell migration after the combined
treatment of gemcitabine and lncRNA JHDM1D-AS1 knockdown. For that, 4 × 105 J82 and
UM-UC-3 cells were seeded into 12-well culture plates and incubated at 37 ◦C and 5% of
CO2 for 24 h. After incubation time, cells were treated with siRNA-JHDM1D-AS1 (10 pmol)
for 48 h and then treated with 0.39, 0.78, or 1.56 µM of gemcitabine for 24 h. Immediately
after gemcitabine treatment, a smooth and linear scratch was made in the middle of the cell
monolayer, using a 200 µL pipette tip. Untreated cells and cells treated with non-targeting
siRNA were used as controls, as cells treated only with siRNA-JHDM1D-AS1 or only
gemcitabine were cultured in parallel. Cell migration over the scratch area was observed
24 and 48 h after gemcitabine treatment, at 40× magnification in an optical microscope
with inverted light. Cell migration was evaluated and quantified using ImageJ® software
(Adapted from Lima et al., 2020 [45]). Experiments were performed in technical triplicate.

4.8. Cell Cycle Progression

To analyze cell cycle alterations after the treatment with siRNA-JHDM1D-AS1 and
gemcitabine, 4× 105 J82 and UM-UC-3 cells were seeded into 12-well culture plates for 24 h.
Then, cells were treated with siRNA-JHDM1D-AS1 (10 pmol) for 48 h and afterward treated
with 0.39, 0.78, or 1.56 µM of gemcitabine for 24 h. After treatment time, cells were washed
with Hank’s solution, trypsinized, and centrifuged at 1000 rpm for 10 min. The supernatant
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was discarded, and the sediment was fixed with 70% ethanol and maintained at −20 ◦C
for at least 12 h. Then, cells were washed with Hank’s solution, centrifuged, resuspended
with 200 µL of labeling solution containing propidium iodide, and maintained in ice,
protected from light, for 30 min [47]. Cell cycle kinetics were obtained by flow cytometry
(BD FACSCalibur), and 20,000 events were detected. The percentages of cells in the Sub G1,
G0/G1, S, and G2/M phases were analyzed using FlowJo® software. Experiments were
performed in technical triplicate.

4.9. Statistical Analysis

The nonparametric Mann–Whitney test was used for differential gene expression
analyses in the clinical samples, and the values are expressed as the mean ± SD. The
relationships between the differentiated values were examined using Spearman’s rank
correlation test (r = correlation coefficient), according to Akoglu (2018) [48]. A receiver
operating characteristic (ROC) curve was constructed, and the area under the curve (AUC)
was calculated to assess the specificity and sensitivity of the JHDM1D gene/lncRNA
JHDM1D-AS1 in differentiating high- and low-grade tumors. Statistical significance was
set to p < 0.05. Data from the cytotoxicity, clonogenic, cell cycle, and migration assays were
analyzed using one-way ANOVA followed by Tukey’s multiple comparison test. Statistical
significance was set to p < 0.05. All statistical analyses were performed using GraphPad
Prism® 6.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28052412/s1. Figure S1. Chromosome location, structural
organization, and length of JHDM1D and JHDM1D-AS1 genes. Figure S2. Relative expression of
JHDM1D-AS1 in J82 and UM-UC-3 cells after 72h of siRNA-JHDM1D-AS1. Figure S3. Percentage
of J82 cells in each phase of cell cycle after treatment with gemcitabine, siRNA JHDM1D-AS1, or
gemcitabine combined with siRNA JHDM1D-AS1. Control: untreated cells; gem: gemcitabine. a:
p < 0.05 compared to control; b: p < 0.05 compared to siRNA; c: p < 0.05 compared to respective
gemcitabine concentration alone. Figure S4. Percentage of UM-UC-3 cells in each phase of cell
cycle after treatment with gemcitabine, siRNA JHDM1D-AS1, or gemcitabine combined with siRNA
JHDM1D-AS1. Control: untreated cells; gem: gemcitabine. a: p < 0.05 compared to control; b: p < 0.05
compared to siRNA; c: p < 0.05 compared to respective gemcitabine concentration alone. Figure S5.
Photographs of cell migration in J82 cells after treatment with gemcitabine. Control: untreated
cells; Gem: gemcitabine. Figure S6. Photographs of cell migration in J82 cells after treatment with
gemcitabine. Control: untreated cells; Gem: gemcitabine.
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