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Abstract
Phα1β is a neurotoxin purified from spider venom that acts as a high-voltage-activated 
(HVA) calcium channel blocker. This spider peptide has shown a high selectivity for 
N-type HVA calcium channels (NVACC) and an analgesic effect in several animal 
models of pain. Its activity was associated with a reduction in calcium transients, 
glutamate release, and reactive oxygen species production from the spinal cord tissue 
and dorsal ganglia root (DRG) in rats and mice. It has been reported that intrathecal 
(i.t.) administration of Phα1β to treat chronic pain reverted opioid tolerance with a safer 
profile than ω-conotoxin MVIIA, a highly selective NVACC blocker. Following a recent 
development of recombinant Phα1β (CTK 01512-2), a new molecular target, TRPA1, 
the structural arrangement of disulphide bridges, and an effect on glial plasticity have 
been identified. CTK 01512-2 reproduced the antinociceptive effects of the native toxin 
not only after the intrathecal but also after the intravenous administration. Herein, 
we review the Phα1β antinociceptive activity in the most relevant pain models and 
its mechanisms of action, highlighting the impact of CTK 01512-2 synthesis and its 
potential for multimodal analgesia.

http://creativecommons.org/licenses/by/4.0/
http://www.jvat.org
https://orcid.org/0000-0002-2906-517X
http://orcid.org/0000-0003-0795-5320
http://orcid.org/0000-0002-3496-6749
http://orcid.org/0000-0002-9175-5761
http://orcid.org/0000-0002-0063-4471
http://orcid.org/0000-0002-6082-930X


Layout and XML SciELO Publishing Schema: www.editoraletra1.com.br | letra1@editoraletra1.com.br

da Silva et al.   J Venom Anim Toxins incl Trop Dis, 2021, 27:e20210001 Page 2 of 14

﻿ ﻿

Background
Pain is an unpleasant sensory and emotional experience 
associated with actual or potential tissue damage as described 
by the International Association for the Study of Pain (IASP). 
It can serve as an index of the severity and activity of a disease 
condition, a prognostic indicator, and a criterion of treatment 
efficacy [1]. Chronic pain has an undeniable impact on a patient’s 
quality of life, with possible financial consequences. Institutional 
costs associated with chronic pain at a major city university 
health network hospital in Canada have been estimated to range 
between CAN$2.5 million and CAN$4.1 million yearly [2].

Neuropathic pain (NP), an example of chronic pathological 
pain, is complex to manage [3]. NP can be moderated with a wide 
range of medicines such as tricyclic antidepressants, serotonin-
noradrenaline reuptake inhibitors, and calcium-channel-acting 
modulators (pregabalin and gabapentin) [4]. Ziconotide (Prialt®; 
Elan Pharmaceuticals, San Diego, CA, USA), a synthetic version of 
ω-conotoxin MVIIA, the CaV2.2 channel blocker, was introduced 
for the treatment of severe chronic pain that was not relieved by 
systemic analgesics, adjunctive therapies, or intrathecal morphine 
[5–8]. Although effective, ziconotide has limited use because 
of the requirement for i.t. administration coupled with serious 
neurological and psychiatric adverse events [9].

Studies on Phoneutria nigriventer venom showed that Phα1β 
toxin could inhibit high-voltage-activated (HVA) calcium 
channel currents and was more potent and effective in inhibiting 
CaV2.2 channels – N-type voltage-activated calcium channels 
(NVACC) currents [10]. Phα1β has been shown in many relevant 
pain models to affect three different types of pain: nociceptive, 
inflammatory, and pathological [11]. The spider peptide was 
effective and safe in all tested rodent nociception models [11]. 
Phα1β demonstrated an extensive analgesic effect with fewer 
side effects than ω-conotoxin MVIIA, explained by its blockade 
of HVA calcium channels. Further studies found that Phα1β is 
an antagonist of the TRPA1 receptor that is also involved in the 
nociceptive process [12]. The antinociceptive and adverse effects 
produced by the native toxin form were fully mimicked by its 
recombinant version, CTK 01512-2, in several pain models [13]. 
This review focuses on the mechanisms related to the analgesic 
effect and safety profile of native Phα1β and its recombinant form.

Phα1β toxin effects in most relevant animal 
pain models

Experiments on pain using human subjects are ethically 
limiting, subjective, and practically challenging. Hence, animal 
models of pain are extensively used to study inflammatory 
or pathological pain, but the use of animals also possesses 
ethical constraints and challenges [14]. Phα1β and recombinant 
CTK 01512-2 have been extensively studied in a wide range of 
rodent pain models (Table 1). This review focuses on persistent 
pathological pain models - cancer pain and neuropathic pain 
(NP) because these pain states are particularly challenging and 
can be effectively controlled by spider toxins. 

The hot plate or tail-flick test represents models of acute 
thermal pain where no tissue injury occurs. Souza et al. [15] 
showed that i.t. delivery of Phα1β (200 pmol/site) produced a 
long-lasting (3 to 24 h after injection) antinociceptive action 
in the hot-plate test. The low potency of spider peptides in 
acute thermal tests [15,16] can be considered a desirable effect 
that reflects the safety of the toxin. Acute thermal pain, as a 
nociceptive state, has an important physiological protective 
function in the preservation of living organisms, and its blockage 
should be avoided in some circumstances [11].

The formalin test is a preclinical test commonly used to track 
new compounds with analgesic potential [17–21]. Nociceptive 
behaviour triggered by formalin injection induces a biphasic 
behavioural response with a well-defined transition from acute 
pain to a more persistent pain state [21]. 

The effects of intrathecal administration of the toxin Phα1β 
on visceral pain (VP) induced by intraperitoneal (i.p.) injection 
of acetic acid, intracolonic administration of capsaicin, and 
cyclophosphamide (CPA)-induced haemorrhagic cystitis (HC) 
have been examined [22,23]. The examination of VP that is the 
most frequent type of pathological pain remains a challenge for 
physicians [24–28]. VP animal models have been associated with 
increases in TRPV1 expression [28–31], a decrease in voltage-
sensitive potassium currents, and enhanced expression and 
function of voltage-sensitive calcium currents [30,31]. Phα1β (50 
pmol/site) i.t. pre-treatment inhibited the VP writhes induced 
by acetic acid or intracolonic behaviours evoked by capsaicin 
administration [22]. Phα1β (50 pmol/site) displayed significant 
inhibitory effects on HC-related nociception [23], demonstrating 
its analgesic potential in visceral pain management.

Incisional surgery in rats and mice produces a sensitive, 
reproducible, and quantifiable animal model of postoperative 
pain [32] that is similar to human postoperative pain syndrome 
in which the surgical incision causes mechanical allodynia 
and other pain behaviours [33,34]. Intrathecal injection of 
Phα1β reduced pain indicating behaviours in a mouse model 
of incisional pain when administered pre- or postoperatively 
[35,36]. Long-term antinociceptive action suggests that this toxin 
could also be a therapeutic agent for the control of persistent pain 
[37]. Numerous results [15,22,23,35,36,37] suggest that spider 
toxin has the potential to be an efficient and safe alternative 
for the treatment of various nociceptive and inflammatory 
pain modalities.

Phα1β antinociceptive effects in a cancer pain model
Cancer-related pain is a prevalent and disabling symptom that 
requires early prevention and efficient treatment. Currently, 
opioids are practically the only analgesics capable of controlling 
severe cancer pain; however, opioid therapy leads to distinct 
side effects, including the development of analgesic tolerance, 
sedation, and gut constipation that limit their use [36,38]. 
Metastatic melanoma is associated with moderate and severe 
pain, and more than half of these patients require palliative care 
with morphine therapy [39]. By using an orthotopic tumour 
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Table 1. Analgesic-like effects of Phα1β, CTK 01512-2 and ω-conotoxin MVIIA (Ziconotide, Prialt®) in different models of rodent pain.

Models of pain
Peptide toxin

Phα1β CTK 01512-2 ω-Conotoxin MVIIA*

Nociceptive

1. Acute spontaneous nociception  
(irritant agents)a;b + + +

2. Heatc + NT +

3. Coldd NT NT NT

4. Mechanicale + NT +

Inflammatory

1. Irritant-triggedb + + +

2. Arthriticf + NT +

3. Post-operative + NT +

Neuropathic

1. Traumaticg + + +

2. Nerve differentiation NT + +

3. Chemotherapeutic-agentsh + + +/-

4. Diabetes-inducedi + NT +

Visceral pain

1. Hemorrhagic cystitisj + NT +

2. Intracolonic application of agentsb

3. Pancreatitisl
+
+

NT
+

+
+

Dysfunctional

1. Fibromyalgiam + NT NT

2. Complex regional pain syndrome type 1n NT + +

Others

1. Orofacial paina;b;f;g NT + +

2. Cancer melanomao + + +

3. Opioid-induced + NT NT

4. Multiple sclerosisp NT + +

aFormalin; bcapsaicin; chot plate; dacetone or tetrafluoroethene; eVon Frey filaments; fFreund’s complete adjuvant-induced inflammation; gpartial sciatic nerve ligation or 
chronic constriction injury; hpaclitaxel or bortezomib; istreptozotocin‑induced diabetes; jcyclophosphamide; kacetic acid; lcaused by 5 times hourly cerulein treatment; 
mcaused by repeated reserpine treatment; nexposure to prolonged hind paw ischemia and reperfusion; oB16F10 murine melanoma cells; pmyelin oligodendrocytes 
glycoprotein (MOG35-55.)- induced. *Included as positive control; NT: not tested; +: effect; +/-: ω-Conotoxin MVIIA presented effect in chemotherapy-induced 
neuropathic pain induced by paclitaxel but not in bortezomib, respectively. 

inoculation model, Rigo et al. [36] developed a mouse model of 
skin melanoma that reproduced severe mechanical hyperalgesia 
in mice. Intrathecal treatment with Phα1β (30 pmol/site) in 
mice with melanoma remedied this hyperalgesia in a time and 
dose-dependent manner with an effect that lasted up to 6 h,  
comparable to the effect of i.t. treatment with ω-conotoxin 
MVIIA [36]. The development of analgesic tolerance is one of 
the most serious drawbacks of opioids when used repetitively 
[38]. Using a melanoma model of cancer-related pain in mice, 
Rigo et al. [36] reproduced an opioid-induced tolerance scenario 
by administering consecutive doses of morphine for three 
consecutive days [36]. On the fourth day, the injection of a 
new challenging dose of morphine was unable to reduce heat 
hyperalgesia, suggesting analgesic tolerance. Phα1β but not 

ω-conotoxin MVIIA [40], administered 2 h before morphine 
restored the analgesic effect of this opioid. This suggests that 
Phα1β could potentially be used as an adjuvant drug for opioid-
based cancer pain management. The effect of Phα1β on cancer-
related pain in mice was also reproduced with the recombinant 
form of the toxin [13].

Phα1β antinociceptive effects in a surgically induced 
neuropathic pain model
The role of VACC and their inhibitors in neuropathic pain 
mechanisms has been substantiated [41]. Many surgical animal 
models such as chronic constriction injury (CCI) of the sciatic 
nerve, partial sciatic nerve ligation (pSNL), spinal nerve ligation 
(SNL), spared nerve injury (SNI), brachial plexus avulsion (BPA), 
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sciatic nerve transaction (SNT), and sciatic nerve trisection have 
been important in the development of chronic pain control. 
Evidence indicates that the principal pathogenic mechanisms 
responsible for the induction of neuropathic pain by CCI of 
the peripheral nerve are associated with oedema, ischemia, 
macrophage activation (myelin and axonal debris), endoneural 
extracellular matrix remodelling, cytokine and chemokine 
upregulation, and other manifestations of neuroinflammation 
[42–45]. In the pSNL model, i.t. injection of 30 pmol/site of Phα1β 
caused an anti-allodynic effect from 1 to 4 h after injection and 
did not alter the normal mechanical sensitivity of the animals 
[15]. The data from the CCI model showed that administration of 
Phα1β (200 pmol/site) in the lumbar subarachnoid space blocked 
the maintenance of mechanical allodynia for up to 4 h after the 
treatment, with an effect similar to that of ω-conotoxin MVIIA 
[46]. Moreover, other studies demonstrated the anti-allodynic 
and anti-hyperalgesic effects of Phα1β after a single i.t. injection 
of 30 or 100 pmol per site in a rat model of neuropathic CCI 
[15,46]. Rats subjected to CCI were implanted with osmotic 
pumps delivering 60 pmol/μL/h of Phα1β or saline placebo 
(1.0 μL/h) for 7 days [47]. After the initiation of spinal infusion 
of Phα1β, a significant antihyperalgesic effect began after 24 h 
(inhibition of 63% ± 13%) and continued for 6 more days 90% 
of inhibition on the second day and 100% from day 3 to day 7. 
Thus, Phα1β attenuated mechanical allodynia in the pSNL and 
CCI models because of decreased calcium influx into injured 
sensory neurons.

Phα1β antinociceptive effects in a chemotherapy-
induced neuropathic pain model
Paclitaxel (a taxane-derived anticancer agent) causes peripheral 
sensory damage resulting in chemotherapy-induced neuropathic 
pain (CINP); in some patients, an acute pain syndrome appears 
in the early days of treatment [48]. The mechanism by which 
chemotherapeutics damage the nervous system and cause CINP 
is multifactorial and involves inhibition of tubulin dynamics that 
hampers axonal transport and can lead to axonopathy, loss of 
epidermal innervation [49,50], oxidative stress, mitochondrial 
damage [51–54], altered ion channel activity [48,55,56], apoptosis 
[52], DNA and myelin sheath damage, immunological processes, 
and neuroinflammation [53,57,58]. The dysregulation of calcium 
homeostasis has been implicated in the causation of neuropathic 
pain [58–61]. 

In a model of paclitaxel-induced acute and chronic pain, Rigo et 
al. [37] evaluated the analgesic potential of two NVACC blockers, 
ω-conotoxin MVIIA and Phα1β. The spider toxin showed a superior 
therapeutic window compared to the ω-conotoxin MVIIA. Phα1β 
reduced acute and chronic mechanical hyperalgesia induced by 
paclitaxel and prevented the worsening of the associated chronic 
pain. Therefore, VACC blockers such as Phα1β reduce synaptic 
excitation at the level of the spinal cord and could be helpful in 
the treatment of paclitaxel-induced CINP. TRPA1 expressed in 
sensory neurons has been shown to contribute to paclitaxel-

induced neuropathic pain [62,63]. Phα1β selectively inhibits 
calcium influx and currents evoked by the TRPA1 agonist on 
hTRPA1-HEK293, IMR90 fibroblasts, and DRG neurons [12]. 
The mechanisms involved in the modulation of TRPA1 channels 
may contribute significantly to acute and chronic cold allodynia 
and hyperalgesia induced by paclitaxel.

Phα1β antinociceptive effects in diabetic europathic 
pain model
Diabetic neuropathy (DN) is the most prevalent chronic 
complication of diabetes [64]. DN is primarily a disorder of 
sensory nerves; early in the course of DN, patients commonly 
experience positive sensory symptoms in the feet such as 
pain, tingling, and paraesthesia, and negative symptoms 
such as numbness. Disordered sensory processing may evoke 
allodynia and hyperalgesia [65]. The pathogenesis of DN is 
multifactorial, and the mechanisms contributing to diabetic 
DN are not completely understood [66]. It has been suggested 
that approximately 50% of adults with diabetes are affected 
by peripheral neuropathy throughout their lifetime [67]. DN 
induces upregulation of TNF-α and CXCR4 in the DRG at both 
the early and late phases of DN.

Phα1β, ω-conotoxin MVIIA, and AMD3100 (a selective 
antagonist of CXCR4) administered intrathecally 2 h after 
STZ-induced DN reduced hypersensitivity in diabetic rats 
and decreased calcium influx and IL-6 level in the spinal cord 
[68]. In naïve rats with CXCR4/SDF-1 activation, the induced 
hypersensitivity decreased after 2 h of treatment with Phα1β or 
AMD-3100, while ω-conotoxin MVIIA did not affect i.t. [68]. The 
inhibitory effect of Phα1β toxin on diabetic neuropathic pain may 
involve the CXCR4 chemokine receptor in the spinal cord [68].

Phα1β and ziconotide toxin safety profile
Ziconotide (ω-conotoxin MVIIA) has been approved by the FDA 
for pain control. However, ziconotide has a narrow therapeutic 
window, producing maximal analgesia at doses close to the 
toxic dose, and causing severe side effects that limit its clinical 
use [69,70,71]. The DT50 of ω-conotoxin MVIIA (ziconotide) is 
287 (147–562) pmol/site and for Phα1β is 787 (485–1278) pmol/
site [15]. It is noteworthy that Phα1β can produce maximal 
analgesia at doses that do not induce potential side effects. 
In contrast, the maximal analgesia induced by ω-conotoxin 
MVIIA (ziconotide) could only be observed at doses close to 
DT50, causing severe side effects [15]. The therapeutic window 
(DI50//DT50) for Phα1β and ω-conotoxin MVIIA are 16 and 4, 
respectively [15]. The higher therapeutic window for Phα1β can 
be explained by several factors including binding to other types 
of VACC [10] and inhibition of cation channels such as TRPA1 
receptors involved in several nociception processes [12].

Miljanich and Ramachandran [72] showed that intrathecal 
NVACC blockers such as ziconotide (a chemically synthesised 
version of Conus magus ω-conotoxin MVIIA) induce clinical 
and behavioural effects (shaking behaviour, ataxia, and 
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hyperreactivity) in the central nervous system (CNS) of rats, dogs, 
and monkeys. Similarly, clinical studies have reported several 
adverse effects caused by i.t. administration in humans including 
abnormal gait, ataxia, hypertonia, and tremor [73], with one of 
the main adverse effects being hypotension [70]. The intravenous 
(i.v). administration of ziconotide in rats and rabbits has been 
shown to cause hypotension and increased heart rate (HR) by 
a combination of sympathetic neurotransmission blockage 
and mast cell degranulation [74,75]. Currently, ziconotide is 
administered clinically by a continuous i.t. infusion in the 
therapeutic management of neuropathic pain, producing a 
marked analgesic effect in this difficult-to-treat condition [76–78]. 
Unfortunately, even at analgesic therapeutic doses, ziconotide 
causes serious side effects [9].

It has been demonstrated that Phα1β inhibits high voltage-
activated calcium channels such as NVACC [10]. Our 
research group studied the possibility that i.t. Phα1β might 
cause cerebellar-related motor alterations since i.t. injection 
of N- and P-type calcium channel inhibitors in rats caused 
the serpentine tail movements and whole-body shaking [79]. 
After confirming its analgesic potential and safety compared 
with ω-conotoxin MVIIA, the next step was an extensive 
evaluation of the cardiovascular profile and overall neurological 
behaviour. The N-type calcium channel is a target for chronic 
and neuropathic pain [80]. The safety profile of i.t. Phα1β in 
relevant states of chronic pain has been assessed [15,36,37] as 
well as the toxic effects of the native peptide after a single or 
continuous i.t. infusion in a rat model of neuropathic pain [47]. 
Recently, clinical signs, serum biochemistry, organ weight, and 
histopathological alterations were evaluated in male and/or 
female Wistar rats by searching for possible alterations caused 
by acute i.t. administration of Phα1β at a high dose [81]. Phα1β 
i.t. injection produced maximum analgesia after doses (100–200 
pmol/site) that did not induce the described potential side effects, 
with a therapeutic window of 16 [15]. Only dynamic allodynia 
was observed in an intrathecally delivered dose of 100 pmol [13]. 
In comparison, the maximal analgesia induced by ω-conotoxin 
MVIIA (100 pmol/site) could only be observed in doses that 
cause severe side effects with a therapeutic window of 4 [15].

The pre-clinical tests performed to establish a cardiovascular 
profile and overall neurological behaviour showed that i.t. 
Phα1β (200 pmol/site) did not change the mean arterial blood 
pressure or HR 3 h after the injection. However, i.t. ω-conotoxin 
MVIIA (100 pmol/site) induced an increase in HR 3 h after 
administration [35]. Treatment with the toxin did not alter 
neurological performance after 3 h, suggesting the absence of 
causing neurological deficits in rats [35]. Even in a paclitaxel-
induced acute and chronic pain model, i.t. ω-conotoxin MVIIA 
(10–100 pmol/site) caused adverse effects while Phα1β (30–300 
pmol/site) produced only minor adverse effects when injected 
at the acute or chronic pain stage [37]. The same results were 
reproduced in a cancer-related pain model; ω-conotoxin MVIIA 
showed adverse effects (such as sedation, motor dysfunction, 
and paradoxical hyperalgesia) at all tested doses, while Phα1β 

produced minimal adverse effects (paradoxical hyperalgesia) 
only at the highest tested dose [37]. 

Continuous intrathecal infusion of an NVACC blocker is 
a critical option for neuropathic pain management [80]. The 
Phα1β’s antinociceptive and toxic effects were compared after 
a single continuous i.t. infusion in a rat model of NP induced 
by CCL of the sciatic nerve. A single injection of Phα1β (30 
or 100 pmol/site) or continuous infusion (60 pmol/μL/h for 
7 days) was able to reverse nerve injury-induced nociception 
[47]. In both forms of administration, the toxin did not cause 
behavioural side effects or histopathological changes in the CNS. 
In a single or continuous injection, intrathecal administration 
of ziconotide causes nausea, confusion, postural hypotension, 
allodynia, abnormal gait, urinary retention, and weakness, and 
severe side effects that tend to occur more commonly at higher 
doses [73–78]. The detailed alterations related to the behavioural 
side effects are described in Table 2.

Dellagrave et al. [81] evaluated clinical signs, relative organ 
weight, biochemical parameters, and histopathological alterations 
in hepatic and renal tissues. Clinical signs manifested by Phα1β 
(500 pmol/site) injected in male rats only showed dyspnoea, 
while females manifested decreased touch response and tremors. 
There were no significant differences in the weights of the 
male and female organs. Serum biochemical data in male rats 
revealed a significant reduction within the physiological limits 
of species related to urea, AST, ALT, ALP, and hepatic and renal 
congestion [81]. Evaluation of the potential cytotoxic, genotoxic, 
and mutagenic effects of Phα1β by different methods showed 
that Phα1β (500 pmol/site) induced DNA damage in the spinal 
cord but not in peripheral blood [82]. In conclusion, the native 
toxin showed a good safety profile with transient signs of clinical 
toxicity [81] and genotoxic effects only in SNC [82] at doses five 
times higher than those used to obtain the analgesic effect. The 
results demonstrate that Phα1β produces analgesia after single or 
continuous i.t. delivery in relevant models of acute and chronic 
pain eliciting minimal toxic effects and with a greater therapeutic 
window of 16, higher than that 4 of ω-conotoxin MVIIA [15].

Phα1β toxin action mechanisms
Phα1β toxin has been proven to inhibit HVA calcium channels 
and act as a TRPA1 antagonist. This inhibitory effect is most 
useful in controlling pain due to the overexpression or increased 
activity of the molecular agents in these disease conditions. Spider 
peptide activity on the nervous system has been extensively 
investigated through events related to high-voltage activated 
calcium channels (HVACC) and TRPs such as intracellular 
calcium transients, neurotransmitter release, oxidative stress 
pathways, and inflammatory mediators (Table 3). This review 
focuses on the effects of Phα1β on molecular targets, calcium 
influx, glutamate release, and reactive oxygen species (ROS) 
generation as the most important and described mechanisms 
related to pain pathways. Glial plasticity effects have also been 
reported and are detailed in Table 3.
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Table 2. Side effects of Phα1β, CTK 01512-2 and ω-conotoxin MVIIA (Ziconotide, Prialt®) in different doses or administration routes.

Peptide 
toxin

Phα1β CTK 01512-2 ω-Conotoxin  
MVIIA*

Routes Intrathecal  
route

Intrathecal 
continuous 

infusion

Intrathecal  
route

Intravenous  
route

Intrathecal  
route

Doses
10

pmol/
site

30
pmol/
site

100  
pmol/
site

200 
pmol/site

300 
pmol/
site

60
pmol/ul/h

30 
pmol/
site

100 
pmol/
site

200 
pmol/
site

0.2 
mg/kg

0.6 
mg/kg

1.8
mg/kg

10 
pmol/
site

30 
pmol/
site

100 
pmol/
site

A
dv

er
se

 e
ff

ec
ts

 a
nd

 r
el

at
ed

 p
ar

am
et

er
s

Serpentine 
tail Absentr Absentr Absentrm Absentm Absentr Absentr Absentm Absentm Not  

tested Absentm Absentm Absentm Presentrm Absentrm Absentrm

Body shake Absentr Absentr Absentrm Absentm Absentr Absentr Absentm Absentm Not  
tested Absentm Absentm Absentm Presentrm Absentrm Presentrm

Dynamic 
allodynia Absentr Absentr Presentrm Absentm Absentr Absentr Absentm Presentm Not  

tested Absentm Absentm Absentm Presentrm Presentrm Presentrm

Sedation Not  
tested Absentm Absentm Not  

tested
Not  

tested
Not  

tested
Not  

tested
Not  

tested
Not  

tested
Not  

tested
Not  

tested
Not  

tested
Not  

tested Presentrm Presentrm

**Forced 
motor 
activity 

impairment

Not  
tested

Not  
tested Absentm Absentm Not  

tested
Not  

tested
Not  

tested Absentm Not  
tested Absentm Not  

tested
Not  

tested Absentm Not  
tested

Not  
tested

***General 
motor 
activity 

impairment

Not  
tested

Not  
tested Absentm Absentrm Not  

tested
Not  

tested
Not  

tested Absentm Absentr Not  
tested

Not  
tested

Not  
tested Absentm Not  

tested Absentr

Mean 
arterial 
pressure

Not  
tested

Not  
tested

Not  
tested Unaffectedr Not  

tested
Not  

tested
Not  

tested
Not  

tested
Not  

tested Unaffectedm Unaffectedm Unaffectedm Not  
tested

Not  
tested

Not  
tested

Heart 
frequency

Not  
tested

Not  
tested

Not  
tested Unaffectedr Not  

tested
Not  

tested
Not  

tested
Not  

tested
Not  

tested Unaffectedm Unaffectedm Unaffectedm Not  
tested

Not  
tested

Not  
tested

rRats; mmice. *Included as a positive control for Phα1β and CTK 01512-2- studies from other groups were not considered; **evaluated by the Rotarod method; ***evaluated by the open field method.
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High voltage-activated calcium channel blockade by 
Phα1β toxin
The activity of HVACC in different types of pain derives from 
their heterogeneity in structure, and tissue and cell localisation 
[83]. The calcium channel family consists of different channel 
subtypes that can be divided based on the voltage dependence of 
activation: HVA calcium channels into L-type (CaV1.1–Cav1.4), 
P/Q-type (CaV2.1), N-type (CaV2.2), R-type (CaV2.3), and low-
voltage activated channels, T-type (CaV3.1, CaV3.2, CaV3.3) [84]. 
There is literature evidence implicating low-voltage calcium 
channel in pain pathologies [84] and Phα1β was no tested on 
the low-voltage activated channels. The NVACC are almost 
exclusively expressed in neuronal tissue and localised in synaptic 

nerve terminals in laminae 1 and 2 of the dorsal horn, where 
their opening results in the release of neurotransmitters such 
as CGRP, glutamate, and substance P [84,85]. Consequently, 
inhibiting calcium influx in the CaV2.2 channel results in reduced 
neurotransmission and analgesia. Therefore, these calcium entry 
pathways are targets for therapeutic agents in the treatment of 
disorders such as pain management [86]. 

Vieira et al. [87] demonstrated that Phα1β inhibits calcium 
influx and decreases glutamate Ca2+-dependent exocytosis 
from cortical synaptosomes, suggesting that the toxin targets 
calcium channels. Electrophysiological recordings show that 
Phα1β blocks mammalian calcium ion currents in HVA calcium 
channels exogenously expressed in HEK cells [10]. Four HVA 

Table 3. Phα1β, CTK 01512-2 and ω-conotoxin MVIIA (Ziconotide, Prialt®) pain pathway action mechanisms.

Action mechanisms
Peptide toxin

Phα1β CTK 01512-2 ω-Conotoxin MVIIA*

Molecular targets IC50 (nM)

Voltage gated calcium channela

1. N- type VACC 122 Not tested Not tested

2. R- type VACC 136 Not tested Not tested

3. P/Q - type VACC 263 Not tested Not tested

4. L - type VACC 607 Not tested Not tested

5. T - type VACC Not tested Not tested Not tested

Transient receptor potentiala;b;c

1. TRPV1 Unaffected Unaffected Not tested

2. TRPV4 Unaffected Unaffected Not tested

3. TRPA1 681a;40b;32c 506a;28b;34c Not tested

Molecular targets related events

Intracellular Ca2+ Decreasec;d;e Decreasec;d;e Decreasec;e

Glutamate release Decreasee;f Decreasef;g Decreasee;f;g

Oxidative stress

3.1 ROS generation Decreasef Not tested Decreasef

3.2 Lipid peroxidation Not tested Decreasec Decreasec

3.3 Myeloperoxidase activity Decreasee;h Not tested Unaffectede;h

3.4 Malondialdehyde levels Decreasee Not tested Not tested

Inflammatory mediators

4.1 TNF-α Decreasei Decreasee;h unaffected;h;i

4.2 IL-1β Decreasei Decreasee;h Decreasee;h;i

4.3 IL-6 Decreasea Not tested Decreasea

4.4 IL-10 Increasei Increasee;h Unaffectede;h;i

Glial plasticitye

5.1 GFAP Decrease Decrease Decrease

5.2 Iba-1 Unaffected Unaffected Unaffected

5.3 Microglia proliferation Decrease Not tested Not tested

5.4 Astrocyte proliferation Decrease Not tested Not tested

aHuman embryonic kidney (HEK) 293 cells and N18 neuroblastoma cells; bIMR90 cells; cDRG neurons; dTRPA1-HEK293; espinal cord samples; fCSF; gtrigeminal 
ganglia; hbrain tissue; ibladder, jpaw skin. *Included as a positive control for Phα1β and CTK 01512-2 studies from other groups were not considered. Note: VACCs 
are shown in order of preference for Phα1β.
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calcium channels were examined in this study; the blockade 
by Phα1β was the most potent and effective on CaV2.2 (N-type 
voltage-activated calcium channels), blocking > 95%. In addition 
to the blockade of Cav 2.2 channel, Phα1β partially reduced the 
conductance of CaV1 (L-type), CaV2.1 (P/Q–type), and CaV2.3 
subtypes (R-type). The suggested mechanism of action of Phα1β 
in calcium channel blockade is the complete blockade of CaV2.2 
currents. It seems that the native peptide may bind tightly to the 
external mouth of the channel and physically occlude the pores. 
When Phα1β action on Cav1, Cav2.1, and Cav2.3 subtypes was 
evaluated, an incomplete blockade was observed, suggesting 
that the Phα1β effect might be associated with a state-dependent 
affinity between the channel and the toxin [10]. Literature reports 
that several blockers of voltage-activated Ca2+ channels exhibit 
state and/or potential-dependent blockage [88–89]. However, 
Phα1β was tested at concentrations up to 1 µM; thus, higher 
concentration of the toxin may achieve the complete blockage 
of these channels. The order of potency of Phα1β inhibition on 
calcium currents was N-(a1B/Cav2.2) > R-(a1E/Cav2.3) > P/Q-
(a1A/Cav2.1) > L-(a1C/Cav1.2) [10]. Therefore, Phα1β exhibited 
a measurable preference for CaV2.2 calcium channel, with the 
blockade being reversible. These results showed that blockade of 
NVACCs has pharmacological utility in the management of pain.

TRPA1 channel antagonism by Phα1β
TRPA1 is a nonselective cation channel expressed in nociceptive 
somatosensory neurons of the DRG, trigeminal, and nodose 
sensory ganglia, acting as a cellular sensor to several harmful 
physical and chemical stimuli [90–91]. This channel is a member of 
a subset of transient receptor potential (TRP) channels subdivided 
into seven main subfamilies according to their homology and 
channel function: TRPC (canonical), TRPV (vanilloid), TRPM 
(melastatin), TRPML (mucolipin), TRPP (polycystin), TRPA 
(ankyrin transmembrane protein), and TRPN (Nom PC-like) 
[92]. This receptor can be activated and modulated by endogenous 

agonists derived from inflammatory or tissue injury conditions, 
thus contributing decisively to the pathogenesis of inflammation 
and pain, possibly in the transition from acute to chronic pain 
[92–93]. Studies involving the TRPA1 receptor have been carried 
out to develop new therapeutic tools for the treatment of pain. 
Tonello et al. [12] demonstrated that Phα1β inhibits HC-030031 
(a TRPA1 receptor antagonist) and currents evoked by TRPA1 
channel stimulation in HEK293 cell cultures (Figure 1). Phα1β 
reduced nocifensive responses evoked by allyl isothiocyanate, a 
TRPA1 agonist, by intraplantar and i.t. administration, attenuating 
mechanical and cold hyperalgesia in a model of NP pain induced 
by bortezomib. This study also showed that the recombinant 
peptide did not exert action on other TRP channels such as 
TRPV1 and TRPV4, suggesting its selectivity by the TRPA1 
channel [12]. Previous findings have demonstrated that Phα1β 
does not inhibit the TRPV1 channel, corroborating the fact that 
this toxin does not affect other TRP channels [94]. 

Reduced glutamate release by Phα1β toxin
N-type calcium channels are preferentially coupled to glutamate 
release in the enhanced nociceptive transmission at the spinal level 
following formalin inflammation [95]. Phα1β and ω-conotoxin 
MVIIA blocked glutamate release evoked by capsaicin in isolated 
nerve terminals from the spinal cord, but Phα1β’s potency was 
about two times greater than that of ω-conotoxin MVIIA [15]. 
The IC50 for the inhibitory effect on glutamate release on the 
nerve terminal by Phα1β was 2.1 µmol while for ω-conotoxin 
MVIIA it was 4.8 µmol [15]. It is noteworthy that different 
pain models increase Glu levels in the cerebrospinal fluis (CSF) 
[15,95–98]. The antinociceptive and adverse effects produced by 
the native toxin form were fully mimicked by the CTK 01512-
2 recombinant version in several pain models [13] (Figure 1).  
Moreover, in isolated nerve terminals obtained from the spinal 
cord, the spider toxin also blocked Glu release evoked by capsaicin 
[15]. Vieira et al. [87] demonstrated that Phα1β inhibits calcium 

Figure 1. Molecular targets and action mechanisms involved in the intrathecal injection of Phα1β and CTK 01512-2 peptide. (A) Molecular targets of Phα1β and 
CTK 01512-2 and their cellular localization on the periphery tissue and lamina I of the spinal cord. (B) Phα1β and CTK 01512-2’s molecular target activation related 
events in spinal cord lamina I during pain states. (C) The suggested mechanism for pain relief through molecular targets blockade by Phα1β and CTK 01512-2. Note: 
more studies are necessary to understand how native peptides and their recombinant versions interact with HVCACC and TRPA1.
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influx and decreases glutamate Ca2+-dependent exocytosis 
from cortical synaptosomes, suggesting that the toxin targets 
calcium channels. We believe that a reduction in excitatory 
neurotransmitter release from presynaptic terminals by decreasing 
calcium influx would lessen the activity of the dorsal horn neurons 
and thus raise the threshold for nociceptive response.

Reduced reactive oxygen species generation by 
Phα1β toxin
Several studies have demonstrated that increased intracellular 
ROS, reactive nitrogen species (RNS), and Ca2+ play a major role 
in the aetiology of pain processes [99,100]. Interactions between 
ROS and calcium signalling can be considered as bidirectional, 
wherein ROS can regulate cellular calcium signalling, while 
calcium signalling is essential for ROS production [101]. Therefore, 
the elevation of intracellular calcium levels is responsible for 
the activation of ROS-generating cytosolic enzymes and the 
formation of free radicals by the mitochondrial respiratory 
chain. In contrast, ROS can significantly affect calcium influx 
into cells and intracellular calcium stores [102]. 

Some studies have reported that excessive ROS and RNS 
production in rat models involves TRPA1 channels in the 
aetiology of pain processes [103]. The cellular mechanisms 
have not been fully clarified, although there are some reports 
on TRPA1 activation-induced pain processes such as diabetic 
peripheral pain [104,105], spinal cord injury-induced pain 
[106,107], and chemotherapeutic agent-induced pain [108]. 
Furthermore, sodium channel blockers reduce the influx of 
calcium into the cells, thereby reducing the production of free 
radicals and attenuating lipid peroxidation reactions [109]. 
This evidence suggests that this crosstalk between calcium 
influx and ROS/RNS generation plays an essential role in many 
pathophysiological conditions including neurodegenerative 
diseases such as Parkinson’s, Alzheimer’s, and inflammatory 
diseases [101], and neuropathic pain [110]. 

The effects of Phα1β on the generation of ROS and 
proinflammatory mediators have been observed in pain models 
[22,23] (Figure 1). In the VP intracolonic capsaicin model, 
ω-conotoxin MVIIA attenuation of depolarization-induced 
Ca2+ influx, specifically in NVACC, was less effective than Phα1β 
in reducing ROS levels [22]. The higher effect of Phα1β is most 
likely due to its HVA calcium channel current inhibition [10] 
and TRPA1 channel blockade [12]. The marked analgesic, anti-
inflammatory, and recovery of functional actions promoted by 
Phα1β appear to rely on the reduction of neutrophil migration 
that in turn might reduce oxidative stress.

Glial structural plasticity reversal by Phα1β toxin
The pain process and glial activation are directly related 
[111,112]. Proinflammatory molecules released at the injury 
site can stimulate sensory neurons in the peripheral terminal 
and release several pro-algesic substances [113]. We found that 
CFA-induced hind paw inflammation in rats produced robust 

morphological changes in spinal astrocytes and microglia, 
compatible with the reactive phenotype [114]. These glial changes 
include an increase in GFAP protein expression in astrocytes 
[115–117] and Iba1 or OX-42 proteins in microglia [118–121].

In addition to its analgesic properties, the Phα1β spider toxin 
reverses glial changes caused by peripheral inflammation [115], 
reducing the overexpression of GFAP and Iba1 in short-time 
astrogliosis (2 days) and long-term microgliosis (14 days). 
These effects were more apparent in rats treated with the Phαβ 
spider toxin than with ω-conotoxin MVIIA, a specific N-type 
calcium channel antagonist. Microglia proliferation induced by 
CFA peripheral inflammation was not observed. Intriguingly, 
treatment with ω-conotoxin MVIIA toxin produced a significant 
increase in microglia proliferation [115]. Microglial cells express 
a myriad of receptors such as calcium channels [122,123]. Glial 
plasticity depends on intracellular and extracellular calcium 
signalling which is important for regulating glial autocrine 
signalling, structural plasticity, and proliferation [124,125]. 
Phα1β might exert an effect on glial calcium channels because of 
its ability to act as a VACC inhibitor. However, it is still unclear 
whether Phα1β toxin acts directly or indirectly in glial cells. 

Recombinant CTK 01512-2 shows effects 
similar to the native Phαβ toxin
The development of the recombinant version of Phα1β named  
CTK 01512-2 arose because of the difficulty of getting significant 
amounts of spider venom and obtaining the native toxin by 
purifying spider venom. Giotto Biotech S.r.l. (Florence, Italy) 
synthesised this recombinant form through expression in 
Escherichia coli. The CTK 01512-2 have an identical sequence  
of the 55 amino acids as the native Phα1β toxin (ACIPRGE 
ICTDDCECCGCDNQCYCPPGSSLGIFKCSCAHANKYFCNR 
KKEKCKK) and six disulphide bonds [126]. The recombinant 
peptide showed strong analgesic activity as the native toxin, with 
negligible side effects [13]. It reduced mechanical hyperalgesia 
induced by CCl in the sciatic nerve [13]. In a deafferentation 
pain model, CTK 01512-2 attenuated mechanical allodynia, 
cold allodynia, and thermal hyperalgesia without affecting the 
locomotor and exploratory activity of the rats [127]. Orofacial 
pain is a painful condition that affects the soft and hard tissues 
of the head, face, and neck [128,129]. CTK 01512-2 reduced 
orofacial hyperalgesia in the formalin-induced inflammatory 
phase in the lip and intraarticular CFA injections [130].

The recombinant Phα1β showed a marked antiproliferative 
effect on glioblastoma cells after i.t. administration blocking 
NVACC [131], anti-hyperalgesic effects on cancer melanoma 
cells [36], and inhibition of capsaicin nociceptive behaviour [37]. 
Intrathecal treatment with recombinant peptides also modulates 
other events such as neuroinflammation and neurodegeneration 
[132,133]. In addition to pain signalling, there is evidence that 
VACC also participate in the development of some CNS disorders. 
In the model of experimental autoimmune encephalomyelitis 
(EAE) induced by myelin oligodendrocyte glycoprotein 
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(MOG35-55), the recombinant peptide administered i.t. showed 
antinociceptive activity [132], improving cognitive deficits and 
motor coordination, modulating the disease progression, and 
attenuating neuroinflammatory changes with higher efficacy 
than ziconotide and fingolimod [132]. Notably, i.v CTK 01512-2 
attenuated the symptoms of the EAE model, while ω-conotoxin 
MVIIA did not by this administration route [132]. CTK-01512-2 
significantly improved the neuroinflammatory response in this 
model of multiple sclerosis (MS), reducing the levels of TNF, 
IL-1B, IFN-γ, IL-17, and IL-23 in the brain and spinal cord. 
These results indicate that the recombinant CTK-01512-2 greatly 
improved the neuroinflammatory responses with higher efficacy 
when compared to ziconotide, suggesting that this molecule is 
a promising adjuvant for MS management. 

Acute pancreatitis (AP) is an inflammatory disease of the 
pancreas. Agents that modulate the activity of high-voltage 
activated calcium channels such as Phα1β [10] and ω-conotoxin 
MVIIA [70,78] exhibit experimentally and clinically significant 
effects by relieving chronic pain in AP. In rodents, i.p. injections 
of cerulein induces AP as evidenced by an increase in hyperalgesic 
pain, inflammatory infiltration, amylase and lipase secretion, 
and reactive oxygen species formation [133]. Phα1β and its 
recombinant CTK 01512-2 form, both blockers of the TRPA1 
receptor [12] and HVACC [10], abolished these effects [133] 
after i.t. administration. ω -Conotoxin MVIIA, a selective 
inhibitor of N-type HVACC [72], did not affect the induced 
increase in pancreatic enzyme secretion. Phα1β has been shown 
to have an antinociceptive effect in several rodent pain models, 
including visceral pain [22], postsurgical, inflammatory, and 
neuropathic pain [15,37,47], and cancer pain [36]. Intrathecal 
treatment with Phα1β and recombinant CTK 01512-2 did not 
significantly alter the spontaneous locomotion of rats with AP, 
whereas ω-conotoxin MVIIA did affect it. These results suggest 
the potential use of Phα1β and recombinant CTK 01512-2 as 
analgesic drugs for the treatment of acute pancreatitis.

The analgesic and side effects of i.v. administered CTK 01512-
2 were also studied in the CCL-induced neuropathic pain 
and paclitaxel-induced acute and chronic pain in which the 
recombinant toxin exerted analgesic action. The analgesic 
effects were not accompanied by acute toxicity compared to 
morphine that induced significant changes in motor activity, 
HR, and blood pressure [134]. The analgesic effect was also 
elicited in male and female mice by CTK 01512-2 (0.06 and 0.6 
mg/kg i.v) in a complex regional pain syndrome 1 model; the 
peptide attenuated mechanical and cold allodynia in the acute 
and chronic nociceptive state [135]. 

CTK 01512 2 is a selective antagonist of the TRPA1 channel as 
its natural toxin [12], producing in vivo peripheral and central 
antinociceptive effects via TRPA1 channel antagonism without 
affecting other TRP channels such as TRPV1 and TRPV4 [94].

The effect of CTK 01512 2 on glutamate levels, ROS generation, 
lipid peroxidation, DNA damage, and inflammatory mediators 
have been observed in pain models. Future studies are required to 
confirm that the recombinant peptide has potential for clinical use.

Phα1β and CTK 01512-2 peptides as 
potential drugs for multimodal analgesia
Studies addressing the analgesic potential of opioids combined 
with calcium channel blockers are scarce. In terms of opioid 
addiction, it has been estimated that more than 2 million people 
suffer from opioid-related substance abuse disorders [136]. The 
management of pain in opioid-tolerant patients is one of the most 
challenging aspects, especially when opioids are prescribed for 
chronic pain or addiction-related opioids. Preoperative use of 
opioids has been associated with worse surgical outcomes [137]. 
This is troubling because the use of opioids has steadily increased, 
and the number of readmitted patients who are tolerant to opioids 
is 8% [137]. Opioid-sparing multimodal analgesia protocols are 
a critical component of clinical practice and surgical guidelines 
[138,139]. Thus, multiple target agents such as native Phα1β and 
its recombinant version HVA calcium channel blockers and 
TRPA1 antagonists might be excellent candidates not only for 
composing a synergistic effect but also perhaps for reversing 
adverse effects such as tolerance [36]. Repeated morphine 
treatment causes tolerance, hyperalgesia, withdrawal syndrome, 
and constipation, but a survey by Tonello et al. [16] showed 
that Phα1β and CTK 01512-2 were able to reverse these effects. 
In rats, the ability of Phα1β to restore the analgesic effect of 
morphine under opioid-tolerance regimens is worth noting, 
suggesting some in vivo interaction of the two drugs when 
they are used together [36]. Administration of morphine at an 
ineffective dose (3-10 mg/kg) in the presence of Phα1β or CTK 
01512-2 (30 pmol/site) culminates in a better analgesic effect 
than administering peptides or morphine alone [16]. These data 
showed that Phα1β and its recombinant version are effective in 
potentiating analgesia caused by a single dose of morphine as 
well as in reducing tolerance and the adverse effects induced by 
repeated administration of morphine, indicating their potential 
use adjuvant drugs in combination with opioids. Further studies 
are needed to determine the degree of interactions between the 
two classes of drugs involved in adverse events. In conclusion, 
both native Phα1β and CTK 01512-2 have the potential for use 
by parenteral route multimodal pain therapy as well as in other 
CNS disorders due to their varied mechanisms of action.

Conclusions
Studies with Phα1β and recombinant CTK 01512-2 have 
proven their analgesic profile in nociceptive, inflammatory, 
and pathological pain through HVACC and TRPA1 inhibition. 
Events related to molecular targets such as calcium transients, 
glutamate release, glial plasticity, ROS, and inflammatory 
mediator production have been described, supporting their 
antinociceptive effects and safety profiles. This review covers 
the 15 years of Phα1β research since the identification of the first 
target by Vieira et al. [10]. Currently, there has been an increase 
in the number of papers published on native and recombinant 
Phα1β, stimulated by the availability of the recombinant version. 
Although further pharmacokinetic and preclinical (including 



Layout and XML SciELO Publishing Schema: www.editoraletra1.com.br | letra1@editoraletra1.com.br

da Silva et al.   J Venom Anim Toxins incl Trop Dis, 2021, 27:e20210001 Page 11 of 14

﻿

toxicity profile in other species) studies are still necessary, 
we believe that these peptides are close to being developed as 
alternative clinical drugs for the severe chronic pain management 
and multimodal analgesia protocol application.
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