

UNIVERSIDADE FEDERAL DE OURO PRETO

ESCOLA DE MINAS

DEPARTAMENTO DE GEOLOGIA

PROGRAMA DE PÓS-GRADUAÇÃO EM EVOLUÇÃO CRUSTAL

E RECURSOS NATURAIS

Tectônica, Petrogênese e Recursos Naturais

DISSERTAÇÃO DE MESTRADO

ARCABOUÇO ESTRUTURAL E EVOLUÇÃO TECTÔNICA DA PORÇÃO SUDESTE DO ALTO DE JANUÁRIA, BACIA DO SÃO FRANCISCO (MG): REGISTROS DE UMA LONGA HISTÓRIA DE DEFORMAÇÃO INTRACRATÔNICA

Bruno Guimarães Piatti

Ouro Preto - Março /2021

ARCABOUÇO ESTRUTURAL E EVOLUÇÃO TECTÔNICA DA PORÇÃO SUDESTE DO ALTO DE JANUÁRIA, BACIA DO SÃO FRANCISCO (MG): REGISTROS DE UMA LONGA HISTÓRIA DE DEFORMAÇÃO INTRACRATÔNICA

FUNDAÇÃO UNIVERSIDADE FEDERAL DE OURO PRETO

Reitora

Cláudia Aparecida Marliére de Lima

Vice-Reitor

Hermínio Arias Nalini Júnior

Pró-Reitor de Pesquisa e Pós-Graduação

Sérgio Francisco de Aquino

ESCOLA DE MINAS

Diretor

Issamu Endo

Vice-Diretor

Hernani Mota de Lima

DEPARTAMENTO DE GEOLOGIA

Chefe

Edison Tazava iii

EVOLUÇÃO CRUSTAL E RECURSOS NATURAIS

CONTRIBUIÇÕES ÀS CIÊNCIAS DA TERRA SÉRIE M VOL. 81

DISSERTAÇÃO DE MESTRADO Nº 436

ARCABOUÇO ESTRUTURAL E EVOLUÇÃO TECTÔNICA DA PORÇÃO SUDESTE DO ALTO DE JANUÁRIA, BACIA DO SÃO FRANCISCO (MG): REGISTROS DE UMA LONGA HISTÓRIA DE DEFORMAÇÃO INTRACRATÔNICA

Bruno Guimarães Piatti

Orientador Humberto Luis Siqueira Reis *Co-orientador* Fernando Flecha de Alkmim

Dissertação apresentada ao Programa de Pós-Graduação em Evolução Crustal e Recursos Naturais do Departamento de Geologia da Escola de Minas da Universidade Federal de Ouro Preto como requisito parcial à obtenção do Título de Mestre em Ciência Naturais, Área de Concentração: Tectônica, Petrogênese e Recursos Minerais

OURO PRETO

2021

SISBIN - SISTEMA DE BIBLIOTECAS E INFORMAÇÃO

P583a	Piatti, Bruno Guimarães. Arcabouço estrutural e evolução tectônica da porção sudeste do alto de Januária, bacia do São Francisco (MG) [manuscrito]: registro de uma longa história de deformação intracratônica. / Bruno Guimarães Piatti 2021. 168 f.: il.: color., tab., mapa.
	Orientador: Prof. Dr. Humberto Luis Siqueira Reis. Coorientador: Prof. Dr. Fernando Flecha Alkmim. Dissertação (Mestrado Acadêmico). Universidade Federal de Ouro Preto. Departamento de Geologia. Programa de Pós-Graduação em Evolução Crustal e Recursos Naturais. Área de Concentração: Tectônica, Petrogênese e Recursos Minerais - Tprm.
	1. Geologia estrutural. 2. Herança tectônica. 3. Embasamento (Geologia). I. Alkmim, Fernando Flecha. II. Reis, Humberto Luis Siqueira. III. Universidade Federal de Ouro Preto. IV. Título.
	CDU 551.243.4

Bibliotecário(a) Responsável: Sione Galvão Rodrigues - CRB6 / 2526

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE OURO PRETO REITORIA ESCOLA DE MINAS COORDENACAO DO PROGRAMA DE POS-GRADUACAO EM EVOLUCAO CRUSTAL

FOLHA DE APROVAÇÃO

Bruno Guimarães Piatti

Arcabouço Estrutural e Evolução Tectônica do Alto de Januária, Bacia do São Francisco (Mg): Registro de Uma Longa História de Deformação Intracratônica.

Dissertação apresentada ao Programa de Programa de Pós-Graduação em Evolução Crustal e Recursos Naturais da Universidade Federal de Ouro Preto como requisito parcial para obtenção do título de mestre em ciências Naturais.

Aprovada em 31 de março de 2021.

Membros da banca

Prof. Dr. Humberto Luiz Siqueira Reis - Presidente - Universidade Federal de Ouro Preto Prof. Dr. Matheus Henrique Kuchenbecker do Amaral - Universidade Federal dos Vales do Jequitinhonha e Mucuri Prof. Dr. Maximiliano de Souza Martins - Universidade Federal de Ouro Preto

Prof. Dr. Humberto Luiz Siqueira Reis, orientador do trabalho, aprovou a versão final e autorizou seu depósito no Repositório Institucional da UFOP em 09/06/2021.

Documento assinado eletronicamente por **Isaac Daniel Rudnitzki**, **COORDENADOR(A) DE CURSO DE PÓS-GRADUAÇÃO EM EVOLUÇÃO CRUSTAL E RECURSOS NATURAIS**, em 23/08/2022, às 12:37, conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do <u>Decreto nº 8.539, de 8 de outubro de 2015</u>.

A autenticidade deste documento pode ser conferida no site <u>http://sei.ufop.br/sei/controlador_externo.php?</u> <u>acao=documento_conferir&id_orgao_acesso_externo=0</u>, informando o código verificador **0385508** e o código CRC **B9ED836E**.

Referência: Caso responda este documento, indicar expressamente o Processo nº 23109.011565/2022-23

SEI nº 0385508

R. Diogo de Vasconcelos, 122, - Bairro Pilar Ouro Preto/MG, CEP 35400-000 Telefone: (31)3559-1605 - www.ufop.br

Agradecimentos

Agradeço a todas as pessoas que, direta ou indiretamente, estão implicadas na realização deste projeto.

Aos meus orientadores, Humberto L.S. Reis e Fernando F. Alkmim, pela oportunidade de realização do projetos e pelos diálogos, ensinamentos e revisões ao longo desse período;

Ao DEGEO/UFOP pelo apoio institucional e infraestrutura para a realização de todas as etapas do mestrado. À Daiana, pela diligência com que resolvia as questões de departamento e do mestrado. Aos professores com quem pude aprender ao longo do projeto e disciplinas.

Aos órgãos de incentivo à pesquisa FAPEMIG, pela bolsa de estudos e suporte financeiro concedido ao projeto através do professor Humberto Reis (Processo - APQ-03383-16), ao CNPq pela bolsa de pesquisa fornecida ao professor Fernando Alkmim (# 308045/2013-0), e FAPESP pelo suporte aos trabalhos de campo através do professor Ricardo Ivan Ferreira da Trindade com o projeto # 2016/06114-6.

À Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP), por ter cedido os dados sísmicos e de poços.

Ao povo das fronteiras no norte de minas, que nos indicou caminhos e permitiu que entrássemos em suas terras em nome da pesquisa, mas mesmo assim nos considerou como gente mesmo, não função. Em especial ao cacique Valdemar Xacriabá pelos ensinamentos arqueológicos sobres as grutas de seus antepassados.

Aos amigos Gabriel e Carol K. por deixar o dia a dia no departamento mais divertidos e leves. Em especial ao Anderson pela apoio com as conversas sísmicas.

Ao Rogério, Dri e Lara, família belorizontina que me acolheu com todo o carinho possível.

À Adarlene, Adalene e d. Zeze, família ouropretana cujo apoio e afeto foi imprescindível durante esse período.

À Catarina e Guilherme, família brasiliense cujo apoio, incentivo e carinho foram fundamentais na definição da minha trajetória.

À tia Ana, pelo apoio incentivo, apoio e carinho com que sempre me recebeu na sua casa.

Às amizades surpreendentes e marcantes firmadas em Ouro Preto: Gustavo, Ariela, Rafael, Túlio, Carol, Victor e Ana. Momentos de ócio e descontração são fundamentais para o avanço do espírito científico.

E, mesmo assim, seu significado escapa facilmente desse campo técnico-tectônico, mas ocupa o campo da memória e afeto.

Aos amigos de Brasília, Maurício, Gabriel, Hygor, Marcello, Daniela, cuja trajetória conjunta, seja na geologia ou fora dela, real ou imaginária, é pedaço fundamental de mim.

À minha família, pai, mãe, pela compreensão, confiança e liberdade que me deram ao longo de todo o tempo que fiquei longe da minha terra natal para expandir as fronteiras do meu pensamento e formação acadêmica;

À Raiza, por tanta coisa, inclusive e sobretudo aquilo que escapa às possibilidades do texto, mas são do campo da vivência vivida.

Agradecimentosix			
Sumáriox			
Lista de ilustraçõesxii			
Resumoxvi			
Abstractxix			
1 INTRODUÇÃO 1			
1.1 Organização da dissertação			
1.2 Objetivo do estudo			
1.3 Localização da área de estudo			
1.4 Métodos e materiais de trabalho ²			
1.4.1 Levantamento Bibliográfico			
1.4.2 Levantamento de Campo			
1.4.3 Interpretação geofísica e de imagens de satélite			
1.4.4 Imagens de satélite 10			
2 SITUAÇÃO GEOLÓGICA REGIONAL – A BACIA DO SÃO FRANCISCO 11			
2.1 Sucessão estratigráfica			
2.1.1 COBERTURAS PRÉ-CAMBRIANAS 14			
2.1.2 UNIDADES FANEROZOICAS			
2.2 Arcabouço estrutural			
2.3 O Alto de Januária			
2.3.1 Estratigrafia			
2.3.2 Arcabouço Estrutural			
3 SISTEMAS DE ANTEPAÍS E A TECTÔNICA DO EMBASAMENTO EM			
DEPOCENTROS FLEXURAIS DE FOREBULGE			

Sumário

3.1	Sistemas bacinais de antepaís		
3.2	Controles da acomodação		
3.2.1	Controles regionais		
3.2.2	Controles locais: a tectônica do embasamento		
3.3	Padrões deformacionais em sistemas de antepaís		
3.3.1	Forebulge		
3.3.2	Estiramento longitudinal no limite forebulge-foredeep41		
3.4	comentário sobre Herança tectônica e a reativação de estruturas		
4 BASI	EMENT HIGHS AS ARCHIVES OF CRATON INTERIOR DEFORMATION: THE		
PROTER	OZOIC TO EARLY PALEOZOIC EVOLUTION OF THE SOUTHEASTERN		
PORTIO	N OF THE JANUÁRIA HIGH, SÃO FRANCISCO BASIN, EASTERN BRAZIL 45		
4.1	INTRODUCTION		
4.2	GEOLOGICAL SETTING OF THE JANUÁRIA BASEMENT HIGH		
4.3	DATA AND METHODS		
4.4	GEOLOGIC ARCHITECTURE OF THE JANUÁRIA HIGH		
1.4.1 Normal faults associated with the deposition of pre-Bambuí and basal Bambuí			
seque	ences		
1.4.2	NE-trending contractional fabric elements		
1.4.3 Structures of the Januária high crest area			
4.5	DISCUSSION		
The 1	role inherited structures during the Proterozoic to early Paleozoic tectonic evolution of		
the J	anuária basement high		
4.6	CONCLUSIONS		
Acknow	vledgements		
5 Conclusões			
Referências			
Apêndice			

Figura 3.2-. Esquemas mostrando as ações individuais e combinadas da tectônica flexural e da subsidência dinâmica sobre a listosfera descendente no sistema de antepaís. É válido ressaltar que esses processos atuam em escalas de tempo, magnitude e taxas diferentes (Extraído de Catuneanu 2004a). 37

Figura 3.4-Esquema tridimensional ilustrando a arquitetura de um sistema de antepaís e as estruturas associadas aos estágios evolutivos da deformação progressiva. Extraído de Tavani *et al.* (2015)...... 40

Figura 3.5-Estágio deformacional da flexura na região do *forebulge*, onde a deflexão do arco externo está associada a uma extensão perpendicular à direção do sistema. Extraído de Tavani *et al.* (2015). 41

 Figura 4.4- Structural contour map of the basement-cover contact in the southeastern portion of the Januária high, showing the traces of the large-scale normal faults detected in the field and seismic sections. The structures in black correspond to Mesoproterozoic growth faults; the structures in gray are faults that underwent reactivation during deposition of the Ediacaran-Cambrian Bambuí sequence or in the course of the Brasiliano contraction event. Depths are shown in two-way-time travel (TWT). The dashed yellow lines represent the location of the crooked 2D seismic sections shown on the Figure 4.7, 4.8, 4.11, 4.15 and 4.16.

Figura 4.5- Outcrop-scale basement structures. **a**) Deformed syeno-granite showing the country rock foliation oriented at 295/70 and cut by a discrete sinistral shear zone marked by a fine grained ultramylonite. **b**) Granodioritic augen gneiss showing a mylonitic foliation. **i**) Contoured stereonet diagram of poles to the regionally penetrative foliation exhibit by the basement rocks. **ii, iii**) Contoured stereonet diagram of poles to the mylonitic foliation that characterize the shear zones in the basement.

Figura 4.6 Crooked 2D seismic profile a-a' in two-way-travel time. The interpreted section below shows a series of NNE-oriented normal faults affecting the basement, pre-bambuí and Bambuí cover sequences. Growth strata of the pre-Bambuí sequence occur in association with the faults number I, ii and iii. A pair SE and NW dipping faults (faults **a** and **b**) bound a graben filled with syn-tectonic Bambuí strata in the central portion of the section. Notice that part of the faults in the graben formed by reactivation of preexistent faults, and that some faults (i, ii, **a** and **b**) also show evidence of inversion, such as the anticlinal thickening and reverse faults. Location of section is indicated on Fig. 4.4. 58

Figura 4.7-Crooked 2D seismic section b-b' (vertical exaggeration of $\sim 12x$) in two-way travel time. The interpreted section illustrates the partially inverted normal faults forming a graben-horst structure at the culmination of the Januária basement high. The location of the section is indicated in Fig. 4.4.59

Figura 4.13-Fold styles typical of the Januária high internal portion (structural Domain II). **a,b**) Monoclines affecting calcarenites of lower Bambuí sequence. **c**) isolated asymetric tight folds. The orientation of these structures varies significantly along the domain, as indicated by the stereonet plots.

Figura 4.14-Crooked 2D seismic section (vertical exaggeration of $\sim 12x$) in two-way travel time. The section illustrates the faulted flexural culmination and the eastern limb of the Januária. Notice the occurrence of reverse faults affecting the Bambuí sequence at indicated zones i, ii and iii. The dyke (?) cutting the Ediacaran-Cambrian strata is presumably Cretaceous in age and not focused in this study.

Resumo

Altos de embasamento intracratônicos e seu conjunto de coberturas sedimentares podem guardar o registro da evolução tectônica das regiões de interior do craton. O alto de Januária, que engloba as rochas do embasamento arqueano-paleoproterozoico e da cobertura sedimentar proterozoica na porção norte da Bacia do São Francisco, registra os eventos tectônicos relacionados à formação do cráton e aos sucessivos ciclos bacinais superpostos que ocorreram entre o Paleoproterozoico e o Mesozoico. O embasamento cristalino consiste em granitoides e gnaisses mais antigos do que 1,8Ga. A cobertura sedimentar engloba sucessões Meso/Neoproterozoicas do Supergrupo Espinhaço e correlativos, sucessões Neoproterozoicas Formação Jequitaí, os depósitos carbonáticos-siliciclásticos do Grupo Bambuí e delgadas coberturas mesozoicas Tendo como objetivo principal acessar esse arquivo geológico, decifrar a história tectônica do alto de Januária nesse intervalo de tempo e investigar a influência de estruturas herdadas do embasamento na sua evolução, foi conduzida uma análise estrutural a partir da integração de dados de superfície com dados de subsuperfície oriundos de 200 linhas sísmicas de reflexão ao longo de uma área situada na porção centro-sudeste do alto. Enfocando as feições Precambrianas e Eopaleozoicas, nosso estudo revelou que o arcabouço tectônico do alto de Januária consiste de 4 grupos de elementos de trama: (i) estruturas dúcteis do embasamento; (ii) falhas extensionais de orientação NW e NE; (iii) estruturas contracionais associadas ao cinturão de antepaís Araçuaí e (iv) estruturas rúpteis de origem incerta. As rochas do embasamento exibem foliação regional de direção NNE truncada por zonas de cisalhamento NNW sinistrais. O sistema de falhas normais se desenvolveu ao longo de dois episódios extensionais. O primeiro marca um rifteamento Meso/Eoneoproterozoico associado ao desenvolvimento do aulacógeno Pirapora sob a influência de um campo extensional com σ_3 na direção NE e σ_1 vertical. O segundo registra um episódio extensional com com σ_3 na direção WNW e σ_1 vertical associado ao soerguimento flexural do Alto de Januária induzida pela sobrecarga dos orógenos brasilianos nas margens do Alto de Januária. O conjunto de falhas NW dominam o arcabouço estrutural na margem sul do alto de Januária, enquanto as falhas NNE se tornam mais expressivas junto ao ápice e flancos do alto de embasamento. O avanço do cinturão de falhas e dobras de antepaís Araçuaí sobre o alto de embasamento desenvolveu um conjunto de estruturas contracionais de grande e pequena escala com direção NNE, bem como induziu a inversão parcial de falhas extensionais de direção NE, que afetam as coberturas ediacaranas-cambrianas. Esse episódio denotam um regime compressivo com direção ESE-WNW. Nos estágios tardios, a permuta entre os eixos principais de esforços mínimo e intermediário gerou um regime transcorrente que induziu a formação de veios e fraturas WNW e a reativação de falhas extensionais pre-existentes enquanto sistemas de falhas transpressivas. Quando sua posição coincide com estruturas extensionais herdadas do embasamento, esses corredores transcorrentes NW avançam para além do cinturão de antepais e cortam o domínio intracratônico, onde as dobras assumem orientações não sistemáticas em relação à propagação do fronte de deformação e constituem um registro da propagação *far-field* dos esforços marginais. Nesse domínio interno do Alto de Januária, outras estruturas de pequena escala e origem incerta os estratos basais da sequência Bambuí. Nossa análise demonstra como o Alto de Januária arquivou boa parte da história proterozoica-eopaleozoica do craton que o contem o dos sistemas orogênicos marginais no interior continental da América do Sul. Além de demonstrar como o altos do embasamento intracratônicos arquivam a memória da deformação intracontinental, nossa análise também elucida aspectos propagação *far-field* de esforços e do papel que a herança tectônica tem na evolução desses domínios cratônicos.

Abstract

Intracratonic basement highs and their sedimentary covers might serve as relatively accessible archives of the tectonic evolution of craton interiors. The Januária basement high together with its cover succession in the northern intracratonic São Francisco basin, eastern Brazil, records multiple tectonic events between the early Mesoproterozoic and the Mesozoic. Its basement assemblages are exposed in a few areas and consist of foliated gneisses and granitoids older than 1.8Ga. These rocks are unconformably overlain by the rift-sag strata of the Mesoproterozoic-early Neoproterozoic Upper Espinhaço-Paranoá sequence, the foreland basin system successions of the Ediacaran-Cambrian Bambuí sequence and thinner Mesozoic sedimentary successions. Aiming to access this geological archive, we conducted field-based structural analysis coupled with the interpretation of c. 200 2D seismic sections, aerogravimetric data and satellite images in a 25.000 km² area along the southeastern Januária basement high. Focusing on Precambrian and early Paleozoic features, our study reveals that the tectonic framework of the Januária high comprises four groups of fabric elements:i) basement dutile structures, ii) NW and NE-trending normal faults; ii) structures associated with the Brasiliano Araçuaí orogenic front; and iii) brittle structures of uncertain origin. The granitic basement rocks display a regional foliation oriented at NNE which is cut by later NNW mylonitic shear zones. The normal faults are commonly associated with Mesoproterozoic to Ediacaran growth sections and formed in two different extensional episodes. Marking an important evolutionary phase of the Pirapora aulacogen that bounds the basement high to the south, the first episode evolved under a stress field defined by a horizontal NEtrending σ_3 and a vertical σ_1 . The second extensional episode records the Ediacaran-Cambrian forebulge flexural uplifit of the Januária basement high induced by the tectonic overload imposed by the Brasiliano/Pan-African Brasília and Araçuaí orogenic systems on the western and eastern margins of the São Francisco paleoplate, respectively. It culminated with the syn-sedimentary nucleation and reactivation of NE-trending grabens, under a horizontal WNW-trending and a vertical least and maximum principal stress vectors, respectively. The westward advance of the thin-skinned Araçuaí foreland fold-thrust belt in the eastern margin of the Januária basement high culminated with the development of a series of large- to small-scale NE-trending structures affecting the Ediacaran-Cambrian strata, as well as the local reactivation of the preexistent NE-trending normal faults as reverse faults. This episode developed due to a compressive stress field with a horizontal NW-trending σ_1 . Lately, the shift between the least and intermediate principal stress vectors the development of steeplydipping fractures, WNW- to EW-striking joints and the reactivation of the older WNW-oriented normal faults as large-scale, left-lateral strike-slip systems. These late-stage strike-slip structures propagated beyond the leading edge of the foreland fold-thrust belt towards the craton interior, where other less pervasive structures associated with the previous compressional stage and other structures of uncertain origin also affect the Bambuí strata. Our study demonstrates how the intracratonic Januária basement

high recorded much of the Proterozoic to early Paleozoic tectonic history experienced by its hosting craton and the marginal orogenic belts of the South America midcontinent. Besides revealing how intracratonic basement highs may behave as geological archives in the interior of continents, our analysis also demonstrates important aspects of the far-field stress transmission, strain partitioning and the role of tectonic inheritance in the evolution of these cratonic domains.

CAPÍTULO 1 INTRODUÇÃO

Em virtude da sua natureza isostática positiva, sua estrutura térmica e composicional e resistência mecânica, crátons constituem as porções mais estáveis da litosfera continental (*e.g.*, Jordan, 1978; Pearson et al., 1995; Rudnick et al., 1998; Lenardic et al., 2003; King, 2005; Person & Wittig, 2014; Hu et al., 2018, Paul et al., 2019). Essas características possibilitam que sobrevivam a múltiplos ciclos de reciclagem ao longo da história geológica. Apesar disso, os efeitos de sucessivos episódios tectônicos aos quais os cratons são submetidos ao longo da sua história comumente envolvem a formação de riftes continentais, altos do embasamento e domos que, muitas vezes, se desenvolvem sob forte controle de estruturas herdadas (*e.g.*, Marshark & Paulsen, 1996; Nelson & Marshak, 1996; Lindsay, 2002, Aitken et al., 2013; Reis et al., 2017b; Sengor et al., 2018; Zhang et al., 2019).

Nas porções internas de cratons, altos do embasamento constituem importantes feições de bacias intracratônicas que controlam a arquitetura tectonoestratigráfica e se destacam enquanto arquivos da deformação litosférica (*e.g.*, Peacock & Banks, 2020). Além disso, constituem um importante elemento no controle da dispersão sedimentar, influenciando ainda a migração de fluidos e em elementos e processos do sistema petrolífero (*e.g.*, Landes *et al.*, 1960; Trice, 2014; Peacock & Banks, 2020).

Constituindo uma bacia intracratônica poli-histórica, a Bacia do São Francisco guarda o registro de sucessivos eventos tectônicos. O preenchimento desse sítio deposicional inclui unidades sedimentares mistas, carbonáticas e siliciclásticas, proterozoicas e fanerozoicas, discordantemente assentadas sobre o embasamento arqueano e paleoproterozoico (e.g., Alkmim & Martins-Neto 2001, Reis et al. 2017). Este embasamento, enquanto feição estrutural positiva na porção norte da bacia, configura o Alto de Januária (Alkmim & Martins-Neto 2001). Tal estrutura pode ser identificada em janelas erosivas, em mapas de anomalia Bouguer, em seções de sísmica de reflexão e a partir do registro sedimentar e tectônico da bacia (e.g. Reis 2011, Reis et al. 2017a). O conjunto de informações disponíveis sugere que o Alto de Januária se formou ao fim do Paleoproterozoico e foi reativado ao longo de múltiplos episódios tectônicos posteriores (Reis & Alkmim 2015). Um destes episódios ocorreu durante o desenvolvimento do sistema bacinal de antepaís ediacarano-cambriano que recebeu os depósitos do Grupo Bambuí. Neste momento, o Alto de Januária e sua contra-parte meridional na bacia (i.e. Alto de Sete Lagoas) se comportaram como um depocentro do tipo forebulge, possibilitando a sedimentação de uma extensa plataforma carbonática em condições aparentemente distantes do aporte siliciclástico e sob condições de baixa subsidência (Reis & Suss 2016; Kuchenbecker et al. 2020). Seções sísmicas e testemunhos de poços profundos analisados no alto do embasamento do setor sul da Bacia do São Francisco mostram ainda que a reativação ediacarana e a evolução deste depocentro foi fortemente influenciada por estruturas herdadas do embasamento (*e.g.*, Reis *et al.* 2017b).

Ao longo das últimas décadas, a região abrangida pelo Alto de Januária vem sendo estudada por diversos autores (e.g., Robertson 1964, Beurlen 1973, Dardenne 1978, Lopes 1979, Brandalise 1980, Abreu-Lima 1997 Campos e Dardenne 1997, Nobre-Lopes et al. 2002, Chiavegatto et al. 2003, Iglesias 2007, Costa, 2011, Warren et al. 2014, Uhlein 2016, Reis et al. 2017). A maior parte dos estudos geológicos nessas localidades concentram-se nas rochas carbonáticas do Grupo Bambuí e relacionamse tanto a sua estratigrafia quanto às mineralizações de chumbo e zinco e ocorrência de flúor associadas (e.g., Lopes 1979, 1983, Nobre-Lopes 2002, Perrella Jr. et al. 2017). Uma parte destes trabalhos aborda as rochas sedimentares cretácicas e sua relação com ramificações do sistema de riftes que culminou com a quebra do Gondwana Ocidental e a abertura do Oceano Atlântico Sul (e.g., Campos e Dardenne 1997, Sgarbi et al. 2001, Fragoso et al. 2011). De uma forma geral, tais estudos demonstram inúmeros aspectos estruturais e estratigráficos relacionados à evolução deste alto do embasamento, especialmente durante a deposição das unidades ediacaranas, quando sua reativação teria condicionado o desenvolvimento de estruturas rúpteis sin-sedimentares e controlado a dispersão geral dos depósitos sedimentares do Grupo Bambuí (e.g., Lopes 1978, 1983, Reis et al. 2017). Apesar disso, não há uma descrição abrangente e integradora do arcabouco estrutural do Alto de Januária, tampouco de aspectos relacionados ao seu comportamento ao longo da evolução tectônica da Bacia do São Francisco.

Com objetivo de preencher as lacunas relacionadas à estruturação e evolução tectônica do Alto de Januária, este estudo contempla uma análise estrutural integrada e baseada em dados de superfície e subsuperfície. Com foco no segmento central-sudeste do alto de embasamento e suas coberturas sedimentares proterozoicas a eopaleozoicas, o estudo foi norteado pelas seguintes perguntas: i) qual é o arcabouço estrutural do embasamento e cobertura sedimentar do alto de Januária em superfície e subsuperfície?; ii) como essa estrutura se comportou durante os ciclos bacinais sucessivos da Bacia do São Francisco entre o Proterozoico e o Eopaleozoico ?; iii) qual é a relação desse arcabouço estrutural com estruturas herdadas do embasamento e os sistemas orogênicos adjacentes ?

Com base em estudos que versam sobre altos de embasamento (*e.g.*, Peacock & Banks, 2020), deformação em ambientes de interior cratônico (*e.g.*, Marshak & Paulsen 1996; van der Pluijm 1997; Lavoie *et al.* 2015; Pinet, 2016, Snee & Zoback, 2020), os efeitos da herança tectônica em sistemas de antepaís (*e.g.*, Quintà & Tavani 2012, Tavani *et al.* 2012 a, Tavani *et al.* 2015, Szaniawski *et al.* 2017) e dados sobre a arquitetura da Bacia do São Francisco disponíveis na literatura (Alkmim & Martins Neto 2001, Reis & Alkmim 2015, Reis & Suss 2016, Reis et al 2017a, Reis et al 2017b), assume-se como premissas principais que (i) altos de embasamento constituem importantes arquivos da deformação litosférica e que (ii) estruturas herdadas exerceram papel fundamental na configuração da arquitetura tectonoestratigráfica do alto de embasamento e suas coberturas sedimentares.

Ao abordar as perguntas propostas, esta pesquisa oferece suporte ao entendimento da evolução tectônica do Alto de Januária e seu comportamento ao longo dos distintos ciclos bacinais que afetaram a paleoplaca São Francisco entre o Paleoproterozoico e o Paleozoico inferior. Especial ênfase é dada ao comportamento do alto de embasamento durante as orogenias Brasilianas/Pan-Africanas que afetaram as margens da paleolitosfera São Francisco, uma vez que seu amplo arcabouço tectônico e expressão intracratônica são relativamente bem conhecidos em outros segmentos da Bacia do São Francisco (*e.g.*, Alkmim & Martins-Neto, 2001; Reis et al. 2017a). Ao abordar estas questões, o estudo oferece contribuições e suporte para o entendimento da deformação no interior dos cratons e a história deformacional de altos de embasamento intracratônicos, como um todo, bem como sua relação com recursos hídricos e sistemas minerais e energéticos associados e aspectos relacionados à herança tectônica nestes domínios litosféricos.

1.1 ORGANIZAÇÃO DA DISSERTAÇÃO

Este volume é organizado em 5 capítulos. No Capítulo 1, após a apresentação da natureza do problema, implicações e proposta de trabalho, são detalhados os objetivos da pesquisa, localização da área estudada e materiais e métodos adotados para a investigação. O Capítulo 2 apresenta uma revisão bibliográfica detalhada sobre a Bacia intracratônica do São Francisco e os estudos disponíveis sobre o Alto de Januária. Considerando que os episódios orogênicos que levaram à edificação dos sistemas orogênicos brasilianos que delimitam o Cráton do São Francisco (e bacia homônima) podem ter desempenhado importante papel na evolução do alto de embasamento estudado, o Capítulo 3 apresenta uma síntese sobre a sistemas de antepaís e a tectônica do embasamento em depocentros de *forebulge*. Aspectos sobre a herança tectônicas são brevemente abordados na seção 3.3. No Capítulo 4 são apresentados os dados levantados e as análises estruturais e tectônicas conduzidas neste trabalho, na forma do artigo intitulado "*Basement highs as archives of craton interior deformation: the Proterozoic to Early Paleozoic evolution of the Januária basement high, São Francisco basin, Eastern Brazil*". Finalmente, o Capítulo 5 lista as principais conclusões alcançadas nesta dissertação.

1.2 OBJETIVO DO ESTUDO

O estudo aqui proposto tem como objetivo geral a descrição da arquitetura e interpretação da evolução tectônica do Alto de Januária e suas coberturas sedimentares entre o Proterozoico o Paleozoico inferior. Constituem objetivos específicos desta pesquisa:

- Caracterizar a trama tectônica das unidades do embasamento mais velho que 1,8Ga;
- apresentar um mapa de contorno estrutural do topo do embasamento a partir da interpretação sísmica;

- descrever os elementos tectônicos presentes nas unidades de cobertura, com ênfase nas do Grupo Bambuí, por ser a principal unidade aflorante na região;
- interpretar os dados à luz dos conhecimentos atuais sobre a evolução do Cráton do São Francisco

1.3 LOCALIZAÇÃO DA ÁREA DE ESTUDO

O Alto de Januária é uma feição da Bacia do São Francisco que se estende e aflora pelo norte de Minas Gerais e sudoeste da Bahia (Fig. 1.1). Englobando parte do Médio rio São Francisco, a região estudada localiza-se no setor centro-sudeste do alto de embasamento e inclui as cidades de Januária, Itacarambi, Montalvânia, São Francisco e São Romão. O acesso principal, a partir de Ouro Preto, é feito pelas rodovias BR 356 até Belo Horizonte (*c*. 98), BR 040 e BR 135 da capital até Montes Claros (*c*.425 km) e, deste ponto em diante, até Januária (*c*. 170km). O acesso de Januária à Itacarambi e Montalvânia é realizado pela mesma rodovia BR 135. O acesso aos municípios de São Francisco e São Romão pode ser realizado à partir das rodovias MG 202 e 402.

Diversas unidades de conservação, incluindo um parque nacional, parques estaduais, áreas de proteção ambiental e território indígena estão situadas na área e em seu entorno. Dentre estes, o Parque Nacional Cavernas do Peruaçu (ICMBio), que compreende os municípios de Itacarambi, Januária e São João das Missões, preserva um patrimônio geológico e arqueológico que é aberto para visitação durante o ano inteiro. O parque oferece ainda o apoio logístico para pesquisadores de diversas áreas. As Terras indígenas Xacriabá e Xacriabá Rancharia estão situadas no município São João das Missões, a norte de Itacarambi.

1.4 MÉTODOS E MATERIAIS DE TRABALHO

Para se alcançar os objetivos anteriormente delineados, o presente estudo lançou mão de análise estrutural baseada em dados de campo e na interpretação de dados sísmicos de reflexão 2D. Foram também consultados dados gravimétricos, imagens de satélite e dados de poço. Conduzimos a investigação estrutural conforme metodologia padrão (*e.g.* Pluijm & Marshak 2004, Ghosh 2013, Fossen 2016), que envolve análise descritiva, cinemática e dinâmica, quando possível. Abaixo, segue a descrição das principais etapas de trabalho que foram conduzidas durante a pesquisa.

1.4.1 Levantamento Bibliográfico

Esta etapa contemplou a compilação das principais informações disponíveis sobre a Bacia do São Francisco e o Alto de Januária. Além disso, a etapa incluiu uma revisão sobre altos do embasamento, deformação intracontinental, reativação de estruturas e tectônica do embasamento, especialmente em sistemas de antepaís.

A base cartográfica utilizada neste trabalho inclui mapas geológicos em escala 1:100.000 confeccionados no âmbito dos projetos Fronteiras de Minas (Pedrosa-Soares *et al.* 2015) e Norte de Minas (Pedrosa-Soares *et al.* 2014), contratados pela Companhia de Desenvolvimento de Minas Gerais (CODEMGE) e executados pela Universidade Federal de Minas Gerais (UFMG). Adicionalmente, foi utilizado o mapa geológico do Estado de Minas Gerais, em escala 1:1000.000, compilado pelo Serviço Geológico do Brasil (CPRM) (Pinto & Silva 2014). Mapas topográficos disponibilizados pelo Serviço Geográfico do Exército também foram utilizados para o planejamento e execução das campanhas de campo ao longo do desenvolvimento da pesquisa.

1.4.2 Levantamento de Campo

Os levantamentos de campo foram conduzidos nas escalas 1:100.000 e 1:50.000, de acordo com a disponibilidade de exposições, ao longo de transectos com direção geral SE-NW e NE-SW, conforme indicado na Fig. 1.2 A posição e orientação dos transectos se basearam em: i) orientação geral dos elementos regionais, ii) distribuição das coberturas sedimentares e unidades do embasamento aflorantes, iii) disponibilidade de dados sísmicos e geofísicos, iv) vias de acesso.

Os levantamentos de superfície tiveram como enfoque a descrição e sistematização de falhas, dobras, sistemas de fraturas (cisalhantes e trativas) e zonas de cisalhamento rúpteis-dúcteis, bem como aspectos relacionados à reologia das unidades deformadas. A orientação e cinemática de tais feições foram analisadas e interpretadas com auxílio dos softwares OpenStereo®, Stereonet® e Orient®. Para o tratamento de dados direção de camada de fraturas e veios subverticais, foram utilizados diagramas de rosetas com médias corridas. Conforme discutido por Munro e Blenkinsop (2012) e Sanderson e Peacock (2020), esse tipo de diagrama evita os saltos abruptos entre pétalas definidas arbitrariamente, ilustrando melhor a distribuição das direções dos planos.

Figura 1.1-Localização da área de trabalho nas regiões norte de Minas Gerais e extremo sudoeste da Bahia, com destaque para a delimitação da Bacia do São Francisco, da porção sul do Alto de Januária e principais cidades e vias de acesso. A localização das Figs. 1.2 e 1.3 são destacadas pelos polígonos tracejados em branco e vermelho, respectivamente. bh: Belo Horizonte

Figura 1.2- Mapa Geológico da área de estudo com mapa de pontos e localização dos levantamentos de campo. Mapas geológicos do Projeto Fronteira de Minas (Pedrosa-Soares *et al.* 2015)

1.4.3 Interpretação geofísica e de imagens de satélite

Nesta etapa, foram analisados e interpretados os seguintes dados geofísicos disponíveis para região enfocada: i) seções sísmicas 2D levantadas em campanhas de exploração de hidrocarbonetos e informações de um poço profundo; ii) dados gravimétricos baseados em dados de satélite (Reis, 2011). As seções sísmicas e os mapas geofísicos foram interpretados de forma integrada com dados de superfície e mapas geológicos utilizando softwares de interpretação sísmica. Dados de superfície e subsuperfície também foram interpretados através do software ArcGIS ®.

Dados Sísmicos

O método sísmico de reflexão é baseado na propagação de ondas sísmicas através do substrato geológico. Ao atravessar camadas litológicas com diferentes impedâncias acústicas, uma séria de fenômenos físico ocorrem com as ondas sísmicas, como reflexões, refrações e atenuações do sinal sísmico, e parte da energia é refratada enquanto parte é refletida de volta para a superfície (e.g. Yilmaz, 2001; Onajite, 2014; Misra & Mukherjee, 2018). Após a captação das ondas que retornam à superfície através de receptores acústicos (geofones ou hidrofones), os dados sísmicos são processados ao longo de múltiplas etapas e as seções sísmicas (2D ou 3D) são confeccionadas. Reproduzindo diversos elementos geológicos do substrato, a interpretação de tais seções permite reconstruir a arquitetura estratigráfica e tectônica de bacias sedimentares, bem como conhecer a profundidade do embasamento e sua estruturação (*e.g.*, Nanda 2016).

Para este projeto, foram interpretados quatro conjuntos de linhas sísmicas, que, ao todo, incluem 206 seções levantados pelas companhias Shell, Petrobras e Imetame Energia e foram disponibilizados pela Agência Nacional do Petróleo (ANP). Tiveram especial importância para este estudo os horizontes sísmicos que marcam o topo do embasamento e elementos tectônicos que afetam o Grupo Bambuí. Os nomes dos levantamentos sísmicos estão listados na tabela 1.1 e sua distribuição na área de trabalho é mostrada na figura 1.3.

A interpretação das linhas sísmicas foi realizada por meio do *software* de interpretação sísmica *IHS Kingdom*[®] e teve como base o reconhecimento das principais estruturas e horizontes sísmicos mapeáveis no Alto de Januária, bem como a atribuição de significado geológico para essas feições. Em conformidade com o escopo deste trabalho, os horizontes de maior interesse são aqueles que representam limites de sequências de primeira ordem, como a superfície do topo do embasamento e sua interfaces com as coberturas da sequência Bambuí e pré-Bambuí. A partir da interpretação do horizonte do topo do embasamento em todas as linhas disponíveis, o dado foi interpolado de forma a gerar um mapa de contorno estrutural. O algoritmo usado para interpolação do horizonte (*flex grid*) tem como característica a combinação ponderada entre a ênfase em valores de pontos de controle (*minimum tension*) e a suavização dos pontos interpolados (*mininum curvature*). O tamanho da célula de extrapolação do *grid* foi de 2km, em função da distribuição das linhas sísmicas disponíveis.

Figura 1.3-Distribuição espacial das linhas sísmicas disponibilizadas pela Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP) para a realização do trabalho. A área delimitada pelo tracejado vermelho se refere ao polígono dentro do qual foi gerado o mapa de contorno estrutural do topo do embasamento apresentado no Capítulo 4. O mapa simplificado da Bacia do São Francisco no canto esquerdo superior foi modificado de Reis et al., 2017a.

Levantamento	Número de linhas	Empresa responsável
0319_PETRA_BSF_VIBRO2D_2010_2	181	Petra Energia
0354_SHELL_SF_2012	18	Shell
R0240_SAO_FRANCISCO_45	4	Petrobras
0354_2D_SF_T_104	4	Imetame Energia

Tabela 1.1. Levantamentos sísmicos disponibilizados pela ANP

Mapas gravimétricos

Mapas gravimétricos foram utilizados neste projeto para calibrar os limites do Alto de Januária junto ao dado sísmico e constituem mapas de Anomalia Bouguer, confeccionados a partir de informações topográficas e de anomalia *free-air* derivadas de satélite (TOPEX/ Poseidon) e disponíveis em < ftp://topex.ucsd.edu/pub/ >. Os mapas já se encontram processados e disponíveis e foram confeccionados conforme indicado em Reis (2011, 2016).

1.4.4 Imagens de satélite

Tendo como finalidade não só a orientação espacial e o auxílio à navegação, mas também a delimitação dos lineamentos estruturais regionais, dados oriundos de sensores remotos despontam como valiosas informações para o trabalho de campo. Neste projeto, os lineamentos e alinhamentos estruturais associados a elementos geomorfológicos regionais e sub-regionais (drenagens, divisores hidrográficos, etc) foram interpretados utilizando imagens de satélite e modelos digitais do terreno. Foram utilizadas imagens Landsat 8 (sensor OLI) e dados do satélite PALSAR (sensor ALOS).

O satélite L8-OLI, através do empilhamento e fusão das bandas, fornece imagens com múltiplas bandas com resolução espacial de 15m. Essas bandas foram combinadas entre si em composições ternárias para (i) auxiliar na localização e orientação espacial e (ii) realçar feições estruturais e texturais do relevo. A primeira composição ternária, que simula as cores reais é a R4G3B2, enquanto a segunda, que realça as morfoestruturas ao atenuar o sinal da vegetação, é a R7G6B3.

Para o emprego do modelo digital de elevação e seus produtos derivados, foi escolhido o dado oriundo do radar imageador ALOS/PALSAR (JAXA), cuja resolução espacial de 12.5m é a maior dentre os modelos disponibilizados gratuitamente. Combinado com a composição colorida que realça as morfoestruturas, o modelo digital do terreno constituiu um dado fundamental para a análise dos lineamentos estruturais.

A preparação e interpretação das imagens e modelo digital do terreno foram conduzidas utilizando o *software* ARCGIS®. Os programas OpenStereo e o pacote Microsoft Office ® (Excel) foram utilizados para analisar os lineamentos e alinhamentos interpretados, conforme Marshak & Mitra (1988) e Reis (2011). Juntamente às imagens de satélite, estes dados fora integrados ao projeto sísmico e utilizados como suporte à interpretação das seções, bem como no preparo e desenvolvimento das atividades de campo.

CAPÍTULO 2 SITUAÇÃO GEOLÓGICA REGIONAL – A BACIA DO SÃO FRANCISCO

Situada no setor de orientação N-S do Cráton do São Francisco, a Bacia do São Francisco apresenta o registro de uma longa e complexa evolução tectônica através dos seus depósitos sedimentares e elementos tectônicos, que abrangem desde o Paleoproterozoico até o Cretáceo. Circundada por orógenos Neoproterozoicos e um corredor de deformação intracratônico (Fig. 2.1), ela preserva um dos sistemas de antepaís mais expressivos desenvolvidos durante a amalgamação do Supercontinente Gondwana Ocidental, ao fim do Neoproterozoico (Alkmim *et al.* 2001; Martins-Neto 2009; Reis *et al.* 2017). Levando em consideração o fundamental trabalho de Almeida (1977), no qual fica estabelecido o significado do Cráton do São Francisco, Alkmim & Martins-Neto (2001) definem a Bacia do São Francisco como a porção meridional do cráton homônimo que recebeu preenchimento sedimentar posterior a 1,8 Ga. Assim definida, a Bacia do São Francisco recobre aproximadamente 350.000 km² da área cratônica, e representa uma bacia poli-histórica e sucessora (Fig. 2.1).

Figura 2.1- Mapa geológico simplificado da Bacia do São Francisco situada na porção sul do cráton homônimo, (Extraído e modificado de Reis *et al.* 2017b). Cidades: jn – Januária; Crátons da Africa e America do Sul: a-Amazonas; wa-Africa Ocidental; sfc-São Francisco-Congo; k-Kalahari; p-Paranapanema.

Piatti B.G., 2021, Arcabouço estrutural e evolução tectônica do Alto de Januária (MG)...

Os limites da bacia estão posicionados, na sua maior extensão, ao longo de feições morfotectônicas que delimitam estilos estruturais muito distintos e, junto às faixas orogênicas, são coincidentes com os próprios limites do Cráton do São Francisco, como delimitado por Almeida (1977, 1981) e modificado por Alkmim *et al.* (1993) e Cruz & Alkmim (2006). Sua porção sul, entretanto, é marcada pelo contato erosional entre as rochas do embasamento e a cobertura sedimentar, enquanto o limite nordeste se dá ao longo da margem oeste do Corredor de deformação Paramirim (Alkmim & Martins-Neto 2001). Quando às faixas orogênicas neoproterozoicas adjacentes, marcam, em grande parte, a mudança de um estilo estrutural com embasamento envolvido na deformação para um estilo dominantemente epidérmico (Almeida 1977, Alkmim *et al.* 1993, 1996).

2.1 SUCESSÃO ESTRATIGRÁFICA

Englobando múltiplos ciclos de preenchimento sedimentar, a Bacia do São Francisco registra sucessões sedimentares de idade paleoproterozoica a cretácica que recobrem discordantemente rochas do embasamento e registram diferentes eventos tectônicos que afetaram a litosfera São Francisco ao longo de sua história (Alkmim & Martins-Neto 2001; Reis *et al* 2017) (Fig. 2.2). O preenchimento da bacia abarca as seguintes unidades litoestratgráficas principais: Supergrupo Espinhaço (na sua borda leste), Grupos Paranoá e Vazante (na porção oeste), Supergrupo São Francisco, Grupo Santa Fé e Grupos Areado, Mata da Corda e Urucuia.

Seguindo a definição de Almeida (1977) do Cráton do São Francisco, o seu embasamento e por extensão da bacia homônima, é constituído por rochas mais antigas que 1.8 Ga, as quais foram cratonizadas após a Orogênese Riaciana. Estas rochas constituem, em geral, complexos gnáissico-migmatíticos arqueanos a paleoproterozoicos, sucessões do tipo *greenstone belt*, granitoides, diques máficos e, na parte sul da bacia, rochas metassedimentares paleoproterozoicas. Sob a cobertura sedimentar, o embasamento da bacia fica exposto em janelas estratigráficas nas regiões dos altos estruturais de Sete Lagoas, porção sul da bacia, e Januária, norte da bacia (Reis *et al.* 2017). Estas feições do embasamento, peças fundamentais na história evolutiva da bacia (Reis e Alkmim 2015, Reis e Alkmim 2017, Reis *et al.* 2017), ficam evidentes ao se analisar o mapa gravimétrico regional (Fig. 2.3).

Figura 2.2-Carta estratigráfica ilustrando as sequências sedimentares pré-cambrianas de primeira ordem que compõem a Bacia do São Francisco, ambientes deposicionais, contextos e eventos tectônicos associados e sua relação com as unidades litoestratigráficas (extraída de Reis & Alkmim, 2015; idades atualizadas conforme citações na figura).

Piatti B.G., 2021, Arcabouço estrutural e evolução tectônica do Alto de Januária (MG)...

Figura 2.3- Geometria em planta das grandes estruturas do embasamento da Bacia do São Francisco. (A) Mapa de Anomalia Bouger e (B) Mapa esquemático com a interpretação dos altos e baixos estruturais do embasamento. (extraído de Alkmim, 2011).

2.1.1 COBERTURAS PRÉ-CAMBRIANAS

Supergrupo Espinhaço e correlatos

Composto dominantemente por rochas metassedimentares siliciclásticas de origem prioritariamente continental, na sua base, e marinha, no topo, o Supergrupo Espinhaço encontra-se exposto tanto nos domínios intracratônicos quanto nos extracratônicos, como por exemplo, na Serra do Espinhaço Meridional, zona externa do Orógeno Araçuaí (Pflug, 1965; Dussin & Dussin, 1995; Martins Neto 2000; Pedrosa-Soares *et al.*, 2001). A unidade, tal como exposta naquela serra, além das rochas siliciclásticas dominantes, contém intercalações de rochas vulcânicas e carbonáticas, todas metamorfisadas nas condições de fácies xisto verde (Pflug, 1965; Inda e Barbosa 1978; Scholl & Fogaça,
1979). Esta sucessão é tida como representante de uma bacia sucessora com evolução do tipo rifte a rifte-sag, cuja acumulação se iniciou no período estateriano, passou por um episódio de quiescência e foi renovada durante o período esteniano (Dussin & Dussin, 1995; Uhlein *et al.*, 1998; Martins-Neto, 1998, 2000; Chemale *et al.*, 2012). A primeira fase de rifteamento tem sua idade mínima limitada pela existência de intercalações de hematita filitos, cujas idades de cristalização são de 1716 a 1703 Ma (Machado *et al.*, 1989; Dussin e Dussin, 1995; Chemale *et al.*, 2012). Seguida de um hiato de *c*. 500 Ma, a sedimentação continental foi renovada durante uma nova fase rifte com idade máxima de c. 1192 Ma (Chemale *et al.*, 2012), a qual foi, por sua vez, evoluiu para uma fase sag (Martins-Neto, 1998; Santos *et al.*, 2015). A idade mínima desta é estimada em 906 Ma (Machado *et al.*, 1989), idade de diques de rochas máficas que interceptam todo o Supergrupo Espinhaço na serra homônima e na Bacia do São Francisco.

Considerando agora o cenário da Serra do Espinhaço Setentrional, ao longo do corredor de deformação ou aulacógeno Paramirim (Alkmim *et al.*, 1993; Cruz & Alkmim, 2006), um registro mais completo da evolução policíclica e descontínua do Sistema Espinhaço é preservado (Schobbenhaus, 1993; Danderfer, 2000; Danderfer & Dardenne, 2002). Esse registro conta, além das seções inferior (1.8 – 1.68 Ga) e superior do Espinhaço (1.19 - 0.9 Ga), com uma seção intermediária, representante de um evento de rifteamento que teve lugar no período Calymmiano, em *c*. 1.57 Ga, sendo este o segundo evento de extensão continental registrado na evolução da bacia (Danderfer *et al.*, 2009; Guadagnin & Chemale Jr., 2015; Guadagnin *et al.*, 2015). Além desses eventos, uma família de diques com idade de 0.85 Ga pode representar um novo evento formador de rifte, refletindo o último estágio de gênese bacinal no Espinhaço Setentrional, durante o qual foi depositado o Sintema Santo Onofre, cujo potencial correlato no Espinhaço Meridional é o Grupo Macaúbas (Danderfer *et al.*, 2009).

No âmbito da Bacia do São Francisco, o Supergrupo Espinhaço compõe uma sucessão do tipo rif-sag que, conforme dados de sub-superfície, preenche um grande gráben de direção NW-SE, o aulacógeno Pirapora (Reis *et al.* 2017a). Atingindo espessuras de até 7000m (Martins-Neto *et al.*, 2001; Reis *et al.*, 2017a), a unidade registra um ciclo bacinal completo (*i.e.*, sequência de 1ª ordem) e assenta-se discordantemente sobre uma unidade mais antiga, denominada de Espinhaço Inferior, até então reconhecida apenas em seções sísmicas (Reis *et al.*, 2017a). As exposições do Supergrupo Espinhaço são limitadas a porção leste da bacia, junto a culminações antiformais alongadas, nas serras do Cabral e da Água Fria (Viveiros & Walde, 1976; Uhlein, 1991; DuPont, 1995; Espinoza, 1996; Alkmim & Martins-Neto, 2001; Hercos *et al.*, 2008). Estas exposições incluem as unidades continentais a marinhas das formações Galho do Miguel, Santa Rita e Córrego dos Borges (sucessões basais do Grupo Conselheiro Mata). Este último grupo correlaciona-se lateralmente pelo menos a parte do Grupo Paranoá, exposto na porção oeste da Bacia do São Francisco (Martins-Neto *et al.*, 2001; Reis *et al.*, 2017a). Estas relações estratigráficas e a natureza sedimentar destes depósitos, combinados à interpretação sísmica e a análise de dados de poços, levaram Reis et al. (2017a) a definir tais sucessões

como uma sequência estratigráfica de 1ª ordem, denominada Sequencia Paranoá-Espinhaço superior (Fig. 2.4).

Grupo Paranoá

A sucessão de rochas sedimentares psamo-pelito-carbonatadas que compõem o Grupo Paranoá foram depositadas em ambiente marinho raso a transicional e incluem conglomerados, arenitos e ritmitos (intercalações entre arenitos finos, metassiltitos e metagrauvacas) com ocasionais lentes de rochas carbonáticas portadoras de estromatólitos (Dardenne *et al.*, 1976; Dardenne & Faria, 1987; Faria, 1995; Guimarães, 1997; Campos *et al.*, 2013). Suas exposições estão posicionadas nas zonas interna e externa da Faixa Brasília, desde o Distrito Federal até o estado de Tocantins (Condé *et al.*, 1994; Faria, 1995; Freitas-Silva e Campos, 1995; 1998). Neste domínio orogênico, as rochas do Grupo Paranoá apresentam diferentes graus de metamorfismo que, de anquimetamórficos a fácies de xisto verde baixo na zona externa, passam a condições de maior grau na interna (Dardenne, 2000; Campos *et al.*, 2013).

Esse pacote de rochas preserva o registro de uma bacia mesoproterozoica com evolução do tipo rifte-margem passiva na borda ocidental do paleocontinente São Francisco (Guimarães, 1997, Dardenne, 2000; Pimentel *et al.*, 2001; Campos *et al.*, 2013). Evidências paleontológicas (Cloud e Dardenne, 1973; Dardenne *et al.*, 1976), combinadas com dados isotópicos de proveniência sedimentar em zircões detríticos (Matteini *et al.*, 2012) indicam intervalo deposicional para o Grupo Paranoá entre *c*. 1.3 Ga e 1046 Ma.

A partir de interpretações de seções sísmicas Reis & Alkmim (2015) e Reis *et al.* (2017a), indicam que o Grupo Paranoá, pelo menos no domínio do cinturão externo da Faixa Brasília se faz presente na Bacia do São Francisco na forma de um equivalente lateral do Supergrupo Espinhaço Superior.

Formação Jequitaí

A Formação Jequitaí aflora em pequenas áreas da parte leste da bacia, recobrindo discordantemente o Supergrupo Espinhaço nas Serras do Cabral e da Água Fria (Souza Filho, 1995; Espinoza, 1996; Alkmim e Martins-Neto, 2001; Martins-Neto e Hercos, 2001; Hercos *et al.*, 2008). Além disso, também se encontra exposta no setor oeste da bacia, junto à margem ocidental do Cráton do São Francisco (Faixa Brasília), onde sua espessura varia de poucos metros a até 180m em Cristalina (Cukrov *et al.*, 2005).

Diamictitos, arenitos e, subordinadamente, pelitos, discordantemente sobrepostos ao embasamento ou ao Supergrupo Espinhaço, constituem os depósitos glacio-continentais aluviais e lacustres da Formação Jequitaí. Estas unidades passam gradativamente em direção ao topo para

depósitos glaciais distais com influência marinha no domínio da Faixa Araçuaí (Viveiros e Walde, 1976; Karfunkel e Hoppe 1988; Uhlein *et al.*, 1999; Martins-Neto e Hercos, 2002).

Os depósitos da Formação Jequitaí e correlatos na Bacia do São Francisco marcam o registro sedimentar de um rifte neoproterozoico, cujos principais correlatos ao longo da Faixa Araçuaí compõem parte do Grupo Macaúbas (Dardenne, 1978a; Dominguez ,1993; Uhelin *et al.*, 1999; Alkmim e Martins-Neto 2001). Tais unidade, representam o registro de um ciclo bacinal que afetou o Paleocontinente São Francisco e compõe uma sequência de primeira ordem, denominada Sequencia Macaúbas (Fig. 2.4) (Reis *et al.*, 2017a).

Os primeiros dados isotópicos obtidos em zircões detríticos extraídos de diamictitos da Formação Jequitaí indicaram uma idade máxima de 920 Ma para a deposição dessa unidade (Buchwaldt *et al* 1999). Análises subsequentes, realizadas com a mesma ferramenta em diferentes localidades forneceram uma idade máxima estimada em torno de 864 Ma (Pedrosa-Soares *et al.*, 2000; Rodrigues, 2008). A idade mínima foi estimada em 740 Ma a partir da datação Pb-Pb de calcários basais do Grupo Bambuí, realizada por Babinski *et al.* (2007). Mais recentemente, Kuchenbecker *et al* (2015) propõem que o Grupo Macaúbas na Faixa Araçuaí registra uma evolução de longa duração entre 930 a 600 Ma, que envolveria estágios de rifteamento superpostos e um margem passiva, como o sistema de meiograbens ramificados descritos por Souza *et al.* (2017).

Grupo Vazante

Como apresentado por Dardenne *et al* (1998), o Grupo Vazante consiste em uma sucessão pelito-carbonática depositada em ambiente marinho. Sua presença em superfície está limitada a margem oeste da Bacia do São Francisco, na zona externa do Orógeno Brasília, onde ocorre, por cerca de 200 km, ao longo de uma faixa curvilínea estreita com orientação geral norte-sul (Dardenne, 2000). Por toda a extensão desta faixa, as rochas do Grupo Vazante, divididas em sete formações (Madalosso e Vale, 1978; Madalosso, 1980; Campos Neto, 1984a; Rigobello *et al.*, 1988; Dardenne, 1997; 1998), encontram-se deformadas e localmente metamorfisadas em condições de fácies xisto verde (Campos Neto, 1984b; Rostirolla *et al.*, 2002)

O Grupo Vazante é constituído por calcários e dolomitos, que exibem estruturas algais e estromatólitos, metapelitos ricos em matéria orgânica, quartzitos finos e metadiamictitos distribuídos nas sete formações do grupo Esse conjunto é interpretado como representativo de uma bacia do tipo margem passiva (*e.g.* Dardenne *et al.*, 1998; Dardenne, 2000).

O posicionamento das suas várias unidades, bem como sua idade tem sido tema de muitas controvérsias. As diferentes interpretações presentes na literatura tratam o Grupo Vazante como: i) bacia mesoproterozoica tardia correlata ao Grupo Paranoá (*e.g.* Dardenne, 1979; Pimentel *et al.*, 2001; 2011);

ii) bacia neoproterozoica de antepaís relacionada ao Grupo Bambuí (Dardenne *et al.* 2000); iii) bacia neoproterozoica correlata ao Grupo Macaúbas (*e.g.* Alkmim, 2011; Alkmim e Martins-Neto, 2012; Reis *et al.*, 2017a); e iv) bacia com evolução do período ecstasiano ao toniano (*e.g.* Azmy *et al.*, 2008; Rodrigues *et al.*, 2012). No decorrer das últimas décadas, diversos pesquisadores, trabalhando com zircões detríticos (*e.g.* Pimentel *et al.*, 2001, Coelho 2007; Rodrigues, 2008; Pimentel *et al.*, 2011; Rodrigues *et al.*, 2012) e isótopos Re-Os em folhelhos ricos em matéria orgânica (Azmy et al 2008, Geboy *et al.*, 2013) apresentaram dados sugerindo que a "Bacia Vazante" tem como fonte rochas predominantemente cratônicas orosirianas a riacianas e que sua deposição se deu entre *c.* 1.3 a 0.75, sendo a seção tectonicamente superior mais antiga (*c.* 1.3-0.95) do que a inferior (*c.* 0.94-0.78 Ga), conforme o modelo de inversão estratigráfica proposto por Misi et al (2014). Vale ressaltar que alguns autores apontam a circulação de fluidos hidrotermais como perturbadora do sistema isotópico Re-Os (Geboy et al 2013, Bertoni *et al.* 2014), o que levaria a um resultado de idades erroneamente mais jovem do que as apresentadas.

Grupo Bambuí

O Grupo Bambuí e composto por uma sucessão de rochas sedimentares carbonáticas e siliciclásticas (Branco & Costa, 1961; Dardenne, 1978a). Recobrindo discordantemente as unidades mais antigas da bacia, o grupo é considerado como unidade característica da Bacia do São Francisco (Alkmim & Martins-Neto, 2001). Conforme o esquema litoestratigráfico (Fig. 2.4) apresentado por Kuchenbecker (2014) e baseado em Dardenne (1978a), Alkmim & Martins-Neto (2001), Uhlein *et al.* (2011a) e Uhlein (2014), nove formações compõem o Grupo Bambuí. Destas, cinco são de ocorrência regional (da base para o topo, Sete Lagoas, Serra de Santa Helena, Lagoa do Jacaré, Serra da Saudade e Três Marias), e quatro são de ocorrência localizada ou descontínua.

Na porção sul e sudoeste da bacia, a Formação Carrancas é constituída por paraconglomerados que configuram, nas restritas localidades em que ocorrem, a base do Grupo Bambuí (*e.g.* Martins-Neto *et al.*, 2001; Kuchenbecker *et al.*, 2013). Alguns autores, como Vieira *et al.* (2007), consideram esses ruditos como parte da Formação Sete Lagoas, enquanto outros (*e.g.* Martins-Neto *et al.*, 2001; Kuchenbecker *et al.*, 2011) os consideram correlatos aos depósitos glaciais posicionados estratigraficamente abaixo dos carbonatos da Formação Sete Lagoas.

A Formação Sete Lagoas é composta por diversos tipos de rochas carbonáticas que incluem, na sua porção inferior, uma camada de carbonato de capa (pós-glacial), além de pelitos subordinados na sua seção superior (*e.g.*, Dardenne, 1979; 1981; Vieira *et al.*, 2007; Martins & Lemos, 2007). Suas principais áreas de exposição na bacia são associadas aos dois altos estruturais do embasamento, Sete Lagoas (*e.g.*, Vieira *et al.*, 2007; Reis & Suss, 2016) e Januária (*e.g.* Dardenne, 1978; Brandalise, 1980;

Lopes, 1981; Iglesias & Uhlein, 2009) e à zona externa da Faixa Brasília, onde são alçadas à superfície por falhas de empurrão (*e.g.*, Alvarenga *et al.*, 2012).

Figura 2.4. Esquema arquitetural sintético do Grupo Bambuí no contexto da Bacia do São Francisco. Extraído de Kuchenbecker (2014).

Sobreposta a Formação Sete Lagoas ocorrem os pelitos da Formação Serra de Santa Helena, com raras lentes de calcários e arenitos intercalados (Dardenne 1978). Essa unidade apresenta ampla distribuição na bacia com subdivisões em três litofácies correlacionáveis em distintas regiões, como as de Parenti-Couto (1980) no vale do Rio Paraopeba, e a de Iglesias (2007), no vale no médio São Francisco, norte de Minas Gerais.

A Formação Lagoa do Jacaré, cujo predomínio de ocorrência é no setor oriental da bacia, é composta por rochas carbonáticas de retrabalhamento (oolíticos, pisolíticos, intraclásticos) que passam lateral e verticalmente para margas e siltitos (Dardenne, 1978a). Essa unidade faz contatos transicionais com as unidades sobrepostas e sotopostas, a saber, Serra da Saudade e Serra de Santa Helena, respectivamente.

A Formação Serra da Saudade tem sua ocorrência predominante na região oeste da bacia, onde englobam pelitos que, na porção superior, passam para siltitos feldspáticos e arenitos arcoseanos muito finos (Dardenne 1978a). Uma característica marcante dos pelitos dessa formação é a ocorrência de verdetes, comumente expostos no setor sudoeste da Bacia do São Francisco (*e.g.* Guimarães & Dutra, 1969; Dardenne, 1978a; Lima *et al*, .2007).

A Formação Jaíba é de ocorrência limitada na bacia, sendo encontrada apenas nos arredores da cidade homônima no norte de Minas Gerais. Nesta região, suas sucessões dominantemente carbonáticas

sobrepõem em contato transicional a Formação Serra da Saudade e são sobrepostas através de discordância angular erosiva pelos arcóseos da Formação Três Marias (Chiavegatto *et al.*, 2003).

A formação de topo do Grupo Bambuí, Três Marias, é composta por arenitos arcoseanos, siltitos e conglomerados (Dardenne, 1978a). Sua deposição marca uma mudança importante contexto de sedimentação na bacia e marca ambientes marinho raso com influência de tempestades e sistemas deltaicos e fluviais (Chiavegatto, 1992; Kuchenbecker *et al.*, 2016b). Na borda leste da bacia Bambuí, próximo ao sistema de antepaís Espinhaço, brechas, conglomerados e arcósios de ocorrência restrita em topos de serras, como a de Gorutuba e Jaíba compõem a Formação Gorutuba (Kuchenbecker et al., 2016a). Enquanto um desmembramento da Formação Três Marias, essa associação, assim como a primeira, registra variações locais do sistema fluvial de alta energia instalado durante o soerguimento e erosão das plataformas marinhas sobrepostas durante o estágio de colmatação da bacia (*e.g.* Chiavegatto *et al.*, 2003; Kuchenbecker *et al.*, 2016a).

Na região ocidental da bacia, ocorrem conglomerados, com arenitos e pelitos associados, que constituem as formações Samburá e Lagoa Formosa (Castro & Dardenne, 2000; Dardenne et al., 2003; Uhlein et al., 2011). Estas formações representam leques deltaicos e submarinos alimentados pelas frentes orogênicas da Faixa Brasília.

A distribuição regional dos sistemas deposicionais, a geometria dos depósitos do Grupo Bambuí em seções sísmicas regionais (Zalán & Romeiro-Silva, 1997; Reis *et al.*, 2017a) e estudos de proveniência sedimentar (Pimentel et al 2001, Dardenne *et al.* 2003) indicam que o Grupo Bambuí é um registro de um sistema bacinal de antepaís desenvolvido, principalmente, em resposta à sobrecarga tectônica imposta pela Faixa Brasília sobre o Paleocontinente São Francisco ao final do Neoproterozoico (Barbosa *et al.*, 1965; Chang *et al.*, 1988; Martins-Neto et al., 2001; Alkmim e Martins-Neto, 2012; Reis & Alkmim, 2015; Caetano-Filho et al., 2019; Kuchenbecker et al., 2020). Tais características permitem definir o Grupo Bambuí e unidades correlatas como uma sequencia sedimentar de primeira ordem (Reis et al., 2017a).

A idade de sedimentação do Grupo Bambuí é ainda um tema controverso. As discussões atuais giram em torno da sua seção basal, a Formação Sete Lagoas, dada a sua condição de carbonato de capa, mas cuja relação com as rochas glaciogênicas da Formação Jequitaí não é claramente estabelecida (Babinsky *et al.*, 2007, Vieira, 2007, Caxito *et al.*, 2012). Previamente considerada um carbonato de capa em relação a depósitos glaciais esturtianos, com base na idade Pb-Pb em rocha total, de c. 740 Ma (Babinski *et al.*, 2007, Babinski *et al.*, 2012), a Formação Sete Lagoas, em especial sua seção superior, teve sua idade máxima de deposição estimada em *c*. 610 Ma a partir de estudos de zircões detríticos (Rodrigues, 2008). Tal fato serviu de substrato para que Caxito *et al.*(2012) sugerissem que os carbonatos de capa sucederam uma glaciação marinoana, o que seria corroborado pelos seus dados de isótopos estáveis. Porém, evidências para uma idade ainda mais jovem da Formação Sete Lagoas foram

colhidas por Warren *et al.* (2014) e Paula-Santos et al (2015), ao apresentar, respectivamente, a presença do fóssil índice *Cloudina*, indicador de rochas do Ediacarano Superior (*c*. 550-542 Ma), e dados isotópicos U-Pb em zircões detríticos indicativos que a formação não pode ser mais velha do que *c*. 560 Ma. Além disso, no topo do pacote de rochas do Grupo Bambuí, na Formação Três Marias, há zircões tão jovens quanto *c*. 575 Ma (Kuchenbecker *et al.*, 2015) e 527 Ma (Tavares et al., 2020), sendo esta uma forte evidência que o Orógeno Araçuaí pode ter sido fornecedor de sedimentos para a Bacia Bambuí.

2.1.2 UNIDADES FANEROZOICAS

Grupo Santa Fé

O Grupo Santa Fé, composto por rochas sedimentares glaciogências e proglaciais, ocorre em escassos afloramentos ao longo de toda a bacia. Na sua área tipo, no noroeste de Minas Gerais, chega a apresentar espessuras de c. 250 m e é composto, da base para o topo, pelas formações Floresta e Tabuleiro (Campos e Dardenne 1997, Sgarbi *et al.* 2001). Nesta região, são comuns tilitos, folhelhos com clastos caídos e intercalações de arenitos que repousam sobre pavimentos estriados na Formação Três Marias (Dardenne *et al.* 1990, Campos 1992, Campos & Dardenne 1994, Sgarbi *et al.* 2001). O posicionamento cronoestratigráfico do grupo no Permo-Carbonífero está fundamentado pela presença de icnofósseis (Campos & Dardenne 1994).

Grupo Areado

Na porção sudoeste da Bacia do São Francisco (Fig. 2.5), a sucessão de rochas sedimentares do Grupo Areado se assenta sobre o Grupo Bambuí através de uma discordância angular erosiva (Fig. 2.5) (*e.g.*, Campos & Dardenne 1997a, Sgarbi *et al.* 2001, Sgarbi 2011a). Seus conglomerados, mono ou polimíticos, lentes de pelitos e arenitos registram a evolução de um sistema de rifte sob clima desértico, no qual se desenvolveram leques aluviais, sistemas fluviais e lagos sazonais. Tais sistema, posteriormente evoluíram para ambientes de sedimentação dominantemente eólica (Sgarbi *et al.* 2001, Fragoso 2011, Sgarbi 2011a). A presença de microfósseis marinhos em níveis de silexitos intercalados na sequência eólica indicam que essas rochas devem ter idade Barremiana-aptiana (*e.g.* Dias Brito *et al.* 1999) ou Albo-aptiana (Kattah 1991). Diversas hipóteses são levantadas para justificar a existência de uma biota marinha no sistema eólico, podendo se tratar de incursões marinhas (Kattah 1991, Kattah & Koutsoukos 1992, Pessagno & Dias-Brito 1996) ou até mesmo o transporte atmosférico desses fósseis por eventos catastróficos como tornados, ciclones ou tufões (Sgarbi 2011a).

Grupo Mata da Corda

O Grupo Mata da Corda é composto por rochas vulcânicas a subvulcânicas, vulcanoclásticas e epiclásticas que se sobrepõem discordantemente ao Grupo Areado (Campos & Dardenne 1997a, Sgarbi *et al.* 2001, Sgarbi 2011b). De filiação ultramáfica alcalina, essas rochas estão relacionadas com o que Almeida (1983) chamou de Província Alcalina Alto do Paranaíba, a qual é correlata também à Província Alcalina de Goiás, que marca uma manifestação magmática comomente associada a lavas kamafugíticas e intrusões alcalinas (Sgarbi *et al.* 2001, Sgarbi 2011b). A sua idade é neocretácica e foi aferida por uma série de autores por meio de análises em diversos sistemas isotópicos, como Rb-Sr em flogopitas (119-85Ma, Bizzi *et al.* 1994), K-Ar em micas de kamafugitos (83Ma, Gibson *et al.* 1995) e U-Pb em zircão e perovskita (respectivamente, 87-79 Ma, Davis 1977; e 81-75Ma, Sgarbi et al 2004).

Grupo Urucuia

Depósitos dominantemente psamíticos definem o Grupo Urucuia, que aflora nas porções central e norte da Bacia do São Francisco (Fig. 2.5) (Campos & Dardenne 1997a). É constituído por depósitos eólicos, que passam a aluviais no topo (Campos & Dardenne 1997a, Sgarbi *et al.* 2001). Admite-se que sua idade seja parcialmente sincrônica ao Grupo Mata da Corda, em virtude de uma aparente interdigitação entre a unidade epiclástica deste grupo com os arenitos daquele na porção sul da bacia e um aumento progressivo do conteúdo de areia quartzosa na unidade do grupo vulcanoclástico (Ladeira e Brito 1968, Grossi Sad *et al.* 1971, Campos e Dardenne 1997a). Outros autores, entretanto, apontam que a suposta continuidade lateral entre os dois grupos trata-se, de produtos da alteração intempérica ou elúvios da Formação Capacete (Grupo Mata da Corda), e não de arenitos do Grupo Urucuia (*e.g.* Sgarbi 1989, Sgarbi 2011).

Figura 2.5. Mapa geológico simplificado mostrando a distribuição das unidades fanerozoicas da Bacia do São Francisco. Extraído de Sgarbi *et al.* (2001).

2.2 ARCABOUÇO ESTRUTURAL

A Bacia do São Francisco apresenta três conjuntos principais de estruturas formadas durante eventos de rifteamento proterozoicos, de orogênese neoproterozoicos e rifteamento cretácico (Reis & Alkmim 2015, Reis *et al.* 2017a).

Dois altos do embasamento localizados nos setores norte e sul da bacia, Januária e Sete Lagoas, respectivamente, separados por um gráben, o Aulacógeno Pirapora, configuram o arcabouço estrutural do embasamento da Bacia do São Francisco (Alkmim & Martins-Neto 2001, Reis 2016) (Fig. 2.2). Sistemas de falhas normais com direção NW-SE, com estruturas de orientação NE-SW conjugadas, definem o aulacógeno e *horsts* e *grabens* internos que receberam os sedimentos do Supergrupo Espinhaço e unidades correlatas (Alkmim & Martins-Neto 2001, Reis *et al.* 2015). Muitas destas estruturas exibem indícios de reativação e inversão parcial (*e.g.*, Reis & Alkmim 2017b, Reis *et al.* 2017a).

Definidos pelas zonas externas das faixas neoproterozoicas Brasília, Rio Preto e Araçuaí, a sseção sedimentar pré-cambriana a cambriana da Bacia do São Francisco encontra-se envolvida em três compartimentos estruturais distintos (Alkmim *et al.* 1996, Alkmim & Martins-Neto 2001, Reis & Alkmim 2015) Nas bordas da bacia, os compartimentos Oeste e Leste registram a influência da orogenia

brasiliana na forma de dois cinturões de dobramentos e empurrões de antepaís, correspondentes às zonas externas das Faixas Brasília e Araçuaí, respectivamente. Com polaridades e vergências opostas e centrípetas em relação ao cráton (Alkmim *et al.* 1996), esses dois compartimentos definem, respectivamente, os cinturões de antepaís das faixas Brasília e Araçuaí e são separados por um grande setor central ao longo do qual as rochas do Grupo Bambuí encontram-se praticamente indeformadas (Alkmim & Martins-Neto, 2001; Reis et al., 2017a).

As estruturas relacionadas com o evento de rifteameto cretácico, bem documentadas na porção sudoeste da bacia, controlaram a deposição do Grupo Areado. A sedimentação das unidades deste grupo está associada a falhas normais com direção NNW-SSE formadas pela reativação negativa de estruturas relacionadas ao cinturão de antepaís da Faixa Basília (*e.g.* Sawasato 1995, Fragoso 2011, Rodrigues 2020).

2.3 O ALTO DE JANUÁRIA

2.3.1 Estratigrafia

De acordo a delimitação de Alkmim & Martins-Neto (2001), com base em estudos prévios e mapas gravimétricos, a cobertura sedimentar sobreposta ao Alto de Januária, na sua condição de embasamento de idade arqueana a paleoproterozoica, é feita, principalmente, pelas rochas dos grupos Bambuí e Urucuia, de idades ediacarana e cretácica, respectivamente. Além disso, recobre o embasamento também as unidades pré-Bambuí não aflorantes e descritas em testemunhos de poços profundos por Brandalise (1980) e observada em seções sísmicas (Reis *et al.* 2017) (Fig. 2.6).

Embasamento – Complexo Januária

Na região do Alto de Januária, o embasamento é caracterizado por rochas metamórficas e intrusivas agrupadas sob a denominação de Complexo Januária (*e.g.* Schobbenhaus *et al.* 2004). As áreas de exposição desse complexo são janelas erosivas que ocorrem, em geral, na forma de lagedos nos vales de rios e córregos na região de Cônego Marinho e Bonito de Minas (*e.g.* Lopes 1981, Iglesias 2007, Pinto & Silva 2014, Uhlein *et al.* 2015). Nesta área, o embasamento é sobreposto diretamente tanto pelo Grupo Bambuí quanto pelo Grupo Urucuia.

Figura 2.6- Seção sísmica interpretada ilustrando a relação do Alto de Januária com a cobertura sedimentar, composta por unidades pré-Bambuí (Sequência Espinhaço-Superior/Paranoá) e a Sequência Bambuí. As sucessões basais desta última progradam a partir do alto do embasamento no sentido do Aulacógeno Pirapora a sul. Extraído de Reis et al. (2017a).

Uma diversidade de rochas deformadas e indeformadas compõem o Complexo Januária (Almeida & Uchigasaki 2003, Brandalise 1980, Uhlein *et al.* 2015, Rezende 2017), incluindo ortognaisses bandados com enclaves anfibolíticos e porções migmatitizadas, quartzo dioritos e mozogranitos foliados ou com textura ígnea preservada. Estudos geoquímicos nos granitoides permitem classifica-los sob o ponto de vista tectônicos como rochas magmáticas do tipo-I e sugerem uma gênese associada à orogênese riaciana-orosiriana (Rezende 2017).

Unidades pré-Bambuí

Brandalise (1980) revela, através da análise de testemunho de sondagem do furo 1-PSB-13-MG, perfurado a oeste de Montavânia, a ocorrência de uma sucessão de natureza siliclástica composta por rochas psamo-psefíticas subjacentes aos carbonatos basais do Grupo Bambuí. Tal autor agrupou estas rochas sob a denominação de Formação Montalvânia, subdividida em duas unidades principais. A unidade basal tem, pelo menos, *c*. 700 m de espessura. Sua base não foi verificada, dada a profundidade limite do furo estratigráfico. Contem, dominantemente, quartzo arenitos com frequentes intercalações métricas de pelitos carbonosos. Subordinadamente, ocorrem ainda arenitos feldspáticos. A unidade superior tem espessura aproximada de 67 metros e é constituída por conglomerados polimíticos com

seixos de dioritos, arenitos e, raramente, carbonatos, imersos em matriz ora argilosa, ora arenosa. No topo, junto ao contato com a Formação Sete Lagoas, ocorrem brechas e conglomerados, enquanto que sua base é marcada pelo aparecimento de camadas pelíticas carbonosas e piritosas (Brandalise, 1980).

As descrições realizadas por Brandalise (1980) sugerem que a Formação Montalvânia preenche um *graben* pré-Bambuí (Fig. 2.11). Tais formação pode se tratar de uma unidade correlata a Sequência Macaúbas (Formação Jequitaí) (Brandalise, 1980) ou à Sequência Paranoá-Espinha superior (Reis *et al.*, 2017a).

Grupo Bambuí

Na região do Alto de Januária, as rochas do Grupo Bambuí apresentam boa correspondência com a coluna estratigráfica clássica proposta por Dardenne (1978a), apesar de a tectônica do embasamento ter controlado a arquitetura da bacia e colocado lado a lado unidades de níveis estratigráficos distintos (*e.g.*, Brandalise, 1980; Lopes, 1989; Leite *et al.*, 2015). As principais unidades do grupo aflorantes na área de estudo são as formações Sete Lagoas, Serra de Santa Helena, Lagoa do Jacaré, e Serra da Saudade (*e.g.*, Brandalise 1980; Iglesias, 2007). As formações Serra da Saudade, Jaíba e Três Marias ocorrem na porção leste do Alto de Januária (*e.g.* Lopes, 1989; Chiavegatto *et al.*, 2003), fora da área deste estudo.

Formação Sete Lagoas

A formação basal do Grupo Bambuí aflora principalmente na margem esquerda do Rio São Francisco, onde chega a atingir espessuras de até 200m, e ao longo de uma faixa estreita que configura o *horst* de Montalvânia (*e.g.* Brandalise, 1980, Iglesias, 2007, Uhlein *et al.*, 2015). Na margem direita do rio, há poucos afloramentos da porção superior desta unidade, sempre em cotas inferiores a *c* 500m (Iglesias, 2007, Romano *et al.*, 2015). Em subsuperfície, sua espessura pode chegar a *c*. 500m, de acordo com sua ocorrência no poço 1-PSB-13-MG (Brandalise, 1980). Esta formação repousa sobre o embasamento gnáissico nas regiões de Itacarambi e Lontra, bem como sobre a sucessão pré-Bambuí na região de Montalvânia (Brandalise, 1980; Abreu-Lima, 1997).

Essencialmente carbonática, a formação é constituída, na região, por sete litofácies (Iglesias, 2007), apresentadas da base para o topo: (i) dolomito basal, com laminação plano paralela e intercalações com níveis calcíticos; (ii) calcários argilosos, abrangendo calcilutitos e, subordinadamente dololutitos, com laminação plano paralela, onde encontram-se leques de pseudomorfos de aragonita (*e.g.* Uhlein *et al.*, 2015); (iii) calcários escuros, que compreendem calcarenitos finos a calcilutitos com marcas onduladas, estratificações cruzadas *hummocky*, gretas de contração e nódulos dolomíticos; (iv) calcirruditos, caracterizados como brechas intraformacionais; (v) calcarenitos dolomíticos, com

estratificações cruzadas de baixo ângulo e intercalações de níveis oolíticos e de intraclastos; (vi) doloarenitos e dolorruditos rosados com estratificações cruzadas de médio porte, silicificados e localmente sacaroidais, onde estão concentradas a maior parte das mineralizações plumbo-zincíferas conhecidas na região (Nobre-Lopes 2002); (vii) dolomitos bege, com laminação plano paralela, níveis oolíticos e intraclásticos, e *teepees* e gretas de ressecamento na porção superior, com progressivo aumento de pelitos ao se aproximar da formação sobrejacente.

Formação Serra de Santa Helena

Representando um afogamento gradual da plataforma carbonática da Formação Sete Lagoas, a Formação Serra de Santa Helena é essencialmente pelítica e assenta-se sobre a unidade inferior de forma gradativa, como constatado pelo aumento gradual no conteúdo de pelitos nos carbonatos subjacentes, e diminuição do conteúdo carbonático nas margas basais da formação (Brandalise 1980, Iglesias 2007). Apresenta ampla área de distribuição na região, em ambas margens do Rio São Francisco e, quase sempre, constitui a sustentação das serras e morros, a exemplo da Serra do Bom Sucesso junto à cidade de Lontra (*e.g.* Lopes 1981, Iglesias 2007).

De margas na base, as rochas passam para siltitos verdes piritosos com intercalações de lentes de calcários cinza na porção intermediária e a siltitos e folhelhos piritosos sem intercalações carbonáticas no topo (*e.g.* Brandalise 1980, Lopes 1981, Iglesias 2007).

Formação Lagoa do Jacaré

Previamente denominada Formação Nhandituba por Dardenne (1978a), a Formação Lagoa do Jacaré no Alto de Januária é a unidade do Grupo Bambuí com maior distribuição superficial, em especial na margem direita do Rio São Francisco, onde constitui extensos horizontes contínuos com *c*.80 a 150m de espessura (Beurlen 1973, Lopes 1981, Iglesias 2007, Romano *et al.* 2015).

As rochas que compõem a unidade são calcários pretos e cinza, localmente oolíticos, brechas intraclásticas, margas e siltitos, que foram divididos em 3 sucessões ao longo de uma seção no Serra do Bom Sucesso, entre Lontra e Pedras Maria da Cruz (Iglesias 2007). A sucessão basal é composta por calcarenitos e calcissiltitos neomorfizados e tem *c*. 60m de espessura. Com *c*. de 25m, a sucessão intermediária inclui calcários impuros apresenta laminações cruzadas e intercalações com siltitos verdes. No topo da seção, ocorrem espessos pacotes de siltitos verdes piritosos com intercalações métricas de calcários impuros e níveis centimétricos de arenito e pelitos carbonosos. É importante ressaltar que, comparando-se seções levantadas para esta formação em diferentes regiões, como a de Beurlen (1973) em Montalvânia, Dardenne (1978) em Nhandituba, e Iglesias (2007) em Lontra, fica evidente que há

muitas variações faciológicas que podem estar relacionadas com a paleogeografia e tectônica do embasamento.

Grupo Urucuia

No norte-noroeste de Minas Gerais, assim como no sudoeste da Bahia e nordeste de Goiás, o Grupo Urucuia tem como característica marcante sua ocorrência como o substrato de extensas chapadas, mesetas e morros testemunhos com cotas superiores a 700m e que se destacam na paisagem regional (Campos & Dardenne 1997). Duas formações, compõem o grupo: Posse (basal) e Serra das Araras (de topo). Destas, a primeira responde por cerca de 70% das exposições conhecidas (Campos & Dardenne 1997).

Formação Posse

Composta por rochas psamíticas, a Formação Posse ocorre principalmente na margem oeste do Rio São Francisco, onde recobre tanto as rochas do embasamento quanto as da porção basal do Grupo Bambuí, como ilustrado no perfil esquemático da Figura 2.7 (*e.g.* Uhlein *et al.* 2015). Em geral, apresentam espessuras média estimada em 70m, mas que pode chegar a 100m (Iglesias 2007, Uhlein *et al.* 2015, Uhlein *et al.* 2015).

Em geral, quartzo arenitos e, raramente, arenitos feldspáticos com granulometria variável entre fina e média, boa maturidade textural e ausência de matriz argilosa detrítica são os representantes da formação, cuja sedimentação ocorrem em campos de duna (Campos e Dardenne 1997). Características importantes dos arenitos é o cimento silicoso e a presença de estratificações cruzadas métricas a decamétricas (Campos & Dardenne 1997, Chaves & Dias 2015). Em boa parte da região, esses arenitos são encobertos por depósitos inconsolidados de areia (Chaves & Dias 2015, Uhlein *et al.* 2015).

Formação Serra das Araras

As rochas dessa formação são dominantemente psamíticas, mas contém frequentes níveis psefíticos e pelíticos intercalados (Campos e Dardenne 1997). Na região estudada, sua ocorrência está associada geomorfologicamente a paredões ou zonas de alta declividade que delimitam as chapadas. Tais feições frequentemente caracterizam um relevo ruiniforme (*e.g.* Costa & Kuchenbecker 2015).

É composta, dominantemente, por arenitos ferruginosos finos e tipicamente silicificados e lateritizados, conglomerados predominantemente oligomíticos com cimentação silicosa e ferruginosa, e pelitos ferruginosos intemperizados (Campos e Dardenne 1997). Comumente, apresentam estratificações plano paralelas e, com menor frequência, cruzadas acanaladas (Campos e Dardenne 1997,

Uhlein et al 2015). Esse conjunto de rochas, de acordo com Campos e Dardenne (1997), registra um sistema fluvial desenvolvido sobre amplas planícies.

2.3.2 Arcabouço Estrutural

O Alto de Januária (Figura 2.3) configura a porção positiva do embasamento na região setentrional da Bacia do São Francisco, onde aflora localmente em cotas de *c*. 620m (*e.g.*, Brandalise 1980, Lopes 1981, Alkmim e Martins-Neto 2001, Iglesias 2007). A esta região elevada estão associadas as menores espessuras da cobertura, as quais aumentam, progressiva ou abruptamente, em praticamente toda margem do alto (Lopes 1981, Iglesias 2007). A trama estrutural principal dos gnaisses e granitoides do embasamento é composta por bandamento gnáissico com atitude modal N40-50°W/70°SW (Brandalise 1980, Lopes 1981).

Na região norte de Minas Gerais, onde se situa a porção sul do Alto de Januária, um esboço estrutural do embasamento (Fig. 2.8) foi traçado por Rabelo & Santos (1979, *apud* Iglesias 2007), a serviço da METAMIG. Com base em dados aeromagnetométricos, estes autores esboçaram um mapa de contorno estrutural do topo do embasamento, o qual revela o aspecto dômico do mesmo. Além disso, isoanomalias magnéticas lineares, com direção geral NW-SE, foram interpretadas como falhas indiscriminadas. Essas anomalias lineares constituem, provavelmente, diques de rochas máficas ou ultramáficas encaixados em fraturas ou falhas de direções entre N40-50W, conforme apontado por Paulsen *et al.* (1974).

Examinando a evolução paleogeográfica e estrutural da Bacia Bambuí na região de Itacarambi-Januária, Lopes (1979, 1981) reconhece como uma estrutura positiva (um domo assimétrico, nas suas palavras) a ocorrência do embasamento gnáissico naquela área, a qual teria se desenvolvido contemporaneamente à sedimentação das unidades basais do Grupo Bambuí. Indicou ainda a conjunção entre a reativação de sistemas de falhas do embasamento com a faciologia das rochas carbonáticas sinsedimentares.

Levando em consideração a exposição do embasamento nos vales de rios na região norte de Minas Gerais, testemunhos de sondagem adquiridos no âmbito do Projeto Sondagem Bambuí e dados aerogeofísicos, Brandalise (1980) sugere que o embasamento cristalino está compartimentado em blocos falhados, na forma de altos e abatidos alternadamente, que exibem topos em profundidades distintas. Estas profundidades variam desde 333m a até mais de 1300m. Essa estruturação pode explicar as marcantes mudanças laterais de fácies sedimentares associadas ao Grupo Bambuí na região (Figs. 2.9 a 2.11).

Figura 2.7. Geometria esquemática da paleodepressão do embasamento relacionada com a deposição da Formação Sete Lagoas e Grupo Urucuia (extraído de Uhlein *et al.* 2015).

De forma geral, sistemas de fraturas e falhas normais com direções NW-SE e NE-SW afetam o Alto de Januária através delimitando blocos altos e baixos do embasamento (Bradalise 1980, Lopes 1981, 1983). Elementos similares balizam *horst* e *graben* a oeste de Montalvânia e, aparentemente, controlam o próprio curso do Rio São Francisco na região de Januária.

Figura 2.8- Esboço estrutural indicando a estimativa de profundidade do topo do embasamento com base em dados aeromagnetométricos. A localização de dois poços estratigráficos do Projeto Sondagem Bambuí (Brandalise 1980) está indicada. Figura extraída de Rabelo e Santos (1979, *apud* Iglesias 2007).

Figura 2.9. Perfil esquemático da arquitetura do Alto de Januária, destacando a relação entre embasamento e a cobertura sedimentar (figura extraída deBrandalise, 1980, colorida neste trabalho).

A geometria de *horst* e *graben* delimitados por falhas com direção NW-SE foi sugerida por Beurlen (1973) e Costa (1978). Esta estrutura, representada pelo *Horst* de Montalvânia (que se expressa em superfície como a Serra da Pitarama ou Parrelas), teria sido gerada durante a era neoproterozoica. Conforme recente mapeamento geológico conduzido por Leite *et al.* (2015), as rochas carbonáticas basais do Grupo Bambuí (Formação Sete Lagoas) compõem a parte exposta deste *horst*, e estão colocadas em contato lateral, na região do *gráben*, com os pelitos que são estratigraficamente superiores, como se pode observar no perfil da Figura 2.10.

Figura 2.10- Perfil geológico do Horst de Montalvânia, ilustrando a distribuição lateral das unidades do Grupo Bambuí e sua relação com as falhas que definem o *horst*. Extraído de Leite et al. (2015).

Já o curso do Rio São Francisco na região tem sua direção aproximadamente NE-SW controlado por um feixe de falhas normais que mergulham para SE (Fig. 2.11), promovendo um abatimento e escalonamento de blocos do embasamento de NW para SE (Lopes 1981, Iglesias 2007). Anteriormente, diversos autores já haviam considerado a direção NE-SW do Rio São Francisco como sendo controlada morfortectonicamente por uma falha de rejeito normal, dada a incompatibilidade litológica entre as rochas em cada uma das margens do rio (*e.g.* Robertson 1964, Cassedane 1972, Lopes 1979).

Figura 2.11- Seção esquemática mostrando a arquitetura do Alto de Januária entre a região de Bonito de Minas e Serra do Jaíba. A figura foi extraída de Iglesias (2007), que destaca o aprofundamento do embasamento e o espessamento da Formação Sete Lagoas a leste do Rio São Francisco, provavelmente resultantes da reativação extensional de estruturas do substrato.

Para Reis & Alkmim (2015) e Reis (2016), o Alto de Januária teria se formado nos primeiros estágios evolutivos da Bacia do São Francisco, durante rifteamentos estaterianos que são registrados ao longo das margens do Cráton do São Francisco, e permanecido ativo ao longo de grande parte do Proterozoico. Iglesias (2007) sugere ainda que o arcabouço estrutural do embasamento condiciona as estruturas da cobertura cretácica por reativações de zonas de fraqueza durante a deformação distensional cretácica associada à abertura do Oceano Atlântico. Dados sísmicos recentemente adquiridos em campanhas de exploração de hidrocarbonetos e levantamentos de campo têm indicado uma complexa compartimentação estrutural e um forte controle de feições do embasamento Arqueano/Paleoproterozoico sobre os elementos que afetam a cobertura ediacarana do alto (Reis et al. 2017), conforme também preconizado por Beurlen (1973), Brandalise (1980) e Lopes (1981).

Sismicidade atual na região de Caraíbas-Itacarambi

Em áreas estáveis de interior continental, a atividade sísmica intraplaca está relacionada com a concentração de esforços ao longo de zonas de fraqueza da crosta, em especial em heterogeneidades estruturais da crosta superior (*e.g.* Talwani & Rajendran 1991, Kenner & Segal 2000). Considerando a situação do Brasil na plataforma Sul Americana, a maior parte da atividade sísmica intraplaca está situada na margem continental (Barros *et al.* 2009), mas há também atividades no interior do Craton do São Francisco, como foi o caso dos abalos sísmicos registrados na região de Itacarambi-Caraíbas em 2007. Esse evento chegou a apresentar sismos com magnitude 4.9 m_b e intensidades VII MM (Chimpliganond *et al.* 2010)

Analisando a distribuição dos hipocentros da atividade sísmica e a polaridade das ondas-P, Chimpliganond *et al.* (2010), indicam que os terremotos ocorreram ao longo de uma falha reversa com atitude aproximada de N30°E/40°SE, em profundidades que variam entre 0.3 e 1.2 km. A hipótese sugerida pelos autores é a de que a atividade sísmica nessa região é resultado da reativação de estruturas do embasamento, em especial as que tem direções ente NE-SW e NNE-SSW, sob o campo de tensões compressional atual (Lopes 2008). Tal fato complementa a hipótese proposta por diversos autores de que a estruturação do Alto de Januária vem sendo reativada durante diferentes períodos e eventos tectônicos (*e.g.*, Lopes 1981, Iglesias 2007, Reis *et al.* 2017). É importante realçar que essa direção da falha obtida na análise dos mecanismos focais dos terremotos é compatível com o sistema de falhas propostos por diversos autores (*e.g.*, Lopes 1981) para explicar o curso do Rio São Francisco e a incompatibilidade entre fácies em ambos as margens do mesmo. Piatti B.G., 2021, Arcabouço estrutural e evolução tectônica do Alto de Januária (MG)...

CAPÍTULO 3

SISTEMAS DE ANTEPAÍS E A TECTÔNICA DO EMBASAMENTO EM DEPOCENTROS FLEXURAIS DE FOREBULGE

O Craton São Francisco preserva diversos elementos relacionadas às sucessivas orogêneses brasilianas que edificaram os sistemas orogênicos Brasília, Araçuaí, Rio Preto, Riacho do Pontal e Sergipana (*e.g.*, Heilbron et al., 2017). Nesse contexto, a região cratônica se comportou como um sistema de antepaís situado entre estes vários orógenos neoproterozoicos-paleozoicos diacrônicos (*e.g.*, Almeida, 1981). Considerando que muitos destes elementos condicionaram a arquitetura tectono-estratigráfica da Bacia do São Francisco e seu embasamento (*e.g.*, Alkmim & Martins-Neto, 2001; Reis et al., 2017a), as seções seguintes apresentam uma breve revisão de sistemas de antepaís e seus processos deformacionais típicos e principais mecanismos controladores. Uma vez que a literatura disponível aponta que o Alto de Januária se comportou como uma intumescência flexural durante grande parte de sua evolução neoproterozoica-paleozoica (*e.g.*, Reis, 2016), uma ênfase especial é dada a este tipo de depocentro de sistemas de antepaís.

3.1 SISTEMAS BACINAIS DE ANTEPAÍS

Sistemas de antepaís ocupam as margens de orógenos e englobam dois componentes principais, os sistemas bacinais de antepaís e os cinturões de falhas e dobras (*e.g.*, DeCelles & Giles 1996, DeCelles 2012). Desenvolvidos sobre litosferas cratônicas ou extra-cratônicas, tais componentes evoluem contemporaneamente e sob o controle de mecanismos supra e sub-litosféricos (Gurnis 1992; DeCelles & Giles 1996, Catuneanu 2004). Sua evolução, portanto, é registrada tanto em estruturas tectônicas quanto em rochas sedimentares sin-orogênicas.

Formadas sob o controle principal da sobrecarga orogênica, quatro depocentros distintos tem sido reconhecidos junto aos sistemas bacinais de antepaís: i) foredeep, ii) forebulge, iii) backbulge e iv) wedgetop (*e.g.*, DeCelles & Giles 1996; Catuneanu 2004; DeCelles 2012). Em geral, estes depocentros são marcados por histórias dinâmicas influenciadas pela orogênese síncrona e permeadas por processos de partição da deformação e reativação de estruturas pré-existentes (*e.g.*, Tavani *et al.* 2015).

Considerando que sistemas bacinais de antepáis evoluem contemporaneamente a cinturões orogênicos resultantes da interação convergente entre placas litosféricas, sua compartimentação principal é definida pela flexura mecanismos supra e sublitosféricos. São exemplos destes últimos, o "slab pull" e "viscous mantle corner flow" (Fig. 3.1) (*e.g.* Dickinson 1974, Beaumont 1981, DeCelles e Giles 1996, Catuneanu 2004a, 2018, Naylor e Sinclair 2008). Na definição de DeCelles & Giles (1996),

Piatti B.G., 2021, Arcabouço estrutural e evolução tectônica do Alto de Januária (MG)...

sistemas bacinais antepaís correspondem a depressões e feições positivas alongadas que se formam sobre litosferas continentais às margens de cinturões orogênicos. Apesar dos vários mecanismos de subsidência que atuam em um sistema bacinal de antepaís, a sobrecarga tectônica é o mecanismo que imprime a feição típica desses sistemas, provocando sua partição em três províncias flexurais principais (fig. 3.1): *foredeep*, *forebulge* (intumescência flexural) e *backbulge* (Catuneanu *et al.* 1999a, Catuneanu 2004a).

Figura 3.1-Contexto tectônico e controle da acomodação em sistemas de antepais de retroarco e pro-arco. Retirado de Catuneanu (2004).

3.2 CONTROLES DA ACOMODAÇÃO

Os mecanismos de subsidência que controlam a acomodação em sistemas de antepaís incluem processos tectônicos flexurais e dinâmicos, envolvendo não apenas sobrecargas estáticas mas também dinâmicas. Além disso, inclui mecanismos de natureza local como processos de soerguimento ou abatimento de blocos do embasamento pela reativação de estruturas preexistentes (DeCelles e Giles 1996, Catuneanu 2004a, 2018). Os mecanismos regionais atuam no sistema de antepaís como um todo, ao passo que mecanismos locais podem induzir desvios marcantes àqueles esperados pela atuação dos mecanismos de escala litosférica (*e.g.* Catuneanu 2004a).

3.2.1 Controles regionais

Os mais significativos mecanismos controladores da acomodação em escala regional correspondem à deformação flexural da litosfera relacionada à sobrecarga orogênica, a subsidência dinâmica relativa à força de arrasto do manto viscoso e a eustasia. Os dois primeiros são fundamentais, especificamente, no sistema de antepaís, ao passo que o terceiro é mais genérico e influencia processos deposicionais em qualquer tipo de bacia (Catuneanu 2004a). Seus efeitos, individualmente e combinados, estão sintetizados na figura 3.2.

Figura 3.2-. Esquemas mostrando as ações individuais e combinadas da tectônica flexural e da subsidência dinâmica sobre a listosfera descendente no sistema de antepaís. É válido ressaltar que esses processos atuam em escalas de tempo, magnitude e taxas diferentes (Extraído de Catuneanu 2004a).

A deflexão litosférica resultante da sobrecarga tectônica assume geometria em perfil transversal semelhante à de uma curva senoidal cuja amplitude é atenuada à medida que se distancia do cinturão (fig. 3.2). Dessa forma, a magnitude do soerguimento da intumescência flexural (*forebulge*), que está mais distante da sobrecarga, é muito menor do que a subsidência da *foredeep* (*foredeep*), que está imediatamente adjacente ao cinturão (Crampton & Allen, 1995). Comparando o perfil de subsidência flexural com uma onda transversal que é atenuada a medida que se distancia da carga vertical, percebese o aumento do comprimento de onda no sentido oposto ao desta carga, o que nos sistemas de antepaís, por raciocínio análogo, faz com que as províncias flexurais distais sejam mais largas do que a *foredeep*

(Crampton & Allen, 1995, Catuneanu 2004a). De uma forma geral, os efeitos da flexura de uma placa litosférica esta intrinsecamente relacionada à sua reologia, espessura elástica e características da carga orogênica imposta em suas margens.

Observando a figura 3.2, percebe-se que, por si só, a tectônica flexural não seria capaz de gerar acomodação positiva no *forebulge*. Porém, há exemplos de sistemas de antepaís que exibem espessos registros da sedimentação na província da intumescência flexural, como o caso do Alto de Sete Lagoas (Reis & Suss 2016). Cargas sublitosféricas dinâmicas (arrasto basal do manto) e estáticas (puxão da placa subductante), que induzem uma deflexão litosférica de longo comprimento de onda, são alguns dos mecanismos capazes de induzir a subsidência deste depocentro e subsequente preservação e seus depósitos sedimentares (Catuneanu 2004a). O resultado prático desses processos no sistema de antepaís é a subsidência do perfil flexural como um todo, fazendo com que o nível de base esteja acima desse perfil. A ação combinada desses conjuntos de processos é capaz de definir, de maneira geral, as variações do nível de base em cada província e, consequentemente, a arquitetura da do sistema bacinal de antepaís (Catuneanu *et al.* 1999a). Conforme Reis et al. (2017b), a interferência das curvas de subsidência flexural relacionadas a imposição de múltiplas cargas orogênicas sobre a mesma litosfera também poderia explicar tais condições.

Em regiões de *forebulge*, onde a deflexão litosférica resultante da sobrecarga orogênica resulta no soerguimento, estruturas extensionais rasas podem se desenvolver concentradas na parte convexa da litosfera, como ilustrado na Figura 3.3 (Bradley & Kidd 1991, Langhi *et al.* 2011, Reis et al., 2017b).

Figura 3.3- Modelo esquemático do comportamento do litosfera flexurada, onde estruturas extensionais rasas se desenvolvem na região convexa da flexura. (extraído de Reis et al 2017b, com base no modelo de Bradley & Kidd 1991& Langhi te al. 2011).

3.2.2 Controles locais: a tectônica do embasamento

O que torna cada sistema de antepaís singular na sua arquitetura e história evolutiva, modificando o perfil ideal e esquemático ilustrado anteriormente, são os controles locais de acomodação. Tais controles comumente envolvem a subsidência e/ou soerguimento de blocos crustais do embasamento, compactação diferencial e, eventualmente, dissolução ou movimentação de eventuais depósitos de sal existentes (Catuneanu 2004a).

Acionada pela reativação de estruturas preexistentes na litosfera defletida, a tectônica do embasamento é o mais fundamental dos controles locais de acomodação. A subsidência ou soerguimento dos blocos do embasamento pode gerar estruturas como grabens e horsts, os quais podem configurar sub-bacias junto a intumescência flexural. Em última instância, a tectônica do embasamento pode ser condicionada pela composição das rochas que o compõem, orientação das estruturas preexistentes, e pela ação do campo de esforços intraplaca regionais (Catuneanu 2004b, 2018).

3.3 PADRÕES DEFORMACIONAIS EM SISTEMAS DE ANTEPAÍS

Considerando feições de escala regional, a geometria estrutural do sistema *foredeep-forebulge*, a direção de convergência e a geometria do cinturão de falhas de empurrão associado, Tavani *et al.* (2015) apresenta os padrões de deformação em sistemas de antepaís, de acordo cada um de seus depocentros e estágios evolutivos: (i) flexura positiva no antepaís, na região do *forebulge* e sua transição para a *foredeep*; (ii) estiramento longitudinal ao longo da direção do sistema de *foredeep*; (iii) encurtamento paralelo às camadas, que ocorre potencialmente na porção mais interna da bacia de antepaís e junto ao cinturão de falhas e dobras; (iv) deformação associada à formação de dobras de propagação de falhas no cinturão; (v) encurtamento tardio das dobras; e (vi) deformação extensional induzida pela colapso gravitacional. Esta partição da deformação em sistemas de antepaís está sintetizada na figura 3.4.

Dado o caráter deste estudo, interessa-nos primordialmente os modelos deformacionais para a região do *forebulge* e para a região limítrofe entre o *forebulge* e a *foredeep*, que serão descritos com maior detalhe a seguir.

Piatti B.G., 2021, Arcabouço estrutural e evolução tectônica do Alto de Januária (MG)...

Figura 3.4-Esquema tridimensional ilustrando a arquitetura de um sistema de antepaís e as estruturas associadas aos estágios evolutivos da deformação progressiva. Extraído de Tavani *et al.* (2015).

3.3.1 Forebulge

A extensão no arco externo do *forebulge* e na sua transição para *foredeep* está associada a deflexão da litosfera (Turcotte e Schubert 1982, Bradley e Kidd 1991, Doglioni 1995, Langhi *et al.* 2011). Sob campo de tensões extensional, estruturas como juntas longitudinais, veios e falhas normais (fig. 3.4) podem ser geradas em diferentes posições no sistema em função da curvatura e espessura elástica da litosfera defletida e da espessura das coberturas sedimentares. A orientação do eixo de tensão principal mínima (σ_3) do elipsoide de tensões, que tendem a ser negativos próximos da superfície e em maior profundidade na presença de fluidos, se aproxima da direção ortogonal à do *forebulge*. Por outro lado, o eixo de tensão principal máxima (σ_1), positivo, é aproximadamente vertical. Tal campo de tensões é registrado pela geometria e cinemática das juntas, fraturas cisalhantes e falhas normais na comumente desenvolvidas na região de máxima curvatura da litosfera deformada. Além das longitudinais, estruturas transversais como juntas conjugadas (*e.g.* Gross 1993) e falhas de alívio (Destro 1995) podem ocorrer neste domínio do antepaís (Quintá & Tavani 2012).

Figura 3.5-Estágio deformacional da flexura na região do *forebulge*, onde a deflexão do arco externo está associada a uma extensão perpendicular à direção do sistema. Extraído de Tavani *et al.* (2015)

3.3.2 Estiramento longitudinal no limite forebulge-foredeep

Variações laterais e as terminações dos sistemas orogênicos impõem uma curvatura ao longo do limite *foredeep*-forebulge, a qual é acomodada por estruturas extensionais ortogonais a este limite (Fig. 3.6) (Tavani *et al.* 2015). Onde a rampa da *foredeep* exibe curvatura mínima, o σ_3 pode se orientar paralelamente à direção da rampa, que por sua vez é paralela ao sistema de antepaís como um todo (Quintá & Tavani 2012). Como o σ_1 continua sendo subvertical, por estar associado a sobrecarga, o σ_2 posiciona-se ortogonalmente ao sistema. Comparando-se essa organização dos eixos de tensões principais entre a província flexural no *forebulge* e *foredeep* (fora da influência direta do cinturão de falhas e dobras), nota-se o intercâmbio entre σ_3 e σ_2 . Tal configuração é responsável pelo desenvolvimento de estruturas extensionais transversais (Tavani *et al.* 2015). A depender da magnitude do σ_3 , seja ele negativo ou positivo, juntas ou fraturas de cisalhamento e falhas normais podem se formar, respectivamente.

Piatti B.G., 2021, Arcabouço estrutural e evolução tectônica do Alto de Januária (MG)...

Figura 3.6-Estágio de deformação longitudinal por estiramento relacionado à concavidade da rampa de *foredeep* ao longo de sua direção axial. Extraído de Tavani *et al.* (2015).

3.4 COMENTÁRIO SOBRE HERANÇA TECTÔNICA E A REATIVAÇÃO DE ESTRUTURAS

Os padrões de deformação apresentados são baseados no comportamento de uma litosfera idealizada que, no conceito de Manatschal et al. (2015), é definida como termicamente equilibrada, horizontalmente homogênea, disposta em estratos horizontais do tipo *layer-cake*, composta por uma crosta superior quartzo-feldspática e crosta inferior máfica. Entretanto, uma litosfera real difere da idealizada em termos do seu estado termal, heterogeneidade composicional e complexidade estrutural. Nesse sentido, se entende herança como a diferença entre a litosfera real e a idealizada (Mantschal et al. 2015).

Em regiões cratônicas que foram submetidas a repetidos eventos tectonotermais, o estado da litosfera pode incluir zonas de anisotropias mecânicas, que implicam tanto em uma fraqueza quanto em um endurecimento reológico. A partir dessas anisotropias, as estruturas mais jovens tendem a manter uma relação de herança tectônica com as estruturas mais antigas.

Conforme Sengor (2018), um esquema de três classes de estruturas reativadas descreve as principais relações entre as mais jovens e as preexistentes, baseado na comparação entre as funções deformacionais de cada uma delas. Estruturas ressuscitadas são aquelas que se formaram pela reativação da estrutura

originária com a sua mesma função deformacional. Por exemplo, uma falha normal se desenvolveu pela reativação de outra falha normal mais antiga. Estruturas de substituição são aquelas originadas a partir da reativação de estruturas preexistentes, mas com deformação distinta, como uma falha reversa desenvolvida a partir da reativação de uma falha normal. Esse tipo de estrutura representa os casos de inversão no sentido de Cooper & Williams (1989), sejam elas inversões negativas ou positivas. Por fim, estruturas revolucionárias são aquelas cujo desenvolvimento independera das estruturas antigas de região.

É necessário ressaltar, porém, que a reativação de estruturas não é garantida apenas pela existência dessas estruturas, mas depende de vários fatores como (i) o coeficiente de fricção ao longo das descontinuidades, (ii) sua orientação em relação ao campo de esforços atuante e (iii) a pressão de fluidos na rocha (*e.g.* Sibson 1985, Morley et al., 2004, Fiori & Wandresen 2014, Misra & Mukherjee 2015).

Piatti B.G., 2021, Arcabouço estrutural e evolução tectônica do Alto de Januária (MG)...

CAPÍTULO 4

BASEMENT HIGHS AS ARCHIVES OF CRATON INTERIOR DEFORMATION: THE PROTEROZOIC TO EARLY PALEOZOIC EVOLUTION OF THE SOUTHEASTERN PORTION OF THE JANUÁRIA HIGH, SÃO FRANCISCO BASIN, EASTERN BRAZIL

¹Bruno Guimarães Piatti^{*}, ¹Humberto Luis Siqueira Reis ¹Fernando Flecha de Alkmim, ¹Raiza Toledo Rodrigues, ²Ricardo Ivan Ferreira da Trindade

¹Departamento de Geologia, Escola de Minas, Universidade Federal de Ouro Preto, 35.400-000 Ouro Preto, MG ²Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Rua do Matão, 1226, São Paulo, São Paulo, Brazil

*Corresponding author at: Departamento de Geologia, Escola de Minas, Universidade Federal de Ouro Preto (UFOP), Morro do Cruzeiro, 35.400-000 Ouro Preto, MG, Brazil

E-mail address: bgpiatti@gmail.com.

Abstract

Intracratonic basement highs serve as relatively accessible archives of the tectonic evolution of craton interiors. The Januária basement high and its cover succession in the intracratonic São Francisco basin, eastern Brazil, records multiple tectonic events affecting the hosting lithosphere between the Mesoproterozoic and Mesozoic. Its basement assemblages, exposed in a few areas, consist of foliated gneisses and granitoids older than 1.8Ga, overlain by Mesoproterozoic-early Neoproterozoic rift-sag strata, Ediacaran-Cambrian foreland basin system successions and thinner Mesozoic units. Aiming to access this geological archive, we conducted field-based structural analysis coupled to the interpretation of 200 2D seismic sections and aerogravimetric data in a 25.000 km² area along the southeastern Januária high. Focusing on Precambrian and early Paleozoic features, our study reveals that the tectonic framework of the Januária high comprises four groups of fabric elements: i) basement ductile structures, ii) NW and NE-trending normal faults; iii) structures associated with the Brasiliano Araçuaí orogenic front; and iv) brittle structures of uncertain origin. Each group of structures relates to a tectonic episode experienced by the hosting craton. Basement assemblages are associated to collisional orogeny prior to cratonization. Extensional faults are associated with Mesoproterozoic and Ediacaran growth sections and formed in two different extensional episodes, the older related to rifting events and the younger to flexural uplift of the basement high during a foreland basin-cycle. The cratonward advance of foreland f-t-belt developed contractional structures in the cover units and reactivated basement extensional faults as reverse and transcurrent faults. Our study demonstrates how the intracratonic Januária basement high recorded much of the Proterozoic to early Paleozoic tectonic history experienced by its hosting craton and marginal orogenic belts of the South America midcontinent. Additionally, we illustrate important aspects of far-field stress transmission, strain partitioning and the role of tectonic inheritance in the evolution of these cratonic domains.

Keywords: Basement high, intracratonic deformation, tectonic inheritance, South America midcontinent, Brazil

4.1 INTRODUCTION

Cratons are old and relatively stable pieces of the continental lithosphere not affected by Phanerozoic orogenies. Cratons contain Archean nuclei endowed with deep lithospheric roots, lower geothermal gradients, and higher mechanical strength, attributes that allowed them to survived multiple recycling events throughout the Earth's history (e.g., Jordan, 1978; Pearson et al., 1995; Rudnick et al., 1998; Gung et al., 2003; Lenardic et al., 2003; King, 2005; O'Neil et al., 2008; Person and Wittig, 2014; Wang et al., 2014; Kaban et al., 2015; Hu et al., 2018; Paul et al., 2019). Despite their higher mechanical strength, a wide variety of deformational structures, such as partially inverted rifts, strike-slip deformation corridors, arches, domes, highs and subsided domains have been documented in craton interiors. Reflecting distinct tectonic episodes and exerting a major control in the structural framework of the overlying sedimentary covers, most of these features develop under the strong influence of tectonic inheritance (e.g., Marshark and Paulsen, 1996; Nelson and Marshak, 1996; Lindsay, 2002; Aitken et al., 2013; Reis et al., 2017b; Şengör et al., 2018; Zhang et al., 2019). Process involved in the generation of such intracratonic structures include far-field stresses transmitted from plate margins (Marshak and Paulsen 1996; van der Pluijm 1997; Lavoie et al. 2015; Pinet, 2015; Snee and Zoback, 2020), effects of gravity potential energy within the lithosphere (Molnar et al. 2015; Levandowski et al. 2017), mantle flow dynamics, and dynamic topography (e.g., Gurnis, 1992; Flowers et al. 2012; Eakin and Lithgow-Bertelloni, 2018; Snee and Zoback, 2020). Especially effective, far-field stresses acting in cratonic domains often induce concentration of the deformation along discrete or localized zones, producing remarkable changes in the architecture of preexistent rifts, fold-thrust belts, and strike-slip systems (e.g., Marshak and Paulsen, 1996).

Tectonic studies performed in intracratonic basins revealed that basement highs represent important archives of the protracted tectonic history of the hosting cratons, especially due to the relative ease of information accessibility, and play an important role as fluid migration pathways and reservoirs (e.g., Landes et al., 1960; Trice, 2014; Peacock and Banks, 2020). In order to contribute to the understanding of craton interior deformation and the behavior of intracratonic basement highs during multiple tectonic episodes, we selected for study the southeastern portion of the Januária high of the São Francisco basin in eastern Brazil (Fig. 4.1). The São Francisco basin occupies a substantial portion of the homonymous craton, which corresponds to the stable portion of one of the paleocontinents involved in the assembly of West Gondwana in the Ediacaran and Cambrian periods (Almeida et al. 1981). The São Francisco basin is a poly-historic successor depocenter filled with a series of 1st-order sequences, whose ages span from the late Paleoproterozoic up to the Cretaceous. The largest basement structures within the basin are the Januária and Sete Lagoas highs, which are separated by a NW-trending trough, known as the Pirapora aulacogen (Fig. 4.1). Other large-scale tectonic features of the basin are thin- to thick-skinned foreland fold-thrust belts involving cratonic units in areas adjacent to its westernnorthwestern and eastern boundaries, (Fig. 4.1). The Januária high is covered by condensed sedimentary sections of multiple 1st-order sequences, which comprises mostly Mesoproterozoic to Cambrian units overlain by thinner and widespread Cretaceous siliciclastic deposits (Alkmim and Martins-Neto, 2001; Reis, 2011; Reis and Alkmim, 2015).

Combining structural analysis based in field data and interpretation of seismic, well data, and satellite images, we investigate the tectonic architecture of the southwestern portion of the Januária basement high and the overlying Proterozoic to early Paleozoic sedimentary cover. This paper synthesizes our results, which illustrates how intracratonic basement highs may retain a significant record of the geological history of the hosting craton and offer insights on how far-field stresses are transmitted and accommodated in cratons interiors.

Piatti B.G., 2021, Arcabouço estrutural e evolução tectônica do Alto de Januária (MG)...

Figura 4.1-Simplified geologic map of the São Francisco craton in the tectonic scenario of West Gondwana, showing the location of the São Francisco basin the São Francisco basin and study area, showing the distribution of the main fill units, the foreland fold thrust belts, and the location of the Januária high (Modified from Alkmim and Martins-Neto, 2001). b) Bouguer anomaly map of the São Francisco basin emphasizing its large-scale basement structures, among them the Januária high. West Gondwana cratons: A Amazonian, P Paranapanema - Rio de la Plata, WA West Africa-São Luís, SFC São Francisco-Congo, K Kalahari. Modified from Reis and Alkmim (2015)

4.2 GEOLOGICAL SETTING OF THE JANUÁRIA BASEMENT HIGH

The intracratonic São Francisco basin is a long-lived poly-historic basin that occupies the NStrending lobe of the homonymous craton in eastern Brazil (Alkmim and Martins-Neto 2001; 2012) (Fig. 4.1). The boundaries of the basin are marked by structures of the Ediacaran-Cambrian Brasília, Rio Preto, and Araçuaí belts on the west, northwest and east, respectively, and by the partially inverted intracratonic Pararamirim aulacogen on the northwest (Fig. 4.1). The basin-fill units record multiple subsidence and deformation episodes that took place during the long evolutionary history of the São Francisco craton after its stabilization around 1.8 Ga (*e.g.*, Alkmim and Martins Neto, 2001; 2012; Reis *et al.*, 2017a, 2017b). Three Precambrian to early Paleozoic first-order sequences have been recognized in the São Francisco basin (Reis *et al.* 2017a): the Mesoproterozoic to early Neoproterozoic (?) Upper Espinhaço-Paranoá, the Tonian-Cryogenian Macaúbas, and the Ediacaran-Cambrian Bambuí sequences (Reis *et al.* 2017a) (Fig. 4.2). These units unconformably overlie the Archean-Paleoproterozoic basement and sedimentary units of unknown age observed in seismic sections (Reis and Alkmim, 2015; Reis *et al.*, 2017a). The Proterozoic successions are locally deformed and unconformably overlain by Phanerozoic siliciclastic and volcanic units (*e.g.*, Campos and Dardenne, 1997a,b; Fragoso, 2011; Reis *et al.*, 2017a).

Figura 4.2-Stratigraphic chart for the Precambrian section from the São Francisco basin (After Reis and Alkmim, 2015). Geochronological data from 1-Tavares *et al.*, 2020; 2-Moreira *et al.* 2020; 3-Uhlein *et al.*, 2017; 4-Warren et al 2014; 5-Paula-Santos *et al.*, 2015.

The Upper Espinhaço-Paranoá sequence consists of a continental to marine sandstone-dominated succession, which records a rift-sag basin-cycle that evolved into a passive margin in the western margin of the São Francisco paleoplate (*e.g.*, Martins-Neto *et al.*, 2001; Danderfer and Dardenne, 2002; Reis and Alkmim, 2015; Reis *et al.* 2017a; Martins-Ferreira, 2019) (Fig. 4.2). The sequence shows its maximum thickness within the Pirapora aulacogen (Fig. 4.1), where it defines a typical steer's head geometry (Alkmim and Martins-Neto 2001; Reis *et al.* 2017a). The Tonian-Cryogenian Macaúbas sequence records a renewed rifting episode, which is associated with the development of a passive margin along the eastearn margin of the São Francisco paleocontinent and an arc-related passive margin to the west (Reis *et al.*, 2017a). The sequence contains the glaciogenic deposits of the Jequitaf Formation (Fig. 4.2), which apparently marks an important climate event in the late Tonian or Crygenian periods and correlates with the passive margin and dolomite-dominated deposits of the Vazante Group, exposed in the western margin of the São Francisco basin (Martin-Neto and Alkmim 2001; Alkmim and Martins-Neto 2012; Reis *et al.* 2017a).

The mixed carbonate-siliciclastic rocks of the Bambuí sequence (Figs. 2) dominate the exposures in the basin and record the generation of a foreland basin system developed during the Brasiliano/Pan-African West Gondwana assembly (Martin-Neto and Alkmim 2001; Alkmim and Martins-Neto 2012; Reis *et al.* 2017a; 2017b, Caetano-Filho *et al.* 2019; Kuchenbecker *et al.*, 2020). In this episode, the diachronic development of the orogenic systems that bound the São Francisco craton induced the flexural subsidence in its interior and led to the formation of two major depocenters (Martins-Neto, 2009; Reis and Suss, 2016; Reis *et al.*, 2017a): i) a foredeep filled with fine- to coarse-grained siliciclastics and minor chemical sedimentary rocks on the west and ii) a forebulge filled with carbonatesiliciclastic strata on the east. Although contemporaneous with both the Brasília and Araçuaí orogenic belts (Fig. 4.1), these depocenters apparently evolved under the dominant control of the western Brasília orogenic belt (*e.g.*, Reis *et al.* 2017b; Uhlein *et al.*, 2017). The cratonward advance of the Araçuaí orogenic front in the beginning of the Cambrian gave rise to the formation of small and restricted synorogenic depocenters in the westernmost portion of the basin (*e.g.*, Tavares *et al.* 2020; Rossi *et al.* 2020; Kuchenbecker *et al.* 2020).
During the Paleozoic, the São Francisco basin received the Permo-Carboniferous glaciogenic units of the Santa Fé Group, now exposed in a few areas along its central and northern portions (Campos and Dardenne 1997a, b; Sgarbi *et al.* 2001). The Cretaceous sand-dominated Areado and Urucuia groups, together with the volcanic rocks of the Mata da Corda Group, represent a continental interior manifestation of the rifting event that led to the opening of the South Atlantic Ocean and consequent formation of Brazilian continental margin (Campos and Dardenne, 1997a, b; Sawasato, 1995; Sgarbi *et al.*, 2001; Reis *et al.*, 2017a).

The tectonic framework of the São Francisco basin comprises three major elements: Proterozoic rifts, Ediacaran to Cambrian foreland fold-thrust belts and Cretaceous rifts (Alkmim and Martins-Neto, 2001; Reis *et al.*, 2017a). The main Proterozoic rift structure preserved in the basin, the Pirapora aulacogen, is a NW-trending buried graben that occupies its central portion and hosts the thickest sedimentary package so far documented within the craton (Alkmim and Martins-Neto, 2001; Reis *et al.*, 2017a,b) (Fig.4.1). Separating the Januária and Sete Lagoas highs, this structure apparently formed during the Paleoproterozoic and experienced multiple reactivations in the course of subsequent subsidence episodes and the partial inversion during Ediacaran-Cambrian collisional Brasiliano event (Alkmim and Martins-Neto, 2001; Reis, 2016; Reis *et al.*, 2017a,b; Kuchenbecker *et al.*, 2020). NW and NE-oriented normal faults dominate the architecture of the Proterozoic rifts in the São Francisco basin (Reis *et al.*, 2017a,b).

During the assembly of West Gondwana in the Edicaran Period, the tectonic loads imposed on the margins of the São Francisco lithosphere by the generation of the Brasiliano orogenic systems induced the generation of extensional structures in the culmination of flexural bulges in the internal portions of the basin. These structures were documented in the Sete Lagoas high, where they nucleated through reactivation of Archean-Paleoproterozoic basement structures (Reis *et al.*, 2017b). The propagation of the Brasília and Araçuaí orogenic fronts towards the craton led to the development of two foreland fold-thrust belts in the areas adjacent to western and eastern boundaries of the São Francisco basin (Fig. 4.1). The Brasília foreland fold-thrust belt along the western margin is thinskinned, fold-dominated and affected by late-stage NW and NE-trending strike-slip zones in its southern and northern portions, respectively (Reis and Alkmim, 2015; Fuck *et al.*, 2017; Valeriano *et al.*, 2004; Valeriano, 2017). The Araçuaí foreland fold-thrust belt comprises a system of overall W-verging elements with two thin-skinned segments separated by a central basement-involved sector, which formed through partial inversion of the Pirapora aulacogen (Reis, 2016; Reis *et al.*, 2017a). The system evolved under achimetamorphic to lower greenschist facies conditions and shows a regionally penetrative E-dipping axial plane cleavage (Alkmim and Martins Neto, 2001).

Small rift depocenters formed in the craton interior during the Cretaceous South Atlantic opening and contemporaneous with the deposition of the Areado Group. The best-preserved Cretaceous rift in the basin is represented by the Abaeté graben (Campos and Dardenne, 1987a; Sawasato, 1995), an asymmetric basin controlled by the reactivation of preexisting and NNW-trending structural elements of the Brasília foreland f-t-belt (Sawasato, 1995; Reis, 2011; Rodrigues, 2020). The generation of the Abaeté Graben was partially coeval with the uplift of a continental scale NW-oriented arch – the Alto do Paranaíba Arch – in the southwestern sector of the basin and followed by the emplacement of Creataceous volcanic units of the Mata da Corda Group (*e.g.*, Hasui & Haralyi, 1991; Campos & Dardenne, 1997b; Sgarbi *et al.*, 2001; Ribeiro *et al.*, 2018).

The Januária basement high, with an elliptic shape in map-view and a NW-oriented axis, occupies an area of c. 150.000 km² that underlies most of the northern and central sectors of the São Francisco basin (Fig. 4.1). The basement assemblage, exposed in a few erosional windows, is made up of Archean and Paleoproterozoic rocks, including migmatites, gneisses with amphibolite layers, mylonitic gneisses, granodiorites, granites, and alkali-granites, locally cut by mafic dykes (Brandalise, 1980; Uhlein, A., *et al.*, 2015; Uhlein, G., *et al.*, 2015; Rezende, 2017). The few geochronological data available suggest that at least part of these rocks was affected by a Rhyacian-Orosirian orogeny and later re-heated during the Statherian rifting event that led to the deposition of the Lower Espinhaço sequence, exposed along the Araçuaí belt to the east (Rezende, 2017).

The oldest sedimentary succession preserved in the Januária high corresponds to condensed sections of the Upper Espinhaço-Paranoá and Bambuí sequences (Reis *et al.*, 2017a). They locally fill NW and NE-oriented grabens (Brandalise, 1980; Leite *et al.*, 2015; Reis, 2016) and their thicknesses

increase systematically south and westwards. Most of the Bambuí sequence, which unconformably overlies the previously mentioned units, represents forebulge deposits accumulated under the influence of Brasiliano/Pan-African orogenic loads imposed on the craton margins (Reis and Suss, 2016; Kuchenbecker *et al.*, 2020). Exhibiting a considerable increase in thickness towards the edges of the high, in this area the Bambuí strata comprises two main transgressive-regressive 2nd-order sequences that can be tracked throughout the entire São Francisco basin (*e.g.*, Reis and Suss, 2016; Perrela Jr. *et al.*, 2017; Reis *et al.*, 2017a). The lowermost sequence is composed of cap carbonates overlain by mixed carbonate-siliciclastic ramp strata of the Sete Lagoas Formation (Fig. 4.2). Carbonate rocks of the uppermost Sete Lagoas Formation together with fine-grained siliciclastics of the Serra de Santa Helena Formation, and the limestone-dominated lower to middle Lagoa do Jacaré Formation compose the overlying 2nd-order sequence (Reis and Suss, 2016).

Permo-Carboniferous glaciogenic deposits of the Santa Fé Group and Cretaceous sanddominated continental deposits of the Areado and Urucuia groups underlie small mesas in the Januária high region (Campos and Dardenne, 1998a,b; Sgarbi *et al.*, 2001). Aeolian sandstones of the Urucuia Group lie directly over the basement assemblages in some localities (Uhlein *et al.*, 2015), suggesting a Phanerozoic uplift history for the Januária high.

Available subsurface data indicate that Meso- to Neoproterozoic NW and NE-trending normal faults affect the basement and cover units in Januária high (Reis, 2016; Reis *et al.*, 2017a). While NW-trending structures showing displacements of up to a few kilometers dominate the southern boundary of the basement high, toward its central portion NE-oriented normal faults become increasingly significant (Reis *et al.*, 2017a). NW-oriented normal faults in the eastern-central portion of the high define the Montalvânia graben, which hosts a pre-Bambuí sand-dominated succession (apparently correlative to the Meso-Neoproterozoic upper Espinhaço-Paranoá sequence) and basal Bambuí units (Brandalise, 1980).

The thin-skinned and ENE-verging Brasília foreland f-t-belt (Fig. 4.1), characterized by a series of NNW-oriented folds, imbricated thrusts, and deep-seated NE-trending right-lateral strike-slip faults, involve the pre-Bambuí and Bambuí sequences along the western border of the Januária high (*e.g.*,

Alkmim and Martins-Neto, 2001; Reis and Alkmim, 2015; Reis *et al.*, 2017a; Fuck *et al.*, 2017; Martins-Ferreira, 2019). Along its the northernmost border, the Brasília foreland f-t-belt merges with the ENE-trending structures of the external Rio Preto belt (Alkmim and Martins-Neto, 2001; Reis *et al.*, 2017; Caxito *et al.*, 2017). The thin-skinned northern segment of Araçuaí foreland fold-thrust belt (Fig. 4.1), locally defined by NE-trending folds and thrusts (Oliveira, 1989; Reis *et al.*, 2017a), occupies the eastern border of the basement high. Left- and right-lateral NW- and NE-trending conjugate strike-slip systems locally affect its dominant structures (Oliveira, 1989; Alkmim and Martins-Neto, 2001; Reis, 2016).

4.3 DATA AND METHODS

Our structural analysis was performed in a 25.000 km² area in the central and southeastern portions of the Januária high, where the sedimentary cover is well exposed (Fig. 4.3). Although limited to some erosional windows near the town of Januária (Fig. 4.3), the selected area also contains outcrops of basement rocks.

Figura 4.3-Geologic map of the area we selected for study showing the location of the seismic sections and basement outcrops. Geologic map (1:100000) compiled from CODEMIG (2015) over ALOS/Palsar's DEM hill shaded relief.

The fieldwork campaigns involved the description of 160 stations with focus on the geometric and kinematic aspects of meso-scale structures, which were analyzed in combination with subsurface information. Steeply dipping brittle structures (*e.g.*, fractures and veins) were plotted in rose diagrams using the strike moving average, following Munro and Blenkinsop (2012) and Sanderson and Peacock (2020). Brittle structural data were used to process paleostress analyses using the WinTensor software (Right Dihedron Method) according Delvaux and Sperner (2003).

The data we obtained in the field were combined with the interpretation of satellite imagery, gravimetric maps, unpublished crooked 2D seismic sections, and well data provided by the Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP). More than 200 2D seismic sections in two-way travel time (TWT) were tied to well log data and interpreted using seismic interpretation softwares (Fig. 4.3). Although no time-to-depth conversion has been made in this study, it has been shown that fault throw variations are similar in both time and depth domains (Tvedt *et al.*, 2013). The crooked 2D seismic sections used in this study were processed according to Cáceres *et al.* (2011) and the top-to-basement structural map of Figura 5 was grided from interpreted seismic reflectors, using the Flex Gridding Algorithm with cell sizes of 2 km. Gravimetric data of the TOPEX/POSEIDON mission (Sandwell and Smith, 2008) used in this work correspond to Bouger anomaly maps reproduced from Reis (2011, 2016). The digital elevation models were acquired by JAXA's ALOS PLASAR and show spatial resolution of 12.5m.

4.4 GEOLOGIC ARCHITECTURE OF THE JANUÁRIA HIGH

Our seismic interpretation revealed that the Januária basement high exhibits a roughly doubleplunging crest line, which culminates close to the town of Januária and dips towards NW and SE. In the study area, the high is bounded to the southwest the NW-trending the Pirapora aulacogen, marked by a series of normal faults (Fig. 4.4) with relatively steep dips to SW of the basement-cover contact. Towards southeast the basement-cover contact dips gently beneath the thickened succession the Bambuí sequence, there involved in the distal portion of the Araçuaí foreland fold-thrust belt. Piatti B.G., 2021, Arcabouço estrutural e evolução tectônica do Alto de Januária (MG)...

Figura 4.4- Structural contour map of the basement-cover contact in the southeastern portion of the Januária high, showing the traces of the large-scale normal faults detected in the field and seismic sections. The structures in black correspond to Mesoproterozoic growth faults; the structures in gray are faults that underwent reactivation during deposition of the Ediacaran-Cambrian Bambuí sequence or in the course of the Brasiliano contraction event. Depths are shown in two-way-time travel (TWT). The dashed yellow lines represent the location of the crooked 2D seismic sections shown on the Figure 4.7, 4.8, 4.11, 4.15 and 4.16.

The tectonic framework of the Januária high as depicted in our study comprises a variety of structures that can be grouped into four families of kinematically compatible elements, which are: i) normal faults associated with the deposition of pre-Bambuí and basal Bambuí sequences; ii) NE-trending contractional fabric elements; iii) strike-slip faults and associated veins and joints; iv) structures of the crest area of the high. The next sections provide descriptions of these families of fabric elements.

In the few exposures of the basement assemblage, gneisses and granitoids exhibit a penetrative foliation oriented at 295/70, defined by the preferred orientation of feldspar and quartz porphyroclasts, as well as biotite and amphibole (Fig. 4.5). Undeformed to relatively low strain domains alternate with , at least, 15 m to 2 cm-wide shear zones that vary in orientation from 255/80 to 090/70 and are marked by mylonitic to ultramylonitic gneisses. A stretching lineation associated to the mylonitic foliations is

oriented at 106/70. Kinematic indicators such as asymmetric porphyroclasts and SC-foliations in the shear zones attest and overall left-lateral motion. Despite the poor resolution of seismic sections within the basement, discontinuous and low to high amplitude reflectors seem to indicate that these basement elements are part of large-scale ductile structures (see Fig. 4.11).

Figura 4.5- Outcrop-scale basement structures. **a**) Deformed syeno-granite showing the country rock foliation oriented at 295/70 and cut by a discrete sinistral shear zone marked by a fine grained ultramylonite. **b**) Granodioritic augen gneiss showing a mylonitic foliation. **i**) Contoured stereonet diagram of poles to the regionally penetrative foliation exhibit by the basement rocks. **ii, iii**) Contoured stereonet diagram of poles to the mylonitic foliation that characterize the shear zones in the basement.

1.4.1 Normal faults associated with the deposition of pre-Bambuí and basal Bambuí sequences

Meso- to large-scale normal faults affect the basement and cover units in the Januária high. Partially reactivated, these faults occur in the form of two distinct sets. Along the southwestern margin of the high, NW- to NNW-trending and slightly curved faults dipping to SW define the northern border of the Pirapora aulacogen (Fig. 4.4). Towards the central portion of the high, NE to NNE-striking faults become progressively dominant, defining a series of horsts and grabens. Both sets comprise km-scale elements and are often associated with pre-Bambuí and Bambuí growth strata, marking their activity as extensional syn-sedimentary structures during the Mesoproterozoic-early Neoproterozoic and Ediacaran-Cambrian basin-cycles. Faults of both sets underwent inversion after the deposition of the Bambuí sequence, displaying reverse or strike-slip motions. Extension faults associated with thickening of pre-Bambuí units are illustrated by the seismic section of Figure 4.6. The extensional fault system strikes NNE and is rooted in the basement. Faults dipping to WNW accommodate the syn-tectonic strata of the pre-Bambuí sequence inside a graben structure in its central portion and in the western part of the Figura. The faults also show evidence of inversion, such as the relatively small hanging-wall anticline to the northwest affecting thickened pre-Bambuí strata.

The seismic section of Figure 7 also shows various NE-striking normal faults, which define a major graben controlling the syn-tectonic growth of the basal and middle Bambuí sequence in its central portion. The faults bounding the graben are partially inverted, showing up-dip motion components. Normal faults active during the deposition of the basal Bambuí sequence typically occur in the culmination of the upwarped basement features, as illustrated by the seismic section of Figure 4.7.

Figura 4.6 Crooked 2D seismic profile a-a' in two-way-travel time. The interpreted section below shows a series of NNE-oriented normal faults affecting the basement, pre-bambuí and Bambuí cover sequences. Growth strata of the pre-Bambuí sequence occur in association with the faults number I, ii and iii. A pair SE and NW dipping faults (faults **a** and **b**) bound a graben filled with syn-tectonic Bambuí strata in the central portion of the section. Notice that part of the faults in the graben formed by reactivation of preexistent faults, and that some faults (i, ii, **a** and **b**) also show evidence of inversion, such as the anticlinal thickening and reverse faults. Location of section is indicated on Fig. 4.4.

Figura 4.7-Crooked 2D seismic section b-b' (vertical exaggeration of $\sim 12x$) in two-way travel time. The interpreted section illustrates the partially inverted normal faults forming a graben-horst structure at the culmination of the Januária basement high. The location of the section is indicated in Fig. 4.4.

In the surface, rare meso-scale and conjugate shear fractures that show normal slip components affect the mylonitic granitic gneisses of the basement and seem to be associated with the larger normal fault system. One set strikes WNW-ESE showing moderate dips toward NE, whereas the other set strikes ENE-WNW and shows a steep dip toward SSE. The conjugate planes intersect at 075/18, exhibit a dihedral angle of 65° and are separated by a NW-dipping acute bisector line with moderate dip toward NW (315/58) (Fig. 4.8)

Figura 4.8-Pair of conjugate shear fractures on gneiss. On the left, photograph of a conjugate pair of shear fracture on mylonitic granidiorite gneiss. On the right, Sketch of previous photograph. Lower hemisphere equal area projection show the analysis of shear planes orientations.

1.4.2 NE-trending contractional fabric elements

Rocks of the Bambuí sequence are affected by NE-oriented thrust faults, folds, and associated fractures, as well as NE-trending reverse faults. Rare in the internal portion of the Januária high, these structures become progressively more frequent towards SE, i.e., in the direction of leading edge of the Brasiliano Araçuaí foreland f-t-thrust belt, whose northern segment is located along the eastern margin of the Januária high (Fig. 4.9). In this region, the belt is a thin-skinned system coupled to a SE-dipping detachment located at the contact between the Ediacaran-Cambrian strata and older units. The leading edge of the Araçuaí foreland f-t-belt, situated in the southeastern corner of the study area (Figs. 4.9, 4.10), consists of an imbricated fan of NE-trending thrusts without outcropping expression, NW-verging asymmetric folds, and a variety of small-scale structures, including a regionally penetrative axial plane slaty cleavage. The thrusts and many small-scale structures disappear in areas to the west of the approximate leading edge of the belt (Fig. 4.9, 4.10).

Of note, major surface lineaments located along the São Francisco river valley suggest N30-50E-striking structures that truncate the structural grain in the southeastern portion of the study area (Fig. 4.9). The real nature of this feature remains undetermined due to the poor quality of the seismic coverage in the valley. However, abrupt terminations of tributary valleys associated with these lineaments strongly suggest the occurrence of active faults affecting alluvial sediments along the São Francisco river flood plain.

The intracratonic contractional structures affecting the sedimentary covers in the study area define two domains. In the Domain I, along the southeastern margin of the Januária high, the middle and upper Bambuí sequence units are affected by largely spaced faults and folds. In the Domain II, which encompasses the internal portion of the high, carbonates of the basal Bambuí sequence are practically undeformed. Only fractures of a distinct family (see sec. 1.4.3), isolated folds and faults were locally observed.

Figura 4.9-Structural map of the southeastern part of the study area. The map shows the distribution of elements of different families charaterized in the region divided in two strucural domains. The São Francisco river valley separates the structural domains I and II (see text for explanation). S0: bedding planes, b: fold hinges, v/fr: veins and fractures.

Piatti B.G., 2021, Arcabouço estrutural e evolução tectônica do Alto de Januária (MG)...

Figura 4.10-Crooked 2D seismic section c-c' (vertical exaggeration of \sim 9x) in two-way travel time. The interpreted section illustrates the thin-skinned character of the leading edge of the Araçuaí foreland f-t-belt developed on the eastern flank of the Januária high. Notice the detachment located along the basement-cover contact, the occurrence of strike-slip faults and absence of pré-Bambuí units. Location of the section is shown on Figs. 5 and 10.

Folds and associated small-scale structures

Outcrop-scale, upright or inclined folds occur in the structural Domain I in the form of isolated NW-verging trains (Fig. 4.9). With NE-trending sub-horizontal hinges, these structures are parasitic

elements of larger folds and show different styles according to the rocks they affect. While pelites and marls typically exhibit open to close upright or steeply inclined folds, calcarenites of the middle Bambuí sequence in general show open folds with upright or moderately inclined axial planes (Fig. 4.11). In calcarenites, the fold limbs often show hinge-orthogonal and bedding-parallel striations or calcite fibers (Fig. 4.12b). Locally, asymmetric folds affecting oolithic limestones have their short limbs cut by ESE-dipping shear zones containing calcite-filled *en echelon* tension gashes and saddle veins, which, together with the fold asymmetry, attest systematic NW-directed tectonic motion (Fig. 4.12 a, b).

Figura 4.11-Folds affecting the middle Bambuí strata southeasternmost part of the study area (structural Domain I) **a**) Upright Class 1A fold in oolitic calcarenites. **b**) NW-verging, asymmetric folds in carbonate-rich siltstone. **c**) Oolitic calcarenites showing SSW-plunging asymmetric folds verging toward NNW. **d**) Upright chevron folds in siltstone. **e**) Synoptic stereonet plots (lower hemisphere, equal area) of poles to the bedding. **f**) Contoured Stereonet plots (lower hemisphere, equal area) of sub-horizontal NNE-trending fold axes.

Moderately to steeply SE-dipping stylolitic surfaces ornamented with high amplitude elements also occur in the study area (Fig. 4.12 c, d). Not necessarily associated with folds, they seem to represent the equivalents of the axial plane cleavage of the Araçuaí foreland fold-thrust belt.

Figura 4.12-a) Calcite-filled *en echelon* and saddle veins rotated along the axial surface of an asymmetric fold, indicating top-to-SE sense of shear (domain I). **b)** Bedding-parallel slickenside with calcite fibers oriented at 130/20 in calcarenites of the middle Bambuí sequence. **c, d)** NNE oriented ESE dipping stylolite on massive dolarenite.

The rare outcrop-scale folds observed in the internal portion of the high (Domain II) correspond to isolated kink bands or asymmetric tight folds (Fig. 4.13). With NNW- or ESE-dipping kink planes and ENE- or SSW-plunging axis (Fig. 4.13a, b), respectively, these folds seem to be geometrically related to reverse faults that occur nearby or at depth.

Figura 4.13-Fold styles typical of the Januária high internal portion (structural Domain II). **a,b**) Monoclines affecting calcarenites of lower Bambuí sequence. **c**) isolated assymetric tight folds. The orientation of these structures varies significantly along the domain, as indicated by the stereonet plots.

Reverse faults

As previously mentioned, the occurrence of thrusts is restricted to the leading edge of the Araçuaí foreland f-t-belt in the southeastern end of the study area (Figs. 4.9, 4.10). Nevertheless, NE-trending reverse faults affecting the Bambuí sequence were detected in both domains I and II. Connected at depth to inverted normal faults, they propagate up-section as individual elements or as a pair opposite-dipping structures bounding NE-trending anticlines (Fig. 4.14, also present in Figures 4.7, 4.8, 4.11 and

4.16). The surface expression of these faults varies from place to place. In general, they correspond to zones characterized by topographic highs and a larger number of folds and veins of various categories affecting the Bambuí strata.

Figura 4.14-Crooked 2D seismic section (vertical exaggeration of $\sim 12x$) in two-way travel time. The section illustrates the faulted flexural culmination and the eastern limb of the Januária. Notice the occurrence of reverse faults affecting the Bambuí sequence at indicated zones i, ii and iii. The dyke (?) cutting the Ediacaran-Cambrian strata is presumably Cretaceous in age and not focused in this study.

Strike-slip faults, fractures and veins

Crosscut relationships observed in the field, seismic sections, and satellite images indicate that fabric elements described in the previous sections are overprinted by a series of deep-seated strike-slip faults, which also resulted from inversion of preexisting normal faults (Fig. 4.10, 4.15). NW-oriented, left-lateral strike-slip zones are associated with the counterclockwise rotation of fold hinges and structural trend lines especially in structural Domain I. As depicted by the seismic sections, the strike-slip faults are associated with kilometer-wide, positive flower structures rooted in partially inverted

normal faults (Figs. 4.15). They extend over several kilometers into the craton and are locally associated with outcrop-scale, NW-striking transtensional shear zones defined by *en echelon* arrays of calcite veins (Fig. 4.16a).

Figura 4.15-Crooked 2D seismic section e-e' (vertical exaggeration of \sim 7x) in two-way travel time (TWT). The section illustrates the transpressional positive flower structures linked to reactivated basement normal faults. Location of the section shown on Fig. 4.4 (e-e') and 4.9.

Fractures and veins are widespread in the study area comprising EW-, NE and NW-striking sets. In the areas where strike-slip faults occur, two groups of these structures are more frequent. They comprise WNW- to EW-trending sets of tensile fractures that occur either filled with calcite or exhibiting plumose structures with horizontal propagation lines (Fig. 4.16b). As previously mentioned, WNW-oriented calcite veins very often occur in the form of *en echelon* arrays defining out-crop-scale left-lateral shear zones in carbonate rocks (Fig. 4.16a).

Figura 4.16-Calcite veins in calcarenites and plumose joints in pelites. **a**) WNW trending and *en echelon* arrays of veins and rose diagram showing the orientations calcite veins. **b**) Plumose joint in siltstones and rose diagrams show the orientation all measured fractures and plumose joints.

1.4.3 Structures of the Januária high crest area

Over the crest of Januária basement high, near the homonymous town, veins are the most widespread structures affecting the basal calcarenites and calcilutites of the Bambuí sequence. Besides rare elements of the other families, veins filled with calcite, smaller amounts of fluorite and, locally, galena, predominate in that region. These veins occur in the form of parallel sets or *en echelon* arrays of NNE-striking and steeply-dipping elements (Fig.4.17 a, b). Some of these veins define decimeter-wide, left-lateral shear zones that are parallel to meso-scale, sinistral strike-slip faults ornamented with horizontal calcite slickenfibers (Fig. 4.17c). Saw teeth- to square-shaped vertical and WNW-striking stylolites are also common in the crest of the Januária high (Figs. 4.9, 4.17d). The relationship between these structures and the previously described fabric elements is unclear.

Figura 4.17-Calcite veins in oolitic-intraclastic calcarenite of the Bambuí sequence. **a**) NNE striking calcite veins in a parallel array. **b**). Detail of photo **a**, showing a small-scale left lateral brittle shear zone striking N25E **c**) Slickenside on calcite vein wall exhibiting steps and fibrous calcite striae. Movement along the plane is left lateral. **d**). Stylolite on calcilutite of lower Bambuí Group. Notice calcite veins parallel and nearly orthogonal to stylolitic surface.

4.5 DISCUSSION

The structural framework of the Januária high described in the previous sections can be ascribed to at least five main tectonic episodes affecting the São Francisco craton after its stabilization at c. 1.8 Ga.

Basement rocks exposed in the Januária basement high display low strain foliated syenogranites and high strain mylonitic gneisses (Fig. 4.5). The broad geometry of the shear zone system cannot be precisely contrained, but its elements indicates that it constitutes left-lateral transpressional shear zones systems (Fig. 4.19). These are thought to record the final deformational phase of collisional build-up of Paleoproterozoic eastern Bahia orogen (Barbosa *et al.* 2012), when Archean terranes accreted forming the basement of the São Francisco Craton (Alkmim, 2004; Barbosa and Barbosa 2017).

The normal faults that cut the basement and are associated with growth sections of the Upper Espinhaço-Paranoá sequence are of the same nature and orientation of the dominant structures of the adjacent Pirapora aulacogen (Reis *et al.*, 2017a). In fact, both the NW-oriented faults along the SW border of the high and the NE-trending normal faults dominating its central portion are shared by the aulacogen and the Januária basement high. A paleostress analysis performed with NW- and NE-striking normal faults resulted in an extensional triaxial field with vertical σ_1 and NE-oriented σ_3 (Fig. 4.18d1). The precise age of the older extensional tectonism could not be constrained in this study. However, a Stenian age can be estimated for this episode since the Upper Espinhaço-Paranoá sequence minimum age is Stenian (Machado *et al.* 1989; Chemale et al 2012; Matteini *et al.*, 2012; Campos *et al.*, 2013; Pimentel *et al.*, 2016; Reis *et al.*, 2017a).

Regardless of its absolute age, this family of normal faults record one of the main rifting phases that induced the final individualization of the Januária high as the northern flank the Pirapora fossil rift during deposition of the Upper Espinhaço-Paranoá sequence (Fig. 4.19). In this context, the basement high probably acted as a major sedimentary source for most of the sedimentary successions preserved within the NW-trending rift, as well as for the Bambuí sequence later (Lopes, 2012; Kuchenbecker et al., 2015). The tectonic history of the Pirapora aulacogen is, however, much longer and complex. As indicated by Reis *et al.* (2017a), the central and deepest portion of the lower Espinhaço Supergroup exposed in the Araçuaí orogen to the east. If correct, this assumption implies that the Pirapora aulacogen would represent an arm of the Espinhaço rift system initiated around 1.78 Ga in the São Francisco paleoplate (*e.g.* Brito-Neves et al 1996; Karfunkel and Hoppe, 1988; Uhlein *et al.*, 1998 Uhlein *et al.*, 2017a; b).

The second tectonic episode recorded in the high is also an extensional tectonism, this time coeval with the deposition of the lower Bambuí strata. Especially well developed in areas around the

crest of the Januária high, the family of NE- to NS-oriented growth faults formed mainly by reactivation of preexistent normal faults under an extensional stress field with maximum and minimum principal

Figura 4.18- synoptical strain diagrams and paleostress reconstruction of the main tectonic episodes registered in the Januária basement high. Black arrows and circles indicate maximum principal stress axe, green ones, the intermediate, and red ones, minimum. Dsz: ductile shear zone; sn: foliation; nf: normal fault; v: vein; bsz: brittle shear zone; f: fold; tf: thrust fault; tcf: transcurrent fault. R is the stress ratio, defined as $R = \sigma 2 - \sigma 3 / \sigma 1 - \sigma 3$.

stresses oriented in the vertical and in the WNW-ESE direction, respectively (Fig. 4.18d2). This episode took place during the earlier stages of the Ediacaran-Cambrian Bambuí basin cycle. Its age can be estimated based on the depositional age of the lower Bambuí sequence. Matter of a long-standing debate in the literature (*e.g.* Babinski *et al.*, 2007; Rodrigues, 2008; Pimentel *et al.*, 2011), recent growing evidence have pointed to a maximum depositional age of c. 560 Ma for the basal Bambuí strata (Paula-Santos *et al.*, 2015). Data available for units of the upper Bambuí sequence indicate deposition during

the Cambrian at c. 522 Ma (Moreira *et al.* 2020, Tavares *et al.*, 2020), which can be assumed as a minimum age for the observed faults.

There is robust tectonostratigraphic evidence indicating that extensional faults accommodated basal Bambuí units in a comparable way in the Sete Lagoas high, the prominent basement structure of the southern portion of the São Francisco basin (Fig. 4.1) (Reis and Suss, 2016; Reis et al., 2017a; 2017b). The tectonic loads created along the margins of the São Francisco craton by the uplift of the adjacent Brasiliano/Pan-African orogenic belts (Fig. 4.19) induced the flexural deformation of the craton interior, thereby creating the foreland depocenters in which the Bambuí sequence accumulated. Grabens nucleated in the culmination of a flexural bulge developed in Sete Lagoas high were filled with a substantial section of limestones and fine-grained siliciclastics of the Sete Lagoas Formation (Reis et al. 2017b). Similar to cases reported worldwide (Waschbusch & Royden, 1992; DeCelles and Gilles, 1996; Catuneanu, 2004), the generation of these grabens involved the reactivation of pre-existing structures of the basement (Reis et al. 2017b). Regardless of the different tectonic loads imposed by both the Brasília and Aracuaí orogenic systems on the western and eastern margins of the São Francisco paleoplate, respectively, the flexural deformation inducing the Bambuí basin-cycle and the forebulge uplift in the craton interior was mostly controlled by the western orogenic load (Reis et al., 2017b). In the case Januária high, the onset of the Bambuí carbonate sedimentation and the coeval normal faulting in the forebulge depocenter seem to record similar dynamic conditions.

The group of NE-trending contractional structures affecting the basement and cover units in the Januária high is regarded as other manifestations of the Brasiliano/Pan-African event in the craton interior, now related to the westward migration of the Araçuaí orogenic front. A paleostress analysis involving fabric elements of the Araçuaí foreland f-t-belt leading edge and the contractional structures affecting the whole Bambuí sequence in the Januária high revealed a triaxial compressional field with the maximum principal stress in the NW-SE direction and near vertical minimum principal stress (Fig. 4.18d3i). The maximum age of this episode of the Brasiliano event is constrained by the 522 Ma depositional age of the Serra da Saudade Formation of the upper Bambuí strata (Moreira et al., 2020) (Fig. 4.2).

Figura 4.19-Synthesis of the main tectonic episodes revealed by Januária basement high structural archive. **A**. Archean block amalgamation during Rhyacian orogeny in eastern Brazil. **B**. Onset of the São Francisco basin during Statherian to Early Neoproterozoic rifting events. **C**. West-Gondwana assembly and the São Francisco Foreland system. JBH: Januária basement high; SLBH: Sete Lagoas basement high; PA: Pirapora aulacogen. P-UE: Paranoá-Upper Espinhaço Sequence; West-Gondwana cratons: A Amazonian, P Paranapanema, WA West Africa, SFC São Francisco-Congo, K Kalahari. Paleoplate reconstruction reproduced from Reis et al., 2017a

The structural archive presented here illustrates that contractional strain propagated from the Araçuaí foreland fold-thrust belt up to the intracratonic basement high, relating a detached structural style with basement faulting and reactivation in the foreland. The structural picture of the Araçuaí belt leading edge reproduces the classical image of thin-skinned f-t-belts document worldwide (*e.g.*, Boyer and Elliot 1982; McClay *et al.* 2004, Macedo and Marshak 1999; Marshak, 2004). This change in structural style reflects the drop in the magnitude of the differential stresses transmitted from the orogenic belts at plate margins to the plate interior (*e.g.*, Zoback and Zoback, 1989; Marshak and Paulsen 1996; van de Pluijm *et al.*, 1997; van der Pluijm and Marshak, 2003; Snee and Zoback, 2020). In addition, other factors such as tectonic inheritance and structural reactivation, effects of gravity potential energy, mantle flow dynamics and dynamic topography are part of the intricate interplay that resulted in the finite strain observed in the upper crust of cratonic interiors (*e.g.*,; Gurnis, 1993; Molnar *et al.*, 2015, Eakin and Lithgow-Bertelloni, 2018; Snee and Zoback, 2020).

The strike-slip faults and associated fractures documented in the Januária high can also be associated with the advance of the Araçuaí deformation front. The nucleation of a conjugate set of NW and NE-trending strike-slip faults, equally oriented fractures, and WNW-striking joints in the late stages of the evolution of the Araçuaí belt was previously documented by various authors (*e.g.*, Magalhães, 1988; Oliveira, 1989; Alkmim and Martins-Neto 2001, Reis *et al.*, 2015). The NW-trending and deep-seated sinistral strike-slip faults and associated structures in the craton interior documented herein represent the late-stage tectonic phase of the Araçuaí belt under a transcurrent stress field, with vertical and WNW-oriented maximum and minimum principal stresses, respectively (Fig. 4.18 d3ii). As emphasized by previous authors working in different portions of the São Francisco basin, this episode reflects a switch in orientation between σ_1 and σ_3 (Reis and Alkmim, 2015; Rodrigues 2020).

The fabric elements that characterize the crest area of the Januária high seem to have nucleated in response to a transtensional stress regime in which σ_1 is oriented in the NNE-SSW direction and σ_3 in the WNW-ESE. The driving mechanism of this deformation is still uncertain, although structural assemblages that also records a rough N-S contraction are found throughout different portions of the basin and surrounding foreland f-t-belts (*e.g.* D'el-Rey Silva et al.,2011; Reis and Alkmim, 2015; Rodrigues, 2020)

It is worth noting that deformation is currently taking place in the Januária high. A 4.9 Mb seismic event was recorded north of the town of Januária in 2007. The focal mechanism solution for this event indicates up-dip motion on a N30°E/40° fault (Chimpliganond *et al.* 2010). The authors suggested that the fault activity is related to the reactivation of basement structures under contemporary E-W to NW-SE compressional stress field acting upon the South American midcontinent (Chimpliganond *et al.* 2010; Assumpção *et al.*, 2014, Carvalho *et al.*, 2016; Assumpção *et al.*, 2017). Even though the contemporary intraplate seismicity occurs at shallow levels in the brittle upper crust, its driving forces are generated and transmitted to great depths in the lithosphere (Assumpção *et al.*, 2017). The structures defined by lineaments observed in satellite images cutting alluvial deposits of the São Francisco river (Fig. 4.9) might record this present-day seismicity.

The role inherited structures during the Proterozoic to early Paleozoic tectonic evolution of the Januária basement high

Our data reveal that the Proterozoic to early Paleozoic tectonic evolution of the Januária basement high took place under the remarkable influence of inherited structures. Trending parallel to penetrative foliations affecting basement assemblages (Fig. 4.5a), the NE-oriented normal faults documented mostly in the central portion of the basement high nucleated during both the Mesoproterozoic-early Neoproterozoic rifting and the Ediacaran-Cambrian foreland basin cycle. Both generations of structures were reactivated as reverse faults during the westward advance of the Araçuaí foreland f-t-belt (Figs. 4.4, 4.7, 4.10, 4.11, 4.15). At this episode, the reactivation of preexisting NW-trending normal faults also culminated with the development of kilometers-long strike-slip systems that are commonly associated with large-scale positive flower structures and other small-scale structures (Fig 4.10, 4.16). These reactivated faults might be classified as replacement structures (Şengör *et al.*, 2018).

Piatti B.G., 2021, Arcabouço estrutural e evolução tectônica do Alto de Januária (MG)...

Under brittle conditions, the fault reactivation is expected to occur either when the preexisting discontinuities are oriented at an optimum angle to the maximum effective stress vector or when the effective least principal stress is tensile (*e.g.*, Byerlee, 1978; Sibson, 1985; Etheridge, 1986; White et al., 1996; Holdsworth *et al.*, 1997; Mildren *et al.*, 2002). In nature, the latter is often achieved under fluid overpressure conditions (*e.g.*, Sibson, 1985; 2000). Our analysis suggests that, while the reactivation of normal faults as reverse faults during the advance of the Araçuaí foreland f-t-belt could have required a tensile least principal stress, the late reactivation of NW-trending faults as strike-slip systems might have been favored by the optimum angle between these structures and σ_1 (Figs. 10, 16 and 19). It is still unclear, however, the different vein sets described along the studied area (Figs. 10 and 17) may record, at least partially, the fluid pressure conditions necessary for the high angle reactivation of NE-oriented faults as reverse faults. Outcrop-scale and left-lateral transtensional shear zones locally affecting carbonate rocks of the Bambuí sequence may also record the additional influence of fluid overpressure during the reactivation of NW-oriented normal faults (Fig. 4.16).

The stress partitioning induced by inherited structures has been widely described in the literature (*e.g.*, Homberg et al., 1997; Hu and Angelier, 2004; Caputo, 2005; Liesa *et al.*, 2019). Although still unclear, the slight counterclockwise rotation of the principal stress vectors during the late strike-slip stage documented during the Araçuaí foreland f-t-belt evolution could represent an additional effect of inherited structures (Fig. 4.18).

Our data point to the remarkable geometric relationship between the NE-trending normal faults and steeply-dipping penetrative foliations of the basement assemblages, suggesting reactivation episodes earlier in the tectonic evolution of the Januária basement high. Assuming the above mentioned mechanical conditions for fault reactivation, it seems that the reactivation was favored by the optimum angle between the foliation planes and the maximum principal stress during both the Mesoproterozoicearly Neoproterozoic and Ediacaran-Cambrian flexural-related extensional episodes (Figs. 4.4, 4.6 and 4.18). In the Meso to Neoproterozoic episode, however, a permutation between the least and intermediate principal stress vectors would have been required (Figs. 4.4, 4.6 and 4.18) (*e.g.*, Hu and Angelier, 2004). The NW-trending shear zones in the basement, on the other hand, likely exerted a minor influence during these extensional episodes (Figs. 4.4 and 4.5).

On the craton interior deformation during orogenic episodes

The Proterozoic to early Paleozoic tectonic history of the Januária basement high demonstrates how the deformation may propagate several kilometers into the craton interior during orogenic episodes (Figs. 4.7, 4.8, 4.9 and 4.15). Representing one of the best studied cases in the literature, the interior of the North American craton shows a series of faults and folds affecting Phanerozoic strata first. These structures record the renewed reactivation of previously-formed Proterozoic to Cambrian rift fault systems due to far-field stress transmission from collisional orogenies at the margins of the craton (Paulsen and Marshak, 1994, Marsahk and Paulsen, 1996, Nelson and Marshak, 1996, Marshak *et al.*, 2000; Pinet, 2015). Both in the São Francisco and North American cratons, the pre-orogenic rifts behaved as upper crust weaker zones through which deformation propagated from hundreds of kilometers into the continent interior. The Januária basement high architecture also suggests that the optimum angle between preexisting structures and the compressional stress vectors are important conditions for continent-scale deformation propagation, allowing, for instance, the formation of the observed kilometers-long strike-slip zones (Figs. 10 and 16)

In spite of the similarities between the U.S midcontinent and the Januária basement high, it is worth noting that the North American craton is much larger than the São Francisco craton. While in the former zones of intracratonic deformation occur as far as >1400km from the leading edge of Phanerozoic orogens (e.g. Marshak and Paulsen, 1997; van der Pluijm 1997; Pinet, 2015), in the Januária basement high the distance between the leading edge of the surrounding belts in the eastern and western margins of the São Francisco craton are in the order of 300km. Thus, it is not surprisingly to find orogenic-related compressional to transcurrent structures in this portion of the craton. Although our study has focused only on the central and eastern portions of the Januária basement high, similar continent-scale strikeslip structures associated with the eastward advance of the Brasília foreland f-t-belt have been also identified (e.g., Fonseca et al., 1995; Araújo-Filho, 2000). The provided examples illustrate how intracontinental faults developed through inherited structural trends constitute sensitive markers of convergent plate interactions at the periphery of the craton (Marshak and Paulsen 1996; Lavoie et al. 2015; Pinet, 2016). Together with other mechanisms of intraplate deformation, including gravitational potential energy within the lithosphere and mantle flow dynamics, these elements seem to represent major controlling-factors allowing the craton interior deformation during orogenic episodes (e.g. Molnar et al., 2015; Levandowski et al. 2017; Snee and Zoback, 2020).

4.6 CONCLUSIONS

The Januária basement high of the São Francisco craton, East Brazil, extends over c. 150.000 km² in the South American midcontinent and registers much of the tectonic history of the hosting craton and its marginal Brasiliano/Pan-African orogens. Bounded to the southwest by the Proterozoic Pirapora aulacogen, it hosts mostly the rift-sag sedimentary successions of the Mesoproterozoic-early Neoproterozoic Upper Espinhaço-Paranoá sequence and the foreland basin strata of Ediacaran-Cambrian Bambuí sequence. These units unconformably overlie metamorphic basement assemblages older than 1.8 Ga and are locally overlain by Mesozoic sandstone-dominated successions. Based on the analysis of unpublished surface and subsurface information, our study led to the following conclusions:

- The foliated granites, mylonitic gneisses of the basement and minor ductile shear zones are affected by two sets of normal faults: i) a NW-oriented, which dominates the southern margin of the high and become progressively less expressive towards its interior, where ii) NE-trending normal faults are dominant. Growth sections of the Upper Espinhaço-Paranoá and Bambuí sequence often occur associated with these normal faults.
- The normal faults developed in two deformational episodes. The older episode apparently marks a Mesoproterozoic to early Neoproterozoic rifting phase associated with the development of the Pirapora aulacogen and evolved under an extensional stress field with a horizontal and NE-trending σ_3 and a vertical σ_1 . During the Ediacaran-Cambrian, the tectonic overloads imposed by the Brasília and Araçuaí orogenic systems in the western and eastern margins of the São Francisco paleocontinent, respectively, induced the flexural uplift of the Januária basement high and the nucleation of NE-trending forebulge grabens coevally to the deposition of the basal Bambuí strata. Also involving the normal reactivation of preexisting faults, this episode evolved under an extensional stress field with a vertical σ_1 and a horizontal WNW-trending σ_3 .
- Along the eastern Januária basement high, contractional structures consisting of NE-trending folds, minor thrust faults and associated fabrics locally comprise NW-directed imbricate fans that affect the Ediacaran-Cambrian strata. These structures are part of the thin-skinned Araçuaí foreland fold-thrust belt, which coupled to a regional basal detachment zone located at the contact between the Bambuí

sequence and older cratonic units and represents the most external portion of the homonymous orogen.

- The contractional structures of the Araçuaí foreland fold-thrust belt are pervasive in the eastern portion of the studied area and become less expressive towards the west, in the central portion of the Januária basement high. In this area, the practically undeformed Ediacaran-Cambrian strata are affected by sparse kink folds with varying axial planes and NE-trending steeply-dipping stylolithic surfaces that represent the far-field expression of the foreland belt in the craton interior. Along the entire studied area, contractional structures of the Araçuaí foreland f-t-belt are also associated with reverse faults formed through the reactivation of preexisting NE-trending normal faults.
- Our paleostress analysis indicate that the Araçuaí foreland fold-thrust belt and its tectonic elements in the studied area were formed under a compressional stress field with a horizontal NW-trending σ_1 and a vertical σ_3 . Based on the age of the Bambuí sequence, it is possible to conclude that this stress field operated sometime between the late Ediacaran and Cambrian periods;
- Late-stage fractures and WNW- to EW-trending joints and veins are associated with kilometerswide, NW-oriented strike-slip systems, which formed through the reactivation of preexisting NWtrending normal faults and extend several kilometers into the craton interior. Paleostress reconstructions indicate that these elements were developed under a transcurrent stress field in which the horizontal maximum and minimum principal stress vectors were oriented approximately at E-W and N-S, respectively;
- Structures of uncertain origin have been also identified in the central portion of the Januaria basement high and comprise NNE-oriented vertical calcite veins, with minor fluorite and rare galena, and stylolites striking at WNW. The NNE veins display, locally, *en echelon* arrays that indicate semi brittle shear zones that are parallel to meso-scale, sinistral strike slip faults. This assemblage seem to have formed under a transcurrent stress regime with the horizontal maximum and minimum principal stress vectors were oriented at NNE-SSW and ESE-WNW, respectively.
- The tectonic episodes described here were marked by the successive reactivation of preexisting structures. Considering the mechanical conditions required for fault reactivation under brittle conditions, we interpret that most of the reactivated processes documented in the studied area were

favored by the optimum angle between preexisting structures and the maximum principal stress vector at the time of reactivation. A subordinate influence of fluid overpressuring might have also induced the formation of part of the observed elements, specially the NE-trending reverse faults.

- Despite being traditionally considered an undeformed sector in the interior of the São Francisco craton, the structural framework of the Januária basement high reveals a complex interplay between basement tectonics and the far field effects of the marginal Brasiliano/Pan-African orogenic systems. Similar to other cases described in the literature, our example illustrates how the deformation may propagate hundreds of kilometers further into the craton interior during orogenic episodes, under the strong control of inherited structures of the upper crust.
- The studied example illustrates how intracratonic basement highs retain much of the tectonic evolution of its hosting lithosphere and, thus, may represent important geological archives in the interior of continents. Our study also reveals how this long-lasting evolution might be punctuated by the stress-strain partitioning and superimposed reactivation processes. Besides revealing important aspects related to the craton tectonics, these elements might be considered for the study of intracratonic sedimentary and the exploration of hydrogeological and economic resources hosted by these lithospheric domains.

The tectonic history of the Januária high synthesized here comprise various chapters of the São Francisco paleoplate evolution, from its inception in the Late Paleoproterozoic up to its deformation in the Cambrian (e.g., Heilbron et al., 2017 and references therein). The formation and repeated reactivation of the structures we characterized illustrate how stresses and strains are transmitted and accommodated in craton interiors.

Acknowledgements

The authors are grateful to the State of Minas Gerais Research Support Foundation (FAPEMIG) for the master's scholarship granted to the first author and Research Grant #APQ-03383-16 provided to H.L.S. Reis, to the the Brazilian National Research Council (CNPq) for the Research Grant # 308045/2013-0 provided to F.F.Alkmim and to the São Paulo Research Foundation (FAPESP- project # 2016/06114-6) for fieldwork financial support. The Agência Nacional do Petróleo, Gás Natural e

Biocombustíveis (ANP) is acknowledged for providing the seismic and well data and the Escola de Minas of the Universidade Federal de Ouro Preto (UFOP) for the infrastructure and logistic support. Piatti B.G., 2021, Arcabouço estrutural e evolução tectônica do Alto de Januária (MG)...

CAPÍTULO 5 CONCLUSÕES

A configuração estrutural do Alto de embasamento Januária e sua cobertura sedimentar, situados na porção norte da Bacia intracratônica do São Francisco, arquivam múltiplos eventos tectônicos ocorridos entre Mesoproterooico e o Mesozoico. Ao longo do Proterozoico, esta estrutura passou por múltiplos ciclos de rifteamento superpostos até se tornar um domínio de *forebulge* no sistema de antepaís Ediacarano-Cambriano. Com base no projeto metodológico adotado, cujo eixo foi a integração entre dados estruturais de superfície e subsuperfície não publicados, nossa investigação do arcabouço estrutural do sistema embasamento-cobertura do alto de Januária nos conduziu às seguintes conclusões:

- O embasamento granito-gnaissico é afetado por duas famílias de falhas extensionais: i) com direção NW, que são dominantes na margem sul do Alto de Januária, junto ao aulacógeno Pirapora, e ii) falhas com direção NNE que são mais expressivas no interior do alto.Esse sistemas de falhas extensionais comumente acomodam seções de crescimento das Sequências Espinhaço-Superior/Paranoá e Bambuí.
- Esse sistema de falhas normais se desenvolveu ao longo de dois episódios deformacionais extensionais. O primeiro marca um rifteamento Meso/Eoneoproterozoico associado ao desenvolvimento do aulacógeno Pirapora. Esse sistema evoluiu sob a influência de um campo de esforços extensional com σ_3 orientado na direção NE e o σ_1 vertical. O segundo registra um episódio de flexura extensional da do Alto de Januária induzida pela sobrecarga orogênica imposta pelos cinturões orogênicos Brasília, a oeste, e Araçuaí, a leste. Envolvendo também a reativação de estruturas pre-exitentes, as falhas normais NE, que acomodam depósitos de *forebulge* dos estratos basais da Sequência Bambuí, se desenvolveram sob um campo de esforços com σ_3 na direção WNW-ESE e σ_1 vertical.
- Na margen leste do Alto de Januária, estruturas contracionais que deformam os estratos ediacaranoscambrianos incluem leques imbricados de falhas com orientação NNE e dobras com eixo NNE que atestam transporte tectônico de ESE para WNW. Essas estruturas, acopladas em um descolamento basal no contato entre o embasamento e a base da sequência Bambuí, são parte da porção externa do cinturão epidérmico de falhas e dobras de antepaís do orógeno Araçuaí.
- As estruturas contracionais do cinturão epidérmico de falhas e dobras de antepaís do orógeno Araçuaí são pervasivas na porção oriental da área, mas tornam-se menos expressivas em direção à porção central do Alto de Januária, a oeste. Nessa área, as coberturas ediacaranas-cambrianas são praticamente indeformadas, apesar de exibirem escassas dobras em *kink* com orientações variadas

de eixos e planos axiais e estilólitos com direção NNE que representam os efeitos da propagação *far-field* da frente deformacional da Faixa Araçuaí.

- Ao longo de toda a área, as estruturas contracionais estão frequentemente associadas em subsuperfície com falhas reversas formadas pela reativação das falhas NNE pre-existentes.
- A análise de paleotensores indica que as estruturas contracionais associadas ao cinturão de antepaís Araçuaí na região estudada formaram sob um campo de esforços compressional NW-trending σ_1 na direção WNW-ESE e σ_3 vertical. Considerando que a sequência Bambuí está envolvida nessa deformação, esse campo de esforços deve ter atuado entre os períodos Ediacarano e Cambriano.
- Veios, juntas trativas e fraturas orientadas em torno de WNW estão associadas a sistemas de falhas tranpressionais que se formaram através da reativação das falhas extensionais NW pre-existentes. Por isso, ao contrário do que ocorre com as outras estruturas contracionais associadas à Faixa Araçuaí, os corredores transcorrentes se extendem pelo interiorcratônico. A reconstrução do paleocampo de esforços indicam que esses elementos foram formados sob a atuação de um σ₁ na direção E-W e σ₃ N-S, aproximadamente.
- Estruturas de origem incerta que ocorrem na culminação do Alto de Januária constituem veios de calcita, fluorita e, ocasionalmente, galena, verticais com direção NNE, e estilólitos também verticais ortognais aos veios. Os veios exibem, localmente, arranjos geométricos *en echelon* que constituem zonas de cisalhamento rúpteis e são paralelas a falhas transcorrentes de meso-escala. Esse conjunto de estruturas parece ter se formado a partir um campo de esforços transcorrente com um σ_1 na direção NNE e σ_3 ESE, aproximadamente, com alta pressão de fluidos;
- Os episódios tectônicos descritos aqui foram marcados por sucessivas reativações de estruturas preexistentes. A maior parte desses processos de reativação, considerando que ocorreram sob condições mecânicas rúpteis, foram facilitados pela orientação favorável das estruturas reativadas em relação aos eixos principais de esforços em um ambiente com alta pressão de fluidos.
- Apesar de ser tradicionalmente considerados domínios não- ou fracamente deformados da bacia, o arcabouço estrutural da região estudada revela uma dinâmica complexa entre a tetônica do embasamento, com suas estruturas herdadas, e os efeitos *far-field* da propagação dos esforços relacionados ao avanço do cinturão de antepaís sobre o craton;
- Altos intracratônicos do embasamento são testemunhas dos processos deformacionais aos quais a litosfera continental em questão foi submetida, desde a origem do embasamento até eventuais sucessivos ciclos bacinais. Dessa forma, esses processos deformacionais estruturam todo a arquitetura estratigráfica e sistemas minerais, petrolíferos e hidrogeológicos pela influência na a migração de fluidos e a configuração de reservatórios.

Nossa análise do alto de Januária registra como altos do embasamento intracratônicos arquivam a memória da deformação litosférica e como essa deformação se processa. A diacronia e distribuição da deformação regional está expressa nos componentes do sistema de alto do embasamento, desde as rochas do embasamento cristalino em si à cobertura sedimentar nos domínios cratônicos e de cinturões adjacentes. Dessa forma, a caracterização de altos do embasamento é um aspecto fundamental da análise de bacias, bem como da avaliação de recursos energéticos e minerais, dado que os processos que originaram e configuraram o alto devem ter influenciado o desenvolvimento de vários outros processos geológicos.

Piatti B.G., 2021, Arcabouço estrutural e evolução tectônica do Alto de Januária (MG)...
Referências

- Abreu-Lima, S.A., 1997. Fácies, ambiente deposicional e aspectos diagenéticos das rochas carbonáticas da Formação Sete Lagoas na região norte de Minas Gerais, Bacia do São Francisco. Dissertação de Mestrado. Departamento de Geologia, Universidade Federal de Ouro Preto, Ouro Preto, 121 p.
- Aitken, A.R.A., Raimondo, T., Capitanio, F.A. 2013. The intraplate character of supercontinent tectonics. Gond. Res., 24:807-814.
- Alkmim F.F. 2011. Geologia e tectônica da Porção Sudoeste da Bacia do São Francisco. In: Projeto Alto Paranaíba
- Alkmim, F. F.; Brito Neves, B. B., Castro Alves, J. A. 1993. Arcabouço tectônico do Cráton do São Francisco Uma Revisão. Em: Dominguez, J. M. L.; Mise, A. (eds.) O Cráton do São Francisco. Salvador, SBG/Núcleo BA/SE, 45-62
- Alkmim, F. F.; Chemale Jr., F.; Endo, I. 1996. A deformação das coberturas proterozoicas do Craton do São Francisco e o seu significado tectônico. *Revista da Escola de Minas*. **49** (1): 22-38
- Alkmim, F.F.; Marshak, S.; Fonseca, M.A. Assembling West Gondwana in the Neoproterozoic: Clues from the São Francisco craton region, Brazil. *Geology*, 29: 319-322
- Alkmim F.F., Marshak S., Pedrosa-Soares A.C., Peres G.G., Cruz S.C.P., Whittington A. 2006. Kinematic Evolution of the Araçuaí–West Congo orogen in Brazil and Africa: Nutcracker tectonics during the Neoproterozoic assembly of Gondwana. Precambrian Research, 149:43-64. https://doi.org/10.1016/j.precamres.2006.06.007
- Alkmim, F. F.; Martins-Neto, M. A. 2001. A Bacia Intracratônica do São Francisco: Arcabouço estrutural e cenários evolutivos *In*: C.P Pinto & M.A. Martins-Neto (eds) *Bacia do São Francisco. Geologia e Recursos Naturais*. Sociedade Brasileira de Geologia/Núcleo de Minas Gerais, Belo Horizonte, p.9-30.
- Alkmim F.F.; Martins-Neto M.A. 2012. Proterozoic first-order sedimentary sequences of the São Francisco Craton, eastern Brazil. *Marine and Petroleum Geology*. **33**(1): 127-139
- Almeida A.M.de & Uchigasaki K. 2003. *Mapeamento geológico em área dos municípios de Cônego Marinho e Januária MG*. Trabalho de Graduação. UFMG, 83 p.
- Almeida, F. F. M. 1977. O Cráton do São Francisco. Rev. Bras. de Geoc. 7: 285-295
- Almeida F.F.M. 1983. Relações Tectônicas das Rochas Alcalinas Mesozóicas 1 Região Meridional da Plataforma Sul - Americana. *Revista Brasileira de Geociências*, **13**(3):139-158
- Almeida, F.F.M, Hasui, Y., Brito-Neves, B.B., Fuck, R.A. 1981. Brazilian structural provinces: na introduction. *Earth science reviews*, 17, 1-29
- Alvarenga C.J.S., Dardenne M.A., Vieira L.C., Martinho C.T., Guimarães E.M., Santos R.V., Santana R.O. 2012. Estratigrafia da borda ocidental da Bacia do São Francisco. *Bol. Geociênc. Petrobras*, **20** (1): 145 e 164
- Araújo Filho, J.O. 2000. The Pirineus sintaxis: an example of the intersection of two brasiliano fold-thrust belts in central Brazil and its implications for the tectonic evolution of Western Gondwana. *Rev. Bras. Geociências*, **30**(1):144-148.
- Assumpção, M., Azevedo, P.A., Rocha, M.P., Bianchi, M.B. 2017. Lithospheric features of the São Francisco Craton. In: M. Heilbron, U.G. Cordani, F.F. Alkmim (eds) São Francisco craton, eastern Brazil. Tectonic Genealogy of a Miniature Continent. Regional Geology Reviews, Springer International Publishing Co., p.15-25
- Assumpção, M., Ferreira, J., Barros, L.V., Bezerra, F.H., França, G.S., Barbosa, J.R., Menezes, E., Ribotta, L.C., Pirchiner, M., Nascimento, A., Dourado, J. C. 2014. Intraplate Seismicity in Brazil. In: Talwani, P. (ed). Intraplate Earthquakes, chapter 3, Cambridge U.P., ISBN 978-1-107-04038-0.
- Azmy K., Kendall B., Creaser R.A., Heaman L., De Oliveira T.F. 2008. Global correlation of the Vazante Group, São Francisco Basin, Brazil: Re-Os and U-Pb radiometric age constraints. *Precambrian Research*, 164: (3-4): 160-172.
- Babinski M, Pedrosa-Soares AC, Trindade RIF, Martins M, Noce CM, Liu D. 2012 Neoproterozoic glacial deposits from the Araçuaí orogen, Brazil: Age, provenance and correlations with the São Francisco craton and West Congo belt. *Gondwana Research* 21: 451–465.

- Babinski M., Vieira L.C., Trindade R.I.F. 2007. Direct dating of the Sete Lagoas cap carbonate (Bambuí Group, Brazil) and implications for the Neoproterozoic glacial events. *Terra Nova*, **19**:401-406.
- Barbosa O. 1965. Série Bambuí. *In*: Ministerio das Minas e Energia. Dep.Nacional da Produção Mineral. Divisão de Geologia e Mineralogia, Congresso Brasileiro de Geologia, 19, Rio de Janeiro. Simpósio das Formações Eo-Paleozoicas do Brasil, *Avulso*, **40**, 15 p.
- Barros L.V., Assumpção M., Quintero R., Caixeta D. 2009. The intraplate Porto dos Gaúchos seismic zone in the Amazon Craton – Brazil. *Tectonophysics*. doi: 10.1016/j.tecto2009.01.006
- Beaumont C. 1981. Foreland basins. Geophysics. J. R. Astron. Soc. 65: 291-329.
- Bizzi L.A., Smith C.B., Meyer H.O.A., Amstrong R., De Wit M.J. 1994. Mesozoic kimberlites and related rocks in south-western São Francisco craton, Brazil: a case for local mantle reservoirs and their interaction. *In: Kimberlites, related rocks and mantle xenoliths*, Proceedings of the 5IKC, Araxá, 1991., (eds.) Meyer H.O.A. & Leonardos
- Bertoni M.E., Rooney A.D., Selby D., Alkmim F.F, Le Heron D.P. 2014. Neoproterozoic Re–Os systematics of organic-rich rocks in the São Francisco Basin, Brazil and implications for hydrocarbon exploration. *Precambrian Research* 255: 355–366.
- Beurlen, H. 1973. Ocorrências de chumbo, zinco e fluorita nas rochas sedimentares do Precambriano Superior no Grupo Bambuí em Minas Gerais (Brasil Central). Tese de doutorado. (tradução do autor). Faculdade de Ciências Naturais, Universidade Karl Ruprecht, Heilderberg (Alemanha), 165 p
- Boyer S. E., Elliott D. 1982. Thrust systems. American Association of Petroleum Geologists Bulletin, 66: 1196–1230.
- Bradley D.C., Kidd W.S.F. 1991. Flexural extension of the upper continental crust in colisional foredeeps. *Geological Society of America Bulletin* **103** (11): 1416–1438.
- Branco J.J.R & Costa M.T. 1961. Roteiro da excursão Belo Horizonte-Brasília. *In*: XIV Congresso Brasileiro de Geologia, Belo Horizonte, SBG, *Roteiro das Excursões*, 25p.
- Brandalise L.A. 1980 *Projeto Sondagem Bambuí em Minas Gerais*. Companhia de Pesquisa de Recursos Minerais CPRM, Sup.Regional de Belo Horizonte. Relatório Final. Vol.1 (Texto e Anexos). 274p.
- Brito-Neves, B.B.; Sá, J.M.; Nilson, A.A.; Botelho, N.F. 1996. A tafrogênese estateriana nos blocos paleoproterozoicos da América do Sul. Geonomos 3: 1–21
- Buchwaldt R., Toulkeridis T., Babinski M., Noce C.M., Martins-Neto M.A., Hercos C.M., 1999. Age determination and age related provenance analysis of the Proterozoic glaciation event in central eastern Brazil.
 In: South American Simp. On Isotope Geology, 2, Córdoba, Argentina. *Abstracts*. 387-390
- Byerlee J.D. 1978. Friction of rocks. Pure and Applied Geophysics, 116:615-626.
- Cáceres P., Ferreira D., Furtado R., Neves F., Prevatti L., Castilho G. 2011. Dinamite x Vibroseis. In: 12th International Congress of the Brazilian Geophysical Society. Rio de Janeiro, Short papers, 1-6.
- Caetano-Filho, S., Paula-Santos, G.M., Guacaneme, C., Babinski, M., Bedoya-Rueda, C., Peloso, M., Amorim, K., Afonso, J., Matheus Kuchenbecker, M., Reis, H.L.S., Trindade, R.I.F., 2019. Sequence stratigraphy and chemostratigraphy of an Ediacaran-Cambrian foreland-related carbonate ramp (Bambuí Group, Brazil). Precambrian Res. 331 (June), 105365
- Campos J.E.G. 1992. A glaciação permo-carbonífera nas regiões de Canabrava e Sta Fé de Minas, MG., Instituto de Geociências, Universidade de Brasília, Brasília. Dissertação de Mestrado 104p.
- Campos J.E.G & Dardenne M.A.1994. A glaciação neopaleozóica na porção meridional da Bacia Sanfranciscana. *Revista Brasileira de Geociências*, **24**(2): 65-76
- Campos J.E.G., Dardenne M.A. 1997. Estratigrafia e Sedimentação da Bacia Sanfranciscana: Uma Revisão. *Revista Brasileira de Geociências*, **21**(3):269-282
- Campos J.E.G., Dardenne M.A., Freitas-Silva F.H., Martins-Ferreira M.A.C. 2013. Geologia do Grupo Paranoá na porção externa da Faixa Brasília. *Brazilian. Journal of Geology*, **43**(3): 461-476.
- Campos Neto M.C., 1984a. Geometria das fases de dobramento do Brasiliano superpostos no Oeste de Minas Gerais. *Revista Brasileira de Geociências*, **14**(1): 60-68.

- Campos Neto M.C. 1984b. Litoestratigrafia e evolução paleogeográfica dos Grupos Canastra e Paranoá (região Vazante-Lagamar, MG). *Revista Brasileira de Geociências* **14** (2): 81-91
- Caputo, R., 2005. Stress variability and brittle tectonic structures. Earth Sci. Rev. 70, 103–127.
- Carvalho, J.M., Barros, L.V., Zahradnik, J. 2016. Focal mechanisms and moment magnitudes of microearthquakes in Central Brazil by waveform inversion with quality assessment and inference of the local stress field. J. South Am. Earth Sci., 71, 333–343. doi:10.1016/j.jsames.2015.07.020
- Cassedanne, J. 1972. *Catalogue descriptif dês gîtes de Plomb e du Zinc du Brésil. Clermond- Ferrand*. Thèse de Doctorat es Sciencies Naturelles. Department de geologie et Mineralogie, Université de Clermond-Ferrand, France
- Castro P.T.A. & Dardenne M.A. 2000. The sedimentology, stratigraphy and tectonic context of the São Francisco Supergroup at the southern boundary of the São Francisco craton, Brazil. *Revista Brasileira de Geociências*, 30: 345-437
- Catuneanu O. 2004a. Retroarc foreland systems evolution through time. Journal of African Earth Sciences, **38**: 225-241
- Catuneanu O. 2004b. Basement control on flexural profiles and the distribution of foreland facies: the Dwyka Group of the Karoo Basin South Africa. *Geology* **32**, 517–520.
- Catuneanu O. 2018. First-order foreland cycles: Interplay of flexural tectonics, dynamic loading and sedimentation. *Journal of geodynamics* https://doi.org/10.1016/j.jog.2018.03.001
- Catuneanu O., Sweet A.R., Miall A.D. 1999a. Concept and styles of reciprocal stratigraphies: western Canada foreland basin. *Terra Nova* **11**, 1–8
- Caxito F.A., Halverson G.P., Uhlein A., Stevensson R., Dias T.G., Uhlein G.J. 2012. Marinoan glaciation in East Central Brazil. *Precambrian Research*, 200-203: 38-58.
- Caxito, F.A., Uhlein, A. Dantas, E., Stevenson, R., Egydio-Silva, M., Salgado, S.S. 2017. The Rio Preto and Riacho do Pontal belt. In: M. Heilbron, U.G. Cordani, F.F. Alkmim (eds) São Francisco craton, eastern Brazil. Tectonic Genealogy of a Miniature Continent. Regional Geology Reviews, Springer International Publishing Co., p. 221-239
- Chang H.K., Miranda F.P., Magalhães L., Alkmim F.F. 1988. Considerações sobre a evolução tectônica da bacia do São Francisco. In: SBG, Cong. Bras. Geol., 35, Anais, Belém, 5:2076-2090.
- Chaves, M.L.S.C., Dias, C. H. 2015. Folha Rio Acari SD.23-Y-D-VI. Mapa geológico em escala 1:100.000 e Nota Explicativa. Projeto Fronteiras de Minas, CODEMIG-CPMTC-IGC-UFMG.
- Chemale Jr. F., Dussin I.A., Alkmim F.F., Martins M.S., Queiroga G., Armstrong R., Santos M.N., 2012. Unravelling a Proterozoic basin history through detrital zircon geochronology: the case of the Espinhaço Supergroup, Minas Gerais, Brazil. Gondwana Research. 22: 200–206.
- Chiavegatto J.R.S., 1992. Análise estratigráfica das sequências tempestíticas da Fm. Três Marias (Proterozóico Sup.), na porção meridional da bacia do São Francisco. Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto. Dissertação de Mestrado, 196 p.
- Chiavegatto J.R.S., Gomes N.S., Dardenne M.A., Delgado C.E.R. 2003. Estratigrafia do Grupo Bambuí nas regiões do Norte de Minas Gerais: Uma nova unidade estratigráfica em um contexto de inversão de bacia. *In*: SBG, Simpósio de Geologia de Minas Gerais, Ouro Preto. *Anais*, cd rom
- Chimpliganond, C., M. Assumpção, M. von Huelsen & G.S. França, 2010. The intracratonic Caraíbas-Itacarambi earthquake of December 09, 2007 (4.9 mb), Minas Gerais State, Brazil. Tectonophysics, 480, 48–56.
- Cloud P. & Dardenne M.A. 1973. Proterozoic age of the Bambuí Group in Brazil. *Geological Society of America Bulletin*, **84**:673-676.
- CODEMGE Companhia de Desenvolvimento de Minas Gerais. Disponível em < http://www.codemge.com.br/atuacao/mineracao/levantamento-aerogeofisico/ >. Acesso em 03 de fevereiro de 2019.
- Coelho J. C. C. 2007. Estilos estruturais e evolução tectônica da borda oeste da Bacia do São Francisco, com base na integração de dados de superfície, sub-superfície, litogeoquímica e isótopos. DEGEO/Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto, Dissertação de Mestrado, 112p

- Condé V.C., Campos J.E.G., Dardenne M.A. & Faria A. 1994. Posicionamento estratigráfico das unidades do Grupo Paranoá na Serra Geral do Paranã, a leste da cidade de São Gabriel - GO. Em: Simp. Geol. Centro-Oeste, Brasília. *Boletim...* Brasília, Sociedade Brasileira de Geologia, 4, 164-165.
- Cooper M. A., Williams G. D. 1989. *Inversion Tectonics*. Geological Society, London, Special Publication. 356 p.
- Costa, P.C.G. 1978. Geologia das Folhas de Januária, Mata do Jaíba, Japoré e Manga, Minas Gerais. *Memória Técnica. CETEC*. Belo Horizonte
- Costa, R.D., Kuchenbecker, M., Chaves, M.L.S.A., Leite, M.M. 2015. Folha Serra dos Tropeiros SD.23-Z-A-I. Mapa geológico em escala 1:100.000 e Nota Explicativa. Projeto Fronteiras de Minas, CODEMIG-CPMTC-IGC-UFMG.
- Crampton S.L., Allen P.A. 1995. Recognition of forebulge unconformities associated with early stage foreland basin development: example from north Alpine foreland basin. *Am. Assoc. Petrol. Geol. Bul.* **79**: 1495–1514
- Cruz S.P.C., Alkmim F.F. 2006. The tectonic interaction between the Paramirim Aulacogen and the Araçuaí belt, São Francisco Craton Region, Eastern Brazil. *Anais da Academia Brasileira de Ciências*, **78** (1), 151–174
- Cukrov N., Alvarenga C.J.S., Uhlein A, 2005. Litofácies da glaciação neoproterozoica nas porções sul do Cráton do São Francisco: exemplos de Jequitaí, MG e Cristalina, GO. *Revista Brasileira de Geociências*, São Paulo, 35 (1): 69-76
- D'el-Rey Silva L.J.H, Oliveira I.L., Pohren C.B, Tanizaki M. L. N., Carneiro R.C., Fernandes G.L.F., Aragão P.E. 2011. Coeval perpendicular shortenings in the Brasília belt: Collision of irregular plate margins leading to oroclinal bending in the Neoproterozoic of central Brazil. Journal of South American Earth Sciences, 32:1-13
- Danderfer A., Dardenne M.A., 2002. Tectonoestratigrafia da bacia Espinhaço na porção centro-norte do cráton do São Francisco: registro de uma evolução poli-histórica descontínua. *Revista Brasileira de Geociências*, 32, 449–460.
- Danderfer, A., Lana, C.C., Nalini Junior, H.A., Costa, A.F.O., 2015. Constraints on the Statherian evolution of the intraplate rifting in a Paleo- Mesoproterozoicpaleocontinent: new stratigraphic and geochronology record from the east-ern São Francisco Craton. Gondwana Res. 28 (2). 668-688.
- Danderfer, A., Waele, B. D., Pedreira, A. J., Nalini, H. A., 2009. New geochronological constraints on the geological evolution of Espinhaço basin within the São Francisco Craton Brazil. *Precambrian Research*, **170**, 116 128.
- Dardenne M.A. 1978. Síntese sobre a estratigrafia do Grupo Bambuí no Brasil Central. In:SBG, XXX Congr. Bras. Geol., 2, Anais, p. 597-610
- Dardenne, M.A., 1979. Les minéralisations de plomb, zinc, flúor du Proterozoique Supérieur dans Le Brésil Central, University of Paris VI, Paris, Tese de doutoramento 251p
- Dardenne M.A. 1981. Os grupos Paranoá e Bambuí na Faixa Dobrada Brasília. In: Proceedings of the 1st Simpósio sobre o Cráton do São Francisco, Sociedade Brasileira de Geologia (SBG) e Núcleo BA, Salvador, Anais, 140-157.
- Dardenne M.A., 2000. The Brasília fold belt. Em: Cordani U.G., Milani E.J., Thomaz-Filho A., Campos D.A. (eds.) *Tectonic Evolution of South America*. 31st Internal Geoogical Congress, Rio de Janeiro, 231-263.
- Dardenne M.A., Faria A. 1986. Estratigrafia do Grupo Paranoá na região de Alto Paraiso. II SBG Simposio de Geologia do Centro-Oeste (Goiania, 1985). *Ata*, 65–71.
- Dardenne M.A., Faria A. & Andrade G.F. 1976. Occurrence de stromatolites columnaires dans Le Group Bambuí (Goiás, Brésil). *Anais da Academia Brasileira de Ciências*, **48**(3):555-566.
- Dardenne M.A., Freitas-Silva F.H., Nogueira G.S.M., Souza J.C.F. 1997. Depósitos de fosfato de Rochinha e Lagamar, Minas Gerais. In: Schobbenhaus C.; Queiroz E.T.; Coelho C.E.S. (cords): Principais Depósitos Minerais do Brasil, DNPM/CPRM. 113-122
- Dardenne M. A., Freitas-Silva F. H., Souza J. C. F., Campos J. E. G. 1998. Evolução tectono-sedimentar do Grupo Vazante no contexto da Faixa de Dobramentos Brasília. *In:* Congresso Brasileiro de Geologia, Belo Horizonte, 40. *Resumos.* 26
- Dardenne M.A. Gonzaga G.M.; Campos J.E.G. 1990. Descoberta de pavimentos estriados de origem glacial sobre arcóseos da Formação Três Marias, na região de Santa Fé de Minas, MG. *Rev. Escola de Minas*, **54**(4): 65-66.

- Dardenne M.A., Pimentel M.M., Alvarenga C.J.S. 2003. Provenance of conglomerates of the Bambuí, Jequitaí, Vazante and Ibiá Groups: Implications for the evolution of The Brasília Belt. In: IX Simpósio Nacional de Estudos Tectônicos - SNET, Boletim de Resumos, 47-49
- Davis G.L. 1977. The ages and uranium contents of zircons from kimberlites and associated rocks. *Carnegie Inst. Washington Yearb* **76**:631-635
- Delvaux D., Sperner B. 2003. Stress tensor inversion from fault kinematic indicators and focal mechanism data: the TENSOR program. In: Nieuwland D. (ed.) *New Insights into Structural Interpretation and Modelling*. Geological Society, London, Special Publications, 212: 75-100.
- Dias Brito D., Pessagno E.A. Jr., Castro J.C. 1999. Novas considerações cronoestratigráficas sobre o silexito a radiolários do sul da Bacia Sanfranciscana, Brazil, e a ocorrência de foraminíferos planctônicos nestes depósitos. *In:* SBG, Simpósito Sobre o Cretáceo do Brasil, 5, Águas de São Pedro, SP, *Anais*, 567-575.
- DeCelles P.G., Giles K.A. 1996. Foreland basin systems. Basin Research. 8: 105-123
- Destro N. 1995. Release fault: a variety of cross fault in linked extensional fault systems, in the Sergipe–Alagoas Basin, NE Brazil. *Journal of Structural Geology* **17** (5): 615–629.
- Dickinson W.R. 1974. Plate tectonics and sedimentation. In: Dickinson, W.R. (Ed.), *Tectonics and Sedimentation*. Society of Economic Paleontologists and Mineralogists, Special Publication 22: 1–27.
- Doglioni C. 1995. Geological remarks on the relationships between extension and convergente geodynamic settings. *Tectonophysics* **252** (1): 253–267.
- Dominguez J.M.L. 1993. As coberturas do Cráton do São Francisco: uma abordagem do ponto de vista da análise bacias. Em: Dominguez, J.M.L. & Misi, A.(ed.): O Cráton do São Francisco. SBG/BA-SE, SGM/BA, 137-159
- DuPont H. 1996. O Supergrupo São Francisco entre a Serra do Cabral e as Serras do Espinhaço e de Minas. Estudo Estratigráfico e Estrutural e Relações de Contato com o Supergrupo Espinhaço. SBG, Cong. Bras. de Geol., 39, SBG, Salvador, Anais, 5:489-493
- Dussin I.A., Dussin T.M., 1995. Supergrupo Espinhaço: Modelo de Evolução Geodinâmica. Geonomos 1, 19-26.
- Eakin, C. M., Lithgow-Bertelloni, C. 2018. An overview of dynamic topography: the influence of mantle circulation on surface topography and landscape. *Mt. Clim. Biodivers*. 37.
- Espinoza J.A.A. 1996. Sistemas deposicionais e relações estratigráficas da Tectonossequência Conselheiro Mata na borda leste da Serra do Cabral, Minas Gerais, Brasil. Dissertação de Mestrado, Departamento de Geologia, Universidade Federal de Ouro Preto, 130p.
- Etheridge, M.A., 1986. On the reactivation of extensional fault systems. *Royal Society of London Philosophical Transactions*, ser. A, v. 317, p. 179–194
- Faria A. 1995. Estratigrafia e sistemas deposicionais do Grupo Paranoá nas áreas de Cristalina, Distrito Federal e São João D'Aliança-Alto Paraíso de Goiás. Tese de Doutorado, Instituto de Geociências, Universidade de Brasília, Brasília, 199 p.
- Fiori A.P., Wandresen R. 2014. Tensões e Deformações em Geologia. São Paulo, Oficina de Textos. 255 p
- Flowers, R.M., Ault, A.K., Kelley, S.A., Zhang, N., Zhong, S. 2012. Epeirogeny or eustasy? Paleozoic–Mesozoic vertical motion of the North American continental interior from thermochronometry and implications for mantle dynamics. *Earth and Planetary Sci. Let.*, 317-318: 436-445
- Fonseca, M.A., Dardenne, M.A., Uhlein, A., 1995. Faixa Brasília setor setentrional: estilos estruturais e arcabouço tectônico. *Rev. Bras. Geociênc.* 25 (4), 267e278.
- Fossen H. 2016. Structural Geology. Cambridge, Cambridge University Press. 510p.
- Fragoso D.G.C. 2011. Geologia da região de Presidente Olegário e evolução tectono-sedimentar do Grupo Areado, Eocretácio da Bacia Sanfranciscana, Minas Gerais. Universidade Federal de Minas Gerais, Belo Horizonte, Dissertação de Mestrado, 134 p
- Fragoso D.G.C., Uhlein A., Sanglard J.C.D., Suckau G.L., Guerzoni H.T.G, Faria P.H. .Geologia dos Grupos Bambuí, Areado e Mata da Corda na Folha Presidente Olegário (1:100.000), MG: Registro Deposicional do Neoproterozóico ao Neocretáceo da Bacia do São Francisco. 2011. *Geonomos*. **19**(1): 28-38.

- Freitas-Silva F.H. & Campos J.E.G. 1995. Geologia do Parque Nacional de Brasília DF. *Boletim de Geociências do Centro-Oeste*, **18**(1/2), 32-43.
- Freitas-Silva F.H. & Campos J.E.G. 1998. Geologia do Distrito Federal. Em: Inventário Hidrogeológico e dos recursos hídricos superficiais do Distrito Federal. Brasília, SEMARH, 1, 1-86.
- Fuck, R.A., Pimentel, M.M., Dantas, E.L., Alvarenga, C.J.S., 2017. The northern Brasília belt. In: M. Heilbron, U.G. Cordani, F.F. Alkmim (eds) São Francisco craton, eastern Brazil. Tectonic Genealogy of a Miniature Continent. Regional Geology Reviews, Springer International Publishing Co., p. 205-220
- Geboy N.J., Kaufman A.J., Walker R.J., Misi A., Oliveira T.F., Miller K.E., Azmy K., Kendal B., Poulon S.W. 2013. Re–Os age constraints and new observations of Proterozoic glacial deposits in the Vazante Group, Brazil. *Precambrian Research*, 238: 199–213
- Ghosh S.K. 2013. Structural Geology Fundamentals and Modern Developments. Oxford, Pergamon Press. 615p.
- Gibson S.A., Thompson R.N., Leonardos O.H., Dickin A.P., Mitchell J.G. 1995. The Late Cretaceous impact of the Trindade mantle plume: evidence from large-volume, mafic, potassic magmatism in SE Brazil. *Journal of Petrology*, 36:(1)189-229.
- Gross M.R. 1993. The origin and spacing of cross joints: examples from the Monterey Formation, Santa Barbara Coastline, California. *Journal of Structural Geology* **15** (6): 737–751.
- Grossi Sad J.H., Cardoso R.N., Costa M.T.1971. Formações cretácicas em Minas Gerais: uma revisão. *Revista Brasileira Geociências*, 1:2-13
- Guadagnin F., Chemale Jr. F., 2015. Detrital zircon record of the Paleoproterozoic to Mesoproterozoic cratonic basins in the São Francisco Craton. *Journal of South AmericannEarth Sciences*, **60**, 104–116.
- Guadagnin F., Chemale Jr. F., Magalhães A.J., Santana A., Dussin I., Takehara L. 2015. Age constraints on crystal-tuff from the Espinhaço Supergroup Insight into the Paleoproterozoic to Mesoproterozoic intracratonic basin cycles of the São Francisco Craton. *Gondwana Research*, **27**, 363–376.
- Guimarães E.M. 1997. Estudos de proveniência e diagênese com ênfase na caracterização dos filossilicatos dos Grupos Paranoá e Bambuí, na região de Bezerra-Cabeceiras (GO). Tese de Doutorado, Instituto de Geociências, Universidade de Brasília, Brasília, 270 p.
- Guimarães D., Dutra C.V. 1969. Contribuições ao estudo da Série Bambuí. . Boletim da Divisão de Geologia e Mineralogia do DNPM. 27p
- Gung, Y., Panning, M., Romanowicz, B. 2003. Global anisotropy and the thickness of continents, Nature, 422(6933), 707–711
- Gurnis, M., 1992. Rapid continental subsidence following the initiation and evolution of subduction. Science 255, 1556–1558.
- Hasui Y., Haralyi N.L.E. 1991. Aspectos lito-estruturais e geofísicos do soerguimento do Alto Paranaíba. Geociências, 10:57-77
- Heilbron, M., Cordani, U.G., Alkmim F.F. (eds) 2017. São Francisco craton, eastern Brazil. Tectonic Genealogy of a Miniature Continent. Regional Geology Reviews, Springer International Publishing Co. 326p.
- Hercos C.M., Martins-Neto M.A., Danderfer Filho A. 2008. Arcabouço estrutural da Bacia do São Francisco nos arredores da Serra da Água Fria (MG), a partir da integração de dados de superfície e subsuperfície. *Revista Brasileira de Geociências*, **38**:197-212.
- Holdsworth, R.E., Butler, C.A., and Roberts, A.M., 1997. The recognition of reactivation during continental deformation. Geological Society Journal, v. 154, p. 73–78.
- Homberg, C., Hu, J.C., Angelier, J., Bergerat, F., Lacombe, O., 1997. Characterization of stress perturbations near major fault zones: insights from 2-D distinct-element numerical modelling and field studies (Jura mountains). J. Struct. Geol. 19, 703–718.
- Hu, J., Angelier, J. 2004. Stress permutations: Three-dimensional distinct element analysis accounts for a common phenomenon in brittle tectonics. Journal of Geophysical Research. 109
- Hu, J., Badal, J., Yang, H., Li, G., Peng, H. 2018. Comprehensive crustal structure and seismological evidence for lower crustal flow in the southeastern margin of Tibet revealed by receiver functions. Gondwana Research 55, 42-59.

- Iglesias M. 2007. Estratigrafia e tectônica do Grupo Bambuí no norte do Estado de Minas Gerais. Dissertação de Mestrado, Instituto de Geociências, UFMG, Belo Horizonte, 121p
- Iglesias M.; Uhlein A. 2009. Estratigrafia do Grupo Bambuí e coberturas fanerozoicas no vale do rio São Francisco, norte de Minas Gerais. *Revista Brasileira de Geociências*, **39**(2): 256-266
- Inda H.A.V. & Barbosa J.F. 1978. Texto explicativo para o mapa geológico do Estado da Bahia, escala 1:1.000.000. Salvador, SME/CPM, 137 p.
- Jordan, T., 1978. Composition and development of the continental tectosphere, Nature, 274(5671), 544-548
- Kaban, M., Mooney, W., Petrunin, A. 2015. Cratonic root beneath North America shifted by basal drag from the convecting mantle, Nat. Geosci., 8(10), 797–800.
- Karfunkel J. & Hoppe A. 1988. Late Proterozoic Glaciation in Central-Eastern Brazil: synthesis and model. *Paleogeogr., Paleoclim., Paleoecol.*, **65**:1-21.
- Kattah S.S. 1991. Análise Faciológica e Estratigráfica do Jurássico Superior / Cretáceo Inferior na Porção Meridional da Bacia Sanfranciscana, Oeste do Estado de Minas Gerais. Departamento de Geologia, Escola de Minas, Universidade Federal de Ouro Preto, Dissertação de Mestrado, 227 p
- Kattah S.S., Koutsoukos E.A.M. 1992. Ocorrências de radiolários em facies de origem marinha no mesozoico da Bacia Sanfranciscana. SBG, Simpósio Geologia de Minas Gerais, 6, *Revista da Escola Minas Ouro Preto*, Ouro Preto, 45:214.
- Kenner S.H., Segal P. 2000. A mechanical model for intraplate earthquakes: application to the New Madrid seismic zone. *Science* **289** (5488): 2329-2332
- King, S. 2005. Archean cratons and mantle dynamics, Earth planet. Sci. Lett., 234(1), 1–14.
- Kuchenbecker M. 2014. Relações entre coberturas do Cráton do São Francisco e bacias situadas em orógenos marginais: o registro de datações U-Pb de grãos detríticos de zircão e suas implicações geotectônicas. Instituto de Geociências, Universidade Federal de Minas Gerais, Belo Horizonte. Tese de doutoramento, 173 p
- Kuchenbecker M., Babinski M., Pedrosa-Soares A.C., Costa R.D., Lopes-Silva L., Pimenta F. 2013. Provenance and sedimentary analysis of the basal portion of the Bambuí Group at Arcos (MG). *Geologia USP – Série Científica*, **13**(4):4-61
- Kuchenbecker M., Babinski M., Pedrosa-Soares A.C., Lopes-Silva L., Pimenta F. 2016. Chemostratigraphy of the lower Bambuí Group, southwestern São Francisco Craton, Brazil: insights on Gondwana paleoenvironments. Brazilian Journal of Geology, 46: 145-16.
- Kuchenbecker M., Lopes-Silva L.L., Pimenta F., Pedrosa-Soares A.C., Babinski M. 2011. Estratigrafia da porção basal do Grupo Bambuí na região de Arcos (MG): uma contribuição com base em testemunhos de sondagem. *Geologia USP – Série Científica*, 11(2):45-54.
- Kuchenbecker M., Pedrosa-Soares A.C., Babinski M., Fanning M. 2015. Detrital zircon age patterns and provenance assessment for pre-glacial to post-glacial successions of the Neoproterozoic Macaúbas Group, Araçuaí orogen, Brazil, Precambrian Research. 266: 12-26
- Kuchenbecker, M., Pedrosa-Soares, A.C., Babinski, M., Reis, H.L.S., Atman, D., Costa, R.D. 2020. Towards an integrated tectonic model for the interaction between the Bambuí basin and the adjoining orogenic belts: Evidences from the detrital zircon record of syn-orogenic units. J. South. Am. Earth Sci. 104 (2020) 102831
- Kuchenbecker, M., Reis, H.L.S., Silva, L.C., Costa, R.D., Fragoso, D.G.C., Knauer, L.G., Dussin, I.A., Pedrosa-Soares, A.C. 2015. Age constraints for deposition and sedimentary provenance of Espinhaço Supergroup and Bambuí Group in eastern São Francisco craton. *Geonomos*, 23(2), p 14-28
- Ladeira E.A., Brito O.E.A. de. 1968. Contribuição à Geologia do Planalto da Mata da Corda. In: SBG, Congresso Brasileiro Geologia, 22, Belo Horizonte, Anais, 181-199.
- Landes, K. K., Amoruso, J. J., Charlesworth, L. J., Heany, F., & Lesperance, P. J. (1960). Petroleum resources in basement rocks. AAPG Bulletin, 44, 1682–1691. https://doi.org/10.1306/0bda622d-16bd-11d7-8645000102c1865d
- Langhi L., Ciftci N.B., Borel G.D. 2011. Impact of lithospheric flexure on the evolution of shallow faults in the Timor foreland system. *Marine Geology* **284** (1): 40–54.

- Lavoie, D., Pinet, N., Dietrich, J., and Chen, Z., 2015, The Paleozoic Hudson Bay Basin in northern Canada: New insights into hydrocarbon potential of a frontier intracratonic basin. AAPG Bulletin. 99, 859–888. doi:10.1306/12161414060
- Leite M.M., Costa R.D., Jales I.B., Caetano J.C.S., Assis K.P., Miranda T.F. 2015. Folha Montalvânia SD-23-Z-A-II. Mapa geológico em escala 1:100.000 e Nota Explicativa. Projeto Fronteiras de Minas, CODEMIG-CPMTC-IGC-UFMG
- Lenardic, A., Moresi, L.N., M^{*}uhlhaus, H. 2003. Longevity and stability of cratonic lithosphere: insights from numerical simulations of coupled mantle convection and continental tectonics, J. geophys. Res., 108(B6), doi:10.1029/2002JB001859.
- Levandowski, W., Zellman, M., Briggs, R.W. 2017. Gravitational body forces focus North American intraplate earthquakes. Nat. Commun. 8, 14314
- Liesa, C.L., Simon, J.L., Ezquerro, L., Arlegui, L.E., Luzon, A., 2019. Stress evolution and structural inheritance controlling an intracontinental extensional basin: The central-northern sector of the Neogene Teruel Basin. J. Struc. Geol. 118: 362-376
- Lima O.N.B., Uhlein A., Britto W. 2007. Estratigrafia do Grupo Bambuí na Serra da Saudade e geologia do depósito fosfático de Cedro do Abaeté, Minas Gerais. *Revista Brasileira de Geociências*, **37** (4): 204-215
- Lindsay, J.F. 2002 Supersequences, superbasins, supercontinents evidence from the Neoproterozoic-Early Paleozoic basins of Central Australia. Basin Research, 14, 207–223.
- Lopes A.E.V. 2008. *Mecanismos focais e esforços litosféricos no Brasil*. Tese de doutorado, IAG, Universidade de São Paulo, 300p
- Lopes, O.F. 1979. Minéralization em plomb, zinc et fluorine encaisées dans le Group Bambuí, du Proterozóique Supérieur de la region d'Itacarambi (Minas Gerais, Brésil). Tese de doutorado. Université Pierre et Marie Curie. Paris IV, Paris, 190p
- Lopes O.F. 1981 Evolução paleogeográfica e estrutural da porção central da Bacia Bambuí no norte do Estado de Minas Gerais. *Revista Brasileira de Geociências*, **11**:116-127
- Lopes O.F. 1983 A porção central da Bacia Bambuí: um exemplo de convergência metalogenética do Precambriano Superior. *In:* SBG, Simp.Geol.Minas Gerais, 3, *boletim*, p.271-282
- Lopes, T.C. 2012. O Supergrupo Espinhaço na Serra do Cabral, Minas Gerais: contribuição ao estudo de proveniência sedimentar. Master's Dissertation. Universidade Federal de Minas Gerais. 136p.
- Macedo, J., Marshak, S., 1999. Controls on the geometry of fold-thrust belt salients. Geol. Soc. Am. Bull. 111 (12): 1808-1822
- Machado N., Schrank A., Abreu F.R., Knauer L.G., Almeida-Abreu P.A., 1989. Resultados preliminares da geocronologia U/Pb na Serra do Espinhaço Meridional. Em: Simpósio de Geologia do Núcleo Minas Gerais. Brazilian Geological Society, **10:** 171–174.
- Madalosso A. 1980. Considerações sobre a paleogeografia do Grupo Bambuí na região de Paracatu–Morro Agudo (MG). *In:* SBG, XXXI Congresso Brasileiro de Geologia, 2. *Anais:*772-785.
- Madalosso A. & Veronese V.A. 1978. Considerações sobre a estratigrafia das rochas carbonáticas do Grupo Bambuí na região de Arcos, Pains e Lagoa da Prata (MG). *In*: SBG, XXX Congr. Bras. Geol., Recife, *Anais*, 2: 635-648.
- Magalhães, L. 1988. Análise estrutural qualitativa dos sedimentos do Grupo Bambuí, região sudeste da Bacia do São Francisco (Faixa Sete Lagoas-Serra do Cipó). Dissertação de mestrado, Universidade Federal de Ouro Preto.
- Manatchal, G., Lavier, L., Chenin, P. 2015. The role of inheritance in structuring hyperextended rift systems: Some considerations based on observations and numerical modeling. *Gondwana Research*, 27, 140-164
- Marshak, S., 2004. Salients, recesses, arcs, oroclines and syntaxes e a review of ideas concerning the formation of map-views curves in fold-thrust belts. In: McClay, K.R. (Ed.), Thrust Tectonics and Hydrocarbon Systems. AAPG Memoir, 82. 131-156
- Marshak, S., Karlstrom, K., Timmons, J.M., 2000. Inversion of Proterozoic extensional faults: An explanation for the pattern of Laramide and Ancestral Rockies intracratonic deformation, United States. Geology, 28(8): 735-738

- Marshak, S., Paulsen, T. 1996. Midcontinent U.S. fault and fold zones: A legacy of Proterozoic intracratonic extensional tectonism? Geology. 2, 151-154
- Martins-Ferreira, M.A.C. 2019. Effects of initial rift inversion over fold-and-thrust development in a cratonic farforeland setting. Tectonophysics. 757, 88-107.
- Martins-Neto M.A. 1998. O Supergrupo Espinhaço em Minas Gerais: registro de uma bacia rifte-sag do Paleo/Mesoproterozoico. *Revista Brasileira de Geociênias*, **28**: 151–168.
- Martins-Neto M.A. 2000. Tectonics and sedimentation in a paleo/mesoproterozoic rift-sag basin (Espinhaço basin, southeastern Brazil). *Precambrian Research*, **103**: 147–173
- Martins-Neto M.A. 2009. Sequence Stratigraphic framework of Proterozoic successions in eastern Brazil. *Marine* and Petroleum Geology, 26, 163-176.
- Martins-Neto M.A., Hercos C.M. 2002. Sedimentation and tectonic setting of Early Neoproterozoic glacial deposits in southern Brazil. In: Altermann, W., Corcoran, P.L. (eds.) *Precambrian Sedimentary Environments:* A Modern Approach to Ancient Depositional Systems. 33, Special Publication of the International Association of Sedimentologists, 383-403
- Martins-Neto M.A., Pedrosa- Soares A.C., Lima S.A.A. 2001.Tectono-sedimentary evolution of sedimentary basins from Late Paleoproterozoic to Late Neoproterozoic in the São Francisco craton and Araçuaí fold belt, eastern Brazil. Sedimentary Geology, 141-142:343-370.
- Martins M., Lemos V.B. 2007. Análise estratigráfica das sequências neoproterozoicas da Bacia do São Francisco. *Revista Brasileira de Geociências.* **37** (4): 156-167
- Matteini M., Dantas E.L., Pimentel M.M., Alvarenga C.J.S. & Dardenne M.A. 2012. U-Pb and Hf isotope study on detrital zircons from the Paranoá Group, Brasília Belt Brazil: constraints on depositional age at Mesoproterozoic-Neoproterozoic transition and tectono-magmatic events in the São Francisco craton. *Precambrian Research*, 206-207:168-181.
- McClay K.R., Whitehouse P.S., Dooley T., Richards M. 2004. 3D evolution of fold and thrust belts formed by oblique convergence. Marine and Petroleum Geology, 21: 857–877.
- Mildren, S.D., Hillis, R.R., Kaldi, J., 2002. Calibrating predictions of faultseal reactivation in the Timor Sea. Australian Petroleum, Production and Exploration Association Journal, 187–202.
- Misi A., Azmy K., Kaufman A.J., Oliveira T.F., Sanches A.L., Oliveira G.D. 2014. Review of the geological and geochronological framework of the Vazante sequence, Minas Gerais, Brazil: Implications to metallogenic and phosphogenic models. *Ore Geology Reviews*, 63: 76-90
- Misra A.A., Mukherjee S. (eds.). 2015. Tectonic Inheritance in Continental Rifts and Passive Margins. Mumbai, Springer, 88p.
- Misra A.A., Mukherjee S. (eds.). 2018. Atlas of Structural Geological Interpretation from Seismic Images. Pondicherry, Wiley Blackwell, 267p
- Molnar, P., England, P.C., Jones, C.H. 2015. Mantle dynamics, isostasy, and the support of high terrain. J. Geophys. Res. Solid Earth 120, 1932–1957
- Moreira, D.S., Uhlein, A., Dussin, I.A., Uhlein, G.J., Pimentel Misuzaki, A.M., 2020. A Cambrian age for the upper Bambuí Group, Brazil, supported by the first U-Pb dating of volcaniclastic bed. Journal of South American Earth Sciences. 99
- Morley C.K., Haranyac C., Phoosongseec W., Pongwapee S. 2004. Activation of rift oblique and rift parallel preexisting fabrics during extension and their effect on deformation style: examples from the rifts of Thailand. *Journal of Structural Geology*, 26:1803–1829.
- Munro, M.A., Blenkinsop, T.G. 2012. MARD-a moving average rose diagram application for the geosciences. Comput. Geosci. https://doi.org/10.1016/j.cageo.2012.07.012.
- Nanda, N.C. 2016. Seismic Data Interpretation and Evaluation for Hydrocarbon Exploration and Production. Springer. 230p.
- Naylor M, Sinclair H.D. 2008. Pro- vs. Retro-foreland basins. Basin research 20: 205-303
- Nelson, W.J., Marshak, S. 1996. Devonian tectonism of the Illinois basin region, U.S. continental interior, in van der Pluijm, B. A., and Catacosinos, P. A., eds., Basement and Basins of Eastern North America: Boulder, Colorado. Geological Society of America Special Paper 308.

- Nobre-Lopes J. 2002. Diagenesis of the dolomites hosting Zn/Ag mineral deposits in the Bambuí Group at Januária region, MG. Tese de Doutorado, Instituto de Geociências, Universidade Estadual de Campinas, Campinas, 124p
- O'Neill, C., Lenardic, A., Griffin, W., O'Reilly, S. 2008. Dynamics of cratons in an evolving mantle, Lithos, 102(1), 12–24
- Oliveira J.R.P. 1989. Comportamento estrutural dos grupos Macaúbas e Bambuí na porção centro-norte de Minas Gerais. MS Dissertation, Departamento de Geologia, Universidade Federal de Ouro Preto, Ouro Preto
- Onajite, E. 2014. Seismic Data Analysis Techniques in Hydrocarbon Exploration. Waltham, Elsevier.
- Parenti-Couto J. G. 1980. Nota sobre a estratigrafia do Grupo Bambuí na região de Felixlândia, Minas Gerais. *Revista Brasileira de Geociências*, 10: 292-296.
- Paul, J., Ghosh, A., Conrad, C.P. 2019. Traction and strain at the base of the lithosphere: an insight into cratonic survival. Geophys. J. Int., 217: 1024-1033
- Paula-Santos G.V., Babinski M., Kuchenbecker M., Caetano-Filho S., Trindade R.I., Pedrosa-Soares A.C. 2015. New evidence of na Ediacaran age for the Bambuí Group in southern São Francisco craton (eastern Brazil) from zircon U–Pb data and isotope chemostratigraphy. *Gondwana Research*, 28:702-720.
- Paulsen S., Bosum, W., Hagen D., Lacerda G.M., Lima J.E.S., Ribeiro C.I., Godoy A., Souza A.A., Bicalho F.D., Ferrari P.G., Heineck C., Steiner H.P., Paulino J. Ritcher P., Lanher L., Mollat H., Resch M., Oswald J., Jochmann D. 1974. Relatório de reconhecimento geológicogeoquímico Pratinha-Argenita-Tapira-Serra da Canastra, Minas Gerais. CPRM/DNPM/Serviço Geológico da República de Alemanha (Convênio Geofísica Brasil – Alemanha) 57p.
- Peacock, D.C.P., Banks, G.J. 2020. Basement highs: definitions, characterization and origins. Bas. Res. 00, 1-26
- Pearson, D., Carlson, R., Shirey, S., Boyd, F., Nixon, P. 1995a. Stabilisation of Archaean lithospheric mantle: a Re-Os isotope study of peridotite xenoliths from the Kaapvaal craton, Earth planet. Sci. Lett., 134(3), 341– 357. <u>https://doi.org/10.1016/0012-821X(95)00125-V</u>
- Pearson, D. & ,Wittig, N. 2014. The formation and evolution of cratonic mantle lithosphere–evidence from mantle xenoliths. In: Turekian, K., Holland, H. (eds.) Treatise on Geochemistry, Elsevier, pp. 255–292.
- Pedrosa-Soares A. C., Cordani U., Nutman A. 2000. Constraining the age of Neoproterozoic glaciation in eastern Brazil: First U-Pb (SHRIMP) data from detrital zircons. *Revista Brasileira de Geociências*, **30**:58-61.
- Pedrosa-Soares A.C., Noce C.M., Wiedemann C.M. & Pinto C.P. 2001. The Araçuaí–West Congo orogen in Brazil: An overview of a confined orogen formed during Gondwanland assembly. *Precambrian Research*, 110: 307-323
- Perrella P., Uhlein A., Uhlein G.J., Sial A.N., Pedrosa-Soares A.C., Lima O.N.B. 2017. Facies analysis, sequence stratigraphy and chemostratigraphy of the Sete Lagoas Formation (Bambui Group), northern Minas Gerais State, Brazil: evidence of a cap carbonate deposited on the Januária basement high. *Brazilian Journal of Geology*, 47 (1): 59-77
- Pessagno E.A.Jr., Dias-Brito D. 1996. O silexito a radiolário do sul da Bacia Sanfranciscana, Brasil. Idade, origem, significado. *In*: SBG, Simpósio sobre o Cretáceo do Brasil, 4, Rio Claro, *Anais*, 213-221.
- Pessagno E.A. Jr., Dias-Brito D., Castro J.C.de. 1997. Tectonostratigraphic significance of radiolarian chert in Lower Cretaceous continental sequence, Minas Gerais, Brazil. *Geological Society of America Annual Meeting*, v.29, 6, 374.
- Pimentel M.M., Dardenne M.A., Fuck R.A., Viana M.G., Junges S.L., Fischel D.P., Seer H. & Dantas E.L. 2001. Nd isotopes and the provenance of detrital sediments of the Neoproterozoic Brasília Belt, Central Brazil. *Journal of South American Earth Sciences*, **14**(6):571-585.
- Pimentel M.M., Rodrigues J.B., Della Giustina M.E.S., Junges S., Matteini M., Armstrong R. 2011. The tectonic evolution of the Neoproterozoic Brasília Belt, central Brazil, based on SHRIMP and LA-ICPMS UePb sedimentary provenance data: a review. J. S. Am. Earth Sci, 31: 345-357.
- Pimentel, M.M. 2016. The tectonic evolution of the Neoproterozoic Brasília Belt, central Brazil: a geochronological and isotopic approach. *Brazilian Journal of Geology*, São Paulo, **46**, p. 67-82
- Pinet, N. 2016. Far-field effects of Appalachian orogenesis: A view from the craton. Geology. 44, 83-86. https://doi.org/10.1130/G37356.1

- Pinto C.P., Silva M.A. 2014. Mapa Geológico do Estado de Minas Gerais. Escala 1:1.000.000. Companhia de Desenvolvimento Econômico de Minas Gerais, CODEMIG e Serviço Geológico do Brasil. CPRM.
- Pflug R. 1965. A Geologia da parte meridional da Serra do Espinhaço e zonas adjacentes, Minas Gerais. Boletim da Divisão de Geologia e Mineralogia do DNPM, **226**, 1–51.
- Pluijm B.A. van der, Marshak S. 2003. Earth Structure. New York, W.W. Norton & Company. 673p.
- Quintà A., Tavani S. 2012. The foreland deformation in the south-western Basque– Cantabrian Belt (Spain). *Tectonophysics* **576**: 4–19.
- Rabelo, A.E.K. & Santos, A.V.L. dos. 1979. Considerações sobre a geologia regional da área norte-noroeste do Estado de Minas Gerais. *Metamig*
- Reis H.L.S. 2011. Estratigrafia e tectônica da Bacia do São Francisco na zona de emanações de gás natural do baixo Rio Indaiá (MG). Universidade Federal de Ouro Preto, Ouro Preto, Dissertação de mestrado, 127 p.
- Reis H.L.S. 2016 *Neoproterozoic evolution of the São Francisco basin, SE Brazil: Effects of tectonic inheritance on foreland sedimentation and deformation.* Departamento de Geologia, Escola de Minas, Universidade Federal de Ouro Preto, Tese de doutorado, 190p.
- Reis H.L.S., Alkmim F.F. 2015. Anatomy of a basin controlled foreland fold-thrust belt curve: The Três Marias Salient, São Francisco Basin, Brazil. *Marine and Petroleum Geology*, **66**: 711-731
- Reis H.L.S., Alkmim F. F., Fonseca R.C. S., Nascimento T.C., Suss J. F., Prevatti L. D. 2017a. The São Francisco Basin. Em: M. Heilbron, U.G. Cordani, F.F. Alkmim (eds) São Francisco craton, eastern Brazil. Tectonic Genealogy of a Miniature Continent. Regional Geology Reviews, Springer International Publishing Co., p. 117-143
- Reis H.L.S., Suss J.F. 2016. Mixed carbonate–siliciclastic sedimentation in forebulge grabens: An example from the Ediacaran Bambuí Group, São Francisco Basin, Brazil. J. Sed. Geo. 339, 83-103. http://dx.doi.org/10.1016/j.sedgeo.2016.04.004
- Reis H.L.S., Suss J.F., Fonseca R.C.S., Alkmim F. F. 2017b. Ediacaran forebulge grabens of the southern São Francisco basin, SE Brazil: Craton interior dynamics during West Gondwana assembly. *Precambrian Research*, **302** (2017): 150–170
- Rezende C.R. 2017. Evidências de arco magmático paleoproterozoico na região do Alto de Januária norte de Minas Gerais. Dissertação de Mestrado, Instituto de Geociências, UFMG, Belo Horizonte, 87p
- Ribeiro A.C., Riccomini C., Leite J.A.D. 2018. Origin of the largest South American transcontinental water divide. Scientific Reports, 8:17144
- Rigobello A.E., Branquinho J.A., Dantas M.G.S., Oliveria T.F., Neves Filho W. 1988. Mina de Zinco de Vazante. In: Schobbenhaus C., Coelho C.E.S. (Coords.) Principais Depósitos Minerais do Brasil. DNPM, 3:101–110.
- Robertson J.F. 1963. Geology of the Lead-Zinc deposits in the município of Januária, state of Minas Gerais, Brazil. U.S. Geological Survey Bulletin, 1110-B: 110 p.
- Rodrigues, J.B. 2008. *Proveniência de sedimentos dos grupos Canastra, Ibiá, Vazante e Bambuí um estudo de zircões detríticos e Idades Modelo Sm–Nd*. (PhD Thesis) Instituto de Geociências, Universidade de Brasília, Brasília. Tese de Doutorado, 128 p.
- Rodrigues J.B., Pimentel M.M., Buhn B., Matteini M., Dardenne M.A., Alvarenga C.J.S., Armstrong R.A. 2012. Provenance of the Vazante Group: New U-Pb, Sm-Nd, Lu-Hf isotopic data and implications for the tectonic evolution of the Neoproterozoic Brasília Belt. *Gondwana Research*, 21: 439–450.
- Rodrigues, R.T. 2020. A falha de João Pinheiro, Bacia do São Francisco, MG: sua geração no evento brasiliano e reativação no evento sul-atlântico. Dissertação de mestrado, Departamento de Geologia, UFOP, Ouro Preto, 133p.
- Romano, A.M., Knauer, L.G., Costa, R.D., Joncew, H.C., Vasconcelos, R.A.C. 2015. Folha São João da Ponte SD.23-Z-C-V, Mapa geológico em escala 1:100.000 e Nota Explicativa. Projeto Fronteiras de Minas, CODEMIG-CPMTC-IGC-UFMG.
- Romano, A.M., Knauer, L.G., Costa, R.D., Nascimento, B.L., Figueiredo, L.N. 2015. Folha São Francisco SD.23-Z-C-IV, Mapa geológico em escala 1:100.000 e Nota Explicativa. Projeto Fronteiras de Minas, CODEMIG-CPMTC-IGC-UFMG.

- Romeiro Silva G.C. 1997. A passagem do Mesoproterozoico para o Neoproterozoico no centro-leste brasileiro e o estilo estrutural envolvido. *Boletim da Sociedade brasileira da Geociências*, Núcleo Minas Gerais, 9 p.
- Rossi, A.V.A., Danderfer Filho, A., Bersan, S.M., Kelmer, L.R., Tavares, T.D., Lana, C.C., 2020. Stratigraphic, isotopic, and geochronological record of a superposed proforeland basin in the eastern S^ao Francisco craton during west Gondwana amalgamation. J. S. Am. Earth Sci. 97, 102406.
- Rostirolla S. P., Mancini F., Reis Neto J. M., Figueira E. G., Araújo É. C. 2002. Análise Estrutural da Mina de Vazante e Adjacências: Geometria, Cinemática e Implicações para a Hidrogeologia. *Revista Brasileira de Geociências*, São Paulo. 32: 59-68
- Rudnick, R., McDonough, W., O'Connell, R. 1998. Thermal structure, thickness and composition of continental lithosphere, Chem. Geol., 145(3), 395–411. <u>http://dx.doi.org/10.1016/S0009-2541(97)00151-4</u>
- Sanderson, D.J., Peacock, D.C. 2020. Making rose diagrams fit-for-purpose. Earth sci. rev. 201, 103055
- Sandwell, D.T., Smith, W.H.F., 2008. TOPEX/POSEIDON data, available: ftp://topex.ucsd.edu/pub/. Access on February 19th, 2010.
- Santos, M.N., Chemale Jr., F., Dussin, I.A., Martins, M.S., Queiroga, G., Pinto, M.S., Santos, M.S., Armstrong, R., 2015. Provenance and paleogeographic reconstruction of a Mesoproterozoic intracratonic sag basin (Upper Espinhaço Basin, Brazil). Sediment. Geol. 318, 40–57.
- Sawasato E. Y. 1995. *Estruturação da porção meridional da Bacia Alto Sanfransciscana, Cretáceo do Oeste de Minas Gerais*. Departamento de Geologia, Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto, Dissertação de Mestrado, 127p.
- Schobbenhaus C., 1993. *O Proterozóico Médio do Brasil com ênfase à região Centro-Leste: uma revisão.* Universidade de Freiburg, Freiburg, Tese de Doutorado, 166p.
- Schobbenhaus, C.; Gonsalves, J.H.; Santos, J.O.S.; Abram, M.B.; Leão Neto, R.; Matos, G.M.M.; Vidotti, R.M.; Ramos, M.A.B.; Jesus, J.D.A. 2004. Carta Geológica do Brasil ao Milionésimo, Sistema de Informações Geográficas SIG. Folha SD.23, Belo Horizonte. CPRM, Brasília, CD-ROM.
- Schöll W.U., Fogaça A.C.C., 1979. Estratigrafia da Serra do Espinhaço na região de Diamantina. Simpósio de Geologia de Minas Gerais, Diamantina: Anais, Sociedade Brasileira de Geologia, 55–73.
- Sengör, A.M.C., Lom, N., Sagdiç, N. 2018. Tectonic inheritance, structure reactivation and lithospheric strength: the relevance of geological history. In: Wilson, R. W., Houseman, G. A., McCaffrey, K. J. W., Doré, A. G., Buiter, S. J. H. (eds) Fifty Years of the Wilson Cycle Concept in Plate Tectonics. Geological Society, London, Special Publications, 470 pp. 105-136. https://doi.org/10.1144/SP470.8
- Sgarbi G.N.C. 1989. *Geologia da Formação Areado. Cretáceo Inferior a Médio Da Bacia Sanfranciscana, Oeste do Estado de Minas Gerais.* Instituto de geociências Universidade Federal do Rio de Janeiro, Rio de Janeiro, dissertação, 128 p
- Sgarbi G.N.C., Sgarbi P.B.A., Campos J.E.G., Dardenne M.A., Penha U.C. 2001. Bacia Sanfranciscana: O registro Fanerozóico da Bacia do São Francisco. *In:* Pinto, C.P. e Martins-Neto, M.A. (eds.) *Bacia do São Francisco*. Geologia e Recursos Naturais, Sociedade Brasileira de Geologia/Núcleo de Minas Gerais, Belo Horizonte, 93-138
- Sgarbi G.N.C. 2011a. Sedimentação do Cretáceo Inferior na Bacia Sanfranciscana: O Grupo Areado. In: Pedrosa-Soares AC, Noce CM, Voll E, Kuchenbecker M, Reis HLS, Fragoso, DGC (ed.) Projeto Alto Paranaíba. Belo Horizonte, CODEMIG-UFMG, 68-146
- Sgarbi P.B.A., Heaman L., Gaspar J. C. 2004. U-Pb perovskite ages for brazilian kamafugitic rocks: further support for a temporal link to a mantle plume hospot track. *Journal of South American Earth Sciences*, **16**:715-724.
- Sgarbi P.B.A. 2011b. Magmatismo do Cretáceo na Região Sudoeste da Bacia Sanfranciscana: O Grupo Mata da Corda. In: Pedrosa-Soares A.C., Noce C.M., Voll E., Kuchenbecker M., Reis H.L.S., Fragoso D.G.C. (ed.) *Projeto Alto Paranaíba*. Belo Horizonte, CODEMIG-UFMG, 147-227
- Sibson R.H. 1985. A note on fault reactivation. Journal of Structural Geology, 27: 751-754.
- Sibson R.H. 2000. Fluid involvement in normal faulting. Journal of geodynamics. 29: 469-499
- Snee, J.E.L., Zoback, M.D. 2020. Multiscale variations of the crustal stress field throughout North America. Nat Commun 11, 1951. https://doi.org/10.1038/s41467-020-15841-5

- Souza Filho R.G. 1995. O Arcabouço Estrutural da porção externa da Faixa Aracuaí na Serra do Cabral (MG) e o contraste de estilos deformacionais entre os supergrupos Espinhaço e São Francisco. DEGEO/Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto, Dissertação de Mestrado, 150p.
- Souza M.E.S., Martins, M.E., Madeira M.R., Queiroga G. N., Barbosa M.S.C. Interação tectônica entre bacias sucessoras no domínio externo do Orógeno Araçuaí: estudo de caso da região de Planalto de Minas, Minas Gerais. Geologia USP. Série Científica, v. 17, p. 143-156
- Szaniawski R., Mazzoli S., Jankowski L. 2017. Controls of structural inheritance on orogenic curvature and foreland basin sedimentation: insights from the Przemysl area, Western Carpathians. *Journal of structural* geology. 103: 137-150
- Tavani S., Muñoz J.A. 2012. Mesozoic rifting in the Basque–Cantabrian Basin (Spain): inherited faults, transversal structures and stress perturbation. Terra Nova 24 (1), 70–76.
- Tavani S., Sorti F., Lacombe O., Corradetti A., Muñoz J.A., e Mazzoli S. 2015. A review of deformationpattern templates in foreland basin systems and fold-and-thrust belts: Implications for the state of stress in the frontal region of frontal thrust wedges. *Earth-sciences. reviews.* 141: 82-104
- Tavares, T.D., Martins, M.S., Alkmim, F.F., Lana, C. 2020. Detrital zircons from the Upper Três Marias Formation, São Francisco basin, SE Brazil: Record of foreland deposition during the Cambrian? Journal of South American Earth Sciences. 97. https://doi.org/10.1016/j.jsames.2019.102395
- Talwani P., Rajendran K. 1991. Some seismological and geometric features of intraplate earthquakes. *Tectonophysics*. **186**: 19-41
- Trice, R. (2014). Basement exploration, West of Shetlands: Progress in opening a new play on the UKCS. In S. J. C. Cannon & D. Ellis (Eds.), Hydrocarbon exploration to exploitation West of Shetlands (Vol. 397, pp. 81–105). London, UK: Special Publications Geological Society of London
- Turcotte D., Schubert G. 1982. Geodynamics. New York, John Willey and sons. 464p
- Tvedt, A.B., Rotevatn, A., Jackson, C.A.-L., Fossen, H., Gawthorpe, R.L., 2013. Growth of normal faults in multilayer sequences: a 3D seismic case study from the Egersund Basin, Norwegian North Sea. J. Struct. Geol. 55, 1–20.
- Uhlein A. 1991. Transição cráton-faixa dobrada: Exemplo do Cráton do São Francisco e da Faixa Araçuaí (Ciclo Brasiliano) no Estado de Minas Gerais. Universidade de São Paulo, São Paulo, Tese de Doutoramento, 295p.
- Uhlein A., Alvarenga C.J.S., Dardenne M.A. & Trompette R.R. 2011. The Glaciogenic Jequitaí Formation, Southeastern Brazil. In: The Geological Record of Neoproterozoic Glaciations. Arnaud E., Halverson G. P. & Shields-Zhou G. (eds), The Geological Society, London, Memoirs, 36: 541–546.
- Uhlein A., Baptista M.C., Seer H.J., Caxito F.A., Uhlein G.J., Dardenne M.A. 2011a. A Formação Lagoa Formosa, Grupo Bambuí (MG): Sistema Deposicional de Leque Submarino em Bacia de Ante-País. *Geonomos*, **19** (2): 163-172
- Uhlein A., Perrella P., Uhlein G.J., Caxito F. A., Neiva G. S., Souza R. D., Mendes T. A. A. 2015a. Folha Januária SD-23-Z-C-II. Mapa geológico em escala 1:100.000 e Nota Explicativa. Projeto Fronteiras de Minas, CODEMIG-CPMTC-IGC-UFMG.
- Uhlein A., Trompette R., Alvarenga C.J.S. 1999. Neoproterozoic glacial and gravitacional sedimentation on continental rifted margin: the Jequitaí-Macaúbas sequence (Minas Gerais, Brazil). *Journal of South American Earth Sciences*, **12**: 435-451
- Uhlein A., Trompette R., Egydio-Silva M., 1998. Proterozoic rifting and closure, SE border of the São Francisco Craton, Brazil. *Journal of African. Earth Sciences.* **11**, 191–203.
- Uhlein, G.J. 2014. Estratigrafia, geocronologia e proveniência das formações Carrancas e Lagoa Formosa, Grupo Bambuí, MG. Insituto de Geociências, Universidade Federal de Minas Gerais, Belo Horizonte, Dissertação de Mestrado
- Uhlein G.J., Salgado S.S., Uhlein A., Caxito F.A., Mendes T.A.A. 2015b. Folha Catolé SD-23-Z-C-I. Mapa geológico em escala 1:100.000 e Nota Explicativa. Projeto Fronteiras de Minas, CODEMIG-CPMTC-IGC-UFMG
- Uhlein G., Uhlein A., Steverson R., Halverson G.P., Caxito F.A., Cox G.M. 2017. Early and late Ediacaran conglomeratic wedges from a complete foreland basin cycle in the southweste São Francisco Cráton, Bambuí Group, Brazil. Precambr. Res., 299:101-116

- Valeriano, C.M. 2017. The Southern Brasília belt. In: M. Heilbron, U.G. Cordani, F.F. Alkmim (eds) São Francisco craton, eastern Brazil. Tectonic Genealogy of a Miniature Continent. Regional Geology Reviews, Springer International Publishing Co., p. 189-203
- Valeriano C.M., Dardenne M.A., Fonseca M.A., Simões L.S.A., Seer H.J. 2004. A evolução tectônica da Faixa Brasília. In: Mantesso-Neto, V., Bartorelli, A., Carneiro, C.D.R., de Brito-Neves, B.B. (ed.) Geologia do Continente Sul Americano: Evolução da obra de Fernando Flávio Marques de Almeida. Beca, São Paulo, 575 - 592.
- van der Pluijm, B.A., Craddock , J.P., B.R., Graham, Harris, J.H. 1997. Paleostress in cratonic North America: implications for deformation of continental interiors. Science, 277, 794-796.

van der Pluijm, B.A., Marshak, S. 2003. Earth Structure. New York, W.W. Norton & Company. 637p

- Vieira L.C. 2007. A Formação Sete lagoas (Grupo Bambuí) e as variações paleoambientais no final do Proterozóico. IAG, Universidade de São Paulo, São Paulo, Tese de doutorado, 258 p.
- Viveiros J.F.M. & Walde D.H.D. 1976. Geologia da Serra do Cabral, Minas Gerais, Brasil. Münster. Forsch. Geol.Paläont., 38/39:15-25.
- Wang, H., van Hunen, J., Pearson, D.G., Allen, M.B. 2014. Craton stability and longevity: the roles of

composition-dependent rheology and buoyancy, Earth planet. Sci. Lett., 391, 224-233.

- Warren L.V., Quaglio F., Riccomini C., Simões M.G., Poiré D.G., Strikis N.M., Anelli L.E., Strikis P.C. 2014. The puzzle assembled: Ediacaran guide fossil Cloudina reveals an old proto-Gondwana seaway. *Geology*, 42(5):391-394.
- Waschbusch, P.J., Royden, L.H., 1992. Spatial and temporal evolution of foredeep basins: lateral strength variations and inelastic yielding in continental lithosphere. Basin Res. 4 (3–4), 179–196.
- White, S.H., Bretan, P.G., Rutter, E.H. 1986. Fault zone reactivation: kinematics and mechanisms. Phil. Trans. R. Soc. Lond. A. 317: 81-97.
- Yilmaz, O. 2001. Seismic Data Analysis: Processing, Inversion and Interpretation of Seismic Data. Tulsa, Society of Exploration Geophysicists.
- Zalan P.V., Romeiro-Silva P.C. 2007. Bacia do São Francisco. *Boletim de Geociêcias da Petrobrás*, **15** (2):561-571.
- Zhang, Y., Shi, W., Dong, S., Wang, T., Yang, Q. 2019. Jurassic intracontinental deformation of the central North China Plate: Insights from syn-tectonic sedimentation, structural geology, and U-Pb geochronology of the Yungang Basin, North China
- Zoback, M. L., Zoback, M. D. 1989. Tectonic stress field of the continental United States, Geol. Soc. Am. Memoir. 172, 523–540

Apêndice

Ponto	dipdir	dip	trend	plunge	type	comment	Coordenadas		
PAJ 001	50	20			S0	7 Lagoas	Ponto	Е	N
PAJ 001	3	20			S0	7 Lagoas	PAJ 001	588640	8399852
PAJ 001	20	20			SO	7 Lagoas	PAJ 002	588874	8400329
PAJ 001	330	10			SO	7 Lagoas	PAJ 003	588815	8401326
PAJ 001	270	60			FR	7 Lagoas	PAJ 004	583946	8403003
PAJ 001	280	50			FR	7 Lagoas	PAJ 005	578004	8401794
PAJ 001	235	60			FR	7 Lagoas	PAJ 006	582306	8399598
PAJ 001	300	80			FR	7 Lagoas	PAJ 007	584860	8400607
PAJ 003	297	30			S0	7 Lagoas	PAJ 008	584012	8399464
PAJ 003	55	20			S0	7 Lagoas	PAJ 009	583643	8400974
PAJ 003	290	5			S0	7 Lagoas	PAJ 010	584255	8401445
PAJ 003	43	35			FR	7 Lagoas	PAJ 011	584027	8402334
PAJ 003	220	85			FR	7 Lagoas	PAJ 012 b	583732	8402407
PAJ 003	255	80			FR	7 Lagoas	PAJ 012	583748	8402502
PAJ 003	250	87			FR	7 Lagoas	PAJ 013	583624	8402558
PAJ 003	340	88			FR	7 Lagoas	PAJ 014	584596	8404228
PAJ 003	335	88			FR	7 Lagoas	PAJ 015	584874	8404809
PAJ 003	340	80			FR	7 Lagoas	PAJ 016	584545	8405380
PAJ 003	70	69			FR	7 Lagoas	PAJ 017	584160	8403318
PAJ 003	258	82			FR	7 Lagoas	PAJ 018	584253	8403040
PAJ 003	37	85			FR	7 Lagoas	PAJ 019	585547	8409666
PAJ 003	115	75			F	7 Lagoas	PAJ 020	585212	8409090
PAJ 004	15	20			SO	7 Lagoas	PAJ 021	584922	8408732
PAJ 004	55	20			SO	7 Lagoas	PAJ 022	584570	8407308
PAJ 004	35	30			SO	7 Lagoas	PAJ 023	584415	8407868
PAJ 004	222	87			V	7 Lagoas	PAJ 024	584203	8408165
PAJ 004	210	80			V	7 Lagoas	PAJ 025	587336	8410521
PAJ 004	235	88			V	7 Lagoas	PAJ 026	588022	8410652
PAJ 004	220	85			V	7 Lagoas	PAJ 027	562086	8420646
PAJ 004	305	70			V	7 Lagoas	PAJ 027	564645	8420436
PAJ 004	140	80			V	7 Lagoas	PAJ 028	560801	8418810
PAJ 004	300	80			V	7 Lagoas	PAJ 029	559782	841717
PAJ 004	120	60			V	7 Lagoas	PAJ 030	573232	8411019
PAJ 004	10	30			SO	7 Lagoas	PAJ 031	574261	8412235
PAJ 004	25	22			SO	7 Lagoas	PAJ 032	575864	8411648
PAJ 004	348	25			S0	7 Lagoas	PAJ 032ii	575787	8411621

Tabela dos dados estruturais de campo

PAJ 004	355	27		S0	7 Lagoas		PAJ 032iii		
PAJ 004	330	20		S0	7 Lagoas		PAJ 033	573085	8410024
PAJ 004	42	85		V	7 Lagoas		PAJ 033b	573154	8410074
PAJ 004	45	87		V	7 Lagoas		PAJ 034	590452	8393690
PAJ 004	43	82		V	7 Lagoas		PAJ 034b	590688	8393517
PAJ 004	238	87		V	7 Lagoas		PAJ 035	614996	8368730
PAJ 004	239	87		V	7 Lagoas		PAJ 036	562798	8322621
PAJ 004	223	80		V	7 Lagoas		PAJ 037	563264	8320088
PAJ 004	41	85		V	7 Lagoas		PAJ 037	563304	8320155
PAJ 004	225	65		V	7 Lagoas		PAJ 038	560174	8316826
PAJ 004	35	80		V	7 Lagoas		PAJ 039	561358	8316358
PAJ 004	225	87		V	7 Lagoas		PAJ 040	561961	8315428
PAJ 004	230	88		V	7 Lagoas		PAJ 041	561701	8315379
PAJ 004	212	75		V	7 Lagoas		PAJ 042	563341	8313550
PAJ 004	120	87		V	7 Lagoas		PAJ 043	562632	833810
PAJ 004	315	82		V	7 Lagoas		PAJ 044	563657	8311764
PAJ 004	124	80		V	7 Lagoas		PAJ 045	565290	8310907
PAJ 004	126	80		V	7 Lagoas		PAJ 046	565239	8310776
PAJ 004	288	80		V	7 Lagoas		PAJ 047	565597	8310083
PAJ 004	134	87		V	7 Lagoas		PAJ 048	566117	8309206
PAJ 004	125	88		V	7 Lagoas		PAJ 049	566102	8308173
PAJ 004	310	89		V	7 Lagoas		PAJ 050	568293	8307248
PAJ 004	286	80		V	7 Lagoas		PAJ 051	568524	8307620
PAJ 004	134	87		V	7 Lagoas		PAJ 052a	568546	8307876
PAJ 004	178	87		j	7 Lagoas		PAJ 052b	568557	8307742
PAJ 004	355	85		j	7 Lagoas		PAJ 053 a	576691	8269044
PAJ 004	255	75		j	7 Lagoas		PAJ 053 b	576852	8269041
PAJ 005	185	20		SO	SSH		PAJ 054	576853	8268139
PAJ 005	195	5		S0	SSH		PAJ 055 a	576527	8267127
PAJ 005	200	5		S0	SSH		PAJ 055 b	576710	8266916
PAJ 005	355	5		S0	SSH		PAJ 055 c	576835	8266800
PAJ 005	55	15		S0	SSH		PAJ 056	577075	8266455
PAJ 005	345	5		S0	SSH		PAJ 057	577540	8266096
PAJ 005	30	5		S0	SSH		PAJ 058	578081	8265365
PAJ 005	205	85		FR	SSH		PAJ 059	578428	8264748
PAJ 005	203	80		FR	SSH		PAJ 060	578913	8263823
PAJ 005	205	89		FR	SSH		PAJ 061 a	579241	8262728
PAJ 005	253	85		FR	SSH		PAJ 061 b	579319	8262714
PAJ 005	256	89		FR	SSH		PAJ 062	580654	8260619
PAJ 005	254	85		FR	SSH		PAJ 063	581330	8258862
PAJ 005	260	84		FR	SSH		PAJ 064 a	583872	8260184
PAJ 005	255	80		FR	SSH		PAJ 064 b	583803	8260222
PAJ 007	197	15		S 0	7 Lagoas		PAJ 065	508689	8311300
PAJ 007	195	20		S0	7 Lagoas		PAJ 066	519103	8309680
PAJ 007	185	15		S 0	7 Lagoas		PAJ 067	529757	8306344
PAJ 007	200	15		SO	7 Lagoas		PAJ 068	530379	8307158
~					U U		~		

PAJ 007	195	20		SO	7 Lagoas	PAJ 069	534918	8313423
PAJ 007	185	15		SO	7 Lagoas	PAJ 070	534681	8313406
PAJ 007	190	25		SO	7 Lagoas	PAJ 071	530733	8309314
PAJ 007	335	85		v	7 Lagoas	PAJ 072	526323	8285615
PAJ 007	25	70		V	7 Lagoas	PAJ 073	529365	8290845
PAJ 007	34	65		V	7 Lagoas	PAJ 074	529327	8291935
PAJ 007	40	35		FR	7 Lagoas	PAJ 075	533101	8294426
PAJ 007	40	45		FR	7 Lagoas	PAJ 076	530915	8307658
PAJ 007	205	80		FR	7 Lagoas	PAJ 077	538423	8302103
PAJ 007	335	85		V	7 Lagoas	PAJ 078	538630	8301902
PAJ 007	205	35		S0	7 Lagoas	PAJ 079	552029	8295187
PAJ 007	225	60		S0	7 Lagoas	PAJ 080	552700	8294213
PAJ 007	10	75		V	7 Lagoas	PAJ 081	553119	8292984
PAJ 007	20	80		V	7 Lagoas	PAJ 082	553186	8291349
PAJ 007	45	89		V	7 Lagoas	PAJ 083	554296	8289214
PAJ 007	7	60		V	7 Lagoas	PAJ 084	554763	8288199
PAJ 007	5	70		V	7 Lagoas	PAJ 085	553912	8287009
PAJ 007	213	45		S0	7 Lagoas	PAJ 086	555931	8286894
PAJ 007	223	45		S0	7 Lagoas	PAJ 087	557071	8286943
PAJ 007	8	5		S0	7 Lagoas	PAJ 088 A	558837	8286610
PAJ 007	170	35		S0	7 Lagoas	PAJ 088 B	558797	8286467
PAJ 007	210	65		FR	7 Lagoas	PAJ 088 D	558760	8286420
PAJ 007	205	70		FR	7 Lagoas	PAJ 088 E	558742	8286339
PAJ 007	35	83		FR	7 Lagoas	PAJ 089	564786	8263189
PAJ 007	155	50		v	7 Lagoas	PAJ 090	565633	8261417
PAJ 007	214	70		v	7 Lagoas	PAJ 091	565874	8262188
PAJ 007	150	81		V	7 Lagoas	PAJ 092	556267	8259315
PAJ 007	120	15		S0	7 Lagoas	PAJ 093	566249	8257923
PAJ 007	216	50		FR	7 Lagoas	PAJ 094	566231	8257650
PAJ 007	260	80		FR	7 Lagoas	PAJ 095	567126	8254855
PAJ 007	47	58		FR	7 Lagoas	PAJ 096	567430	8254671
PAJ 007	50	45		FR	7 Lagoas	PAJ 097	568800	8253796
PAJ 007	50	30		FR	7 Lagoas	PAJ 098	569538	8253031
PAJ 007	95	70		FR	7 Lagoas	PAJ 099	570463	8251472
PAJ 007	100	5		S0	7 Lagoas	PAJ 100	570819	8251068
PAJ 007	55	10		S0	7 Lagoas	PAJ 101	571625	8250213
PAJ 007	165	60		V	7 Lagoas	PAJ 102	559450	8217965
PAJ 007	250	60		FR	7 Lagoas	PAJ 103	557967	8218529
PAJ 007	262	48		FR	7 Lagoas	PAJ 104	558601	8213602
PAJ 007	255	70		FR	7 Lagoas	PAJ 105	?	
PAJ 007	250	70		FR	7 Lagoas	PAJ 106	554297	8211998
PAJ 007	260	70		FR	7 Lagoas	PAJ 107	548194	8215198
PAJ 007	315	15		SO	7 Lagoas	PAJ 108	539116	8221941

PAJ 007 300 5 S0 7 Lagoas PAJ 109 PAJ 007 335 89 F 7 Lagoas PAJ 110 . PAJ 007 330 87 F 7 Lagoas PAJ 110 . PAJ 007 330 87 F 7 Lagoas PAJ 111 . PAJ 007 356 85 F 7 Lagoas PAJ 112 . PAJ 007 350 80 F 7 Lagoas PAJ 112 . PAJ 007 350 80 F 7 Lagoas PAJ 113 . PAJ 007 350 80 F 7 Lagoas PAJ 114 . PAJ 007 340 85 F 7 Lagoas PAJ 114 . PAJ 007 215 70 FR 7 Lagoas PAJ 116 . PAJ 007 245 70 FR 7 Lagoas PAJ 117 . PAJ 007 40 65 FR 7 Lagoas PAJ 119 . PAJ 007 225 18 S0 7 Lagoas PAJ 120<	541756 542664 543913 545183 546481 550318 539799 537435 534554 532934 532374 531810 528581 524530 526583	8219948 8219237 8218696 8217843 8216986 8213011 8214590 8226532 8227097 8228190 8230298 8230857 8232685 8233253
PAJ 007 335 89 F 7 Lagoas PAJ 110 PAJ 007 330 87 F 7 Lagoas PAJ 110 . PAJ 007 330 87 F 7 Lagoas PAJ 111 . PAJ 007 356 85 F 7 Lagoas PAJ 112 . PAJ 007 350 80 F 7 Lagoas PAJ 113 . PAJ 007 350 80 F 7 Lagoas PAJ 113 . PAJ 007 350 80 F 7 Lagoas PAJ 114 . PAJ 007 340 85 F 7 Lagoas PAJ 114 . PAJ 007 215 70 FR 7 Lagoas PAJ 116 . PAJ 007 245 70 FR 7 Lagoas PAJ 118 . PAJ 007 40 65 FR 7 Lagoas PAJ 119 . PAJ 007 45 75 FR 7 Lagoas PAJ 119 . PAJ 007 220 20 S0 7 Lagoas PAJ 120<	542664 543913 545183 546481 550318 539799 537435 534554 532934 532127 531810 528581 524530 526583	8219237 8218696 8217843 8216986 8213011 8214590 8226532 8227097 8228190 8230298 8230857 8232685 8233253
PAJ 007 330 87 F 7 Lagoas PAJ 111 PAJ 007 PAJ 007 356 85 F 7 Lagoas PAJ 112 PAJ 007 PAJ 007 350 80 F 7 Lagoas PAJ 113 PAJ 007 PAJ 007 350 80 F 7 Lagoas PAJ 113 PAJ 007 PAJ 007 335 89 F 7 Lagoas PAJ 114 PAJ 007 PAJ 007 340 85 F 7 Lagoas PAJ 115 PAJ 007 PAJ 007 215 70 FR 7 Lagoas PAJ 116 PAJ 007 PAJ 007 245 70 FR 7 Lagoas PAJ 117 PAJ 007 PAJ 007 40 65 FR 7 Lagoas PAJ 118 PAJ 007 PAJ 007 45 75 FR 7 Lagoas PAJ 119 PAJ 007 PAJ 007 220 20 S0 7 Lagoas PAJ 120 PAJ 007 PAJ 007 210 12 S0 7 Lagoas PAJ 122 PAJ 007 PAJ 02 PAJ 123	543913 545183 546481 550318 539799 537435 534554 532934 532374 531810 528581 524530 526583	8218696 8217843 8216986 8213011 8214590 8226532 8227097 8228190 8230298 8230857 8232685 8233253
PAJ 007 356 85 F 7 Lagoas PAJ 112 PAJ 112 PAJ 007 350 80 F 7 Lagoas PAJ 113 PAJ 007 PAJ 007 335 89 F 7 Lagoas PAJ 114 PAJ 007 PAJ 007 335 89 F 7 Lagoas PAJ 114 PAJ 007 PAJ 007 340 85 F 7 Lagoas PAJ 115 PAJ 007 PAJ 007 215 70 FR 7 Lagoas PAJ 116 PAJ 007 PAJ 007 245 70 FR 7 Lagoas PAJ 117 PAJ 007 PAJ 007 40 65 FR 7 Lagoas PAJ 118 PAJ 007 PAJ 007 45 75 FR 7 Lagoas PAJ 119 PAJ 007 PAJ 007 225 18 S0 7 Lagoas PAJ 120 PAJ 007 PAJ 007 220 20 S0 7 Lagoas PAJ 121 PAJ 007 PAJ 007 210 12 S0 7 Lagoas PAJ 122 PAJ 007 PAJ 007 257	545183 546481 550318 539799 537435 534554 532934 532374 532127 531810 528581 524530 526583	8217843 8216986 8213011 8214590 8226532 8227097 8228190 8230298 8230857 8232685 8233253
PAJ 007 350 80 F 7 Lagoas PAJ 113 PAJ 007 335 89 F 7 Lagoas PAJ 114 PAJ 007 340 85 F 7 Lagoas PAJ 114 PAJ 007 340 85 F 7 Lagoas PAJ 114 PAJ 007 215 70 FR 7 Lagoas PAJ 116 PAJ 007 245 70 FR 7 Lagoas PAJ 117 PAJ 007 245 70 FR 7 Lagoas PAJ 117 PAJ 007 40 65 FR 7 Lagoas PAJ 118 PAJ 007 45 75 FR 7 Lagoas PAJ 119 PAJ 007 225 18 S0 7 Lagoas PAJ 120 PAJ 007 220 20 S0 7 Lagoas PAJ 121 PAJ 007 210 12 S0 7 Lagoas PAJ 122 PAJ 007 210 12 S0 7 Lagoas PAJ 123 PAJ 007 257 30 S0 7 Lagoas PAJ 123 PAJ 0	546481 550318 539799 537435 534554 532934 532374 532127 531810 528581 524530 526583	8216986 8213011 8214590 8226532 8227097 8228190 8230298 8230857 8232685 8233253
PAJ 007 335 89 F 7 Lagoas PAJ 114 PAJ 007 340 85 F 7 Lagoas PAJ 115 PAJ 007 215 70 FR 7 Lagoas PAJ 116 PAJ 007 245 70 FR 7 Lagoas PAJ 116 PAJ 007 245 70 FR 7 Lagoas PAJ 117 PAJ 007 40 65 FR 7 Lagoas PAJ 118 PAJ 007 40 65 FR 7 Lagoas PAJ 118 PAJ 007 45 75 FR 7 Lagoas PAJ 119 PAJ 007 225 18 S0 7 Lagoas PAJ 120 PAJ 007 220 20 S0 7 Lagoas PAJ 121 PAJ 007 210 12 S0 7 Lagoas PAJ 122 PAJ 007 195 15 S0 7 Lagoas PAJ 123 PAJ 007 257 30 S0 7 Lagoas PSgm PAJ 007 270 27 S0 7 Lagoas PAJ 124	550318 539799 537435 534554 532934 532374 532127 531810 528581 524530 526583	8213011 8214590 8226532 8227097 8228190 8230298 8230857 8232685 8233253
PAJ 007 340 85 F 7 Lagoas PAJ 115 PAJ 007 215 70 FR 7 Lagoas PAJ 116 PAJ 007 245 70 FR 7 Lagoas PAJ 116 PAJ 007 245 70 FR 7 Lagoas PAJ 116 PAJ 007 245 70 FR 7 Lagoas PAJ 117 PAJ 007 40 65 FR 7 Lagoas PAJ 118 PAJ 007 45 75 FR 7 Lagoas PAJ 119 PAJ 007 225 18 S0 7 Lagoas PAJ 120 PAJ 007 220 20 S0 7 Lagoas PAJ 121 PAJ 007 210 12 S0 7 Lagoas PAJ 122 PAJ 007 195 15 S0 7 Lagoas PAJ 123 PAJ 007 257 30 S0 7 Lagoas PSgm PAJ 007 270 27 S0 7 Lagoas PAJ 124	539799 537435 534554 532934 532127 531810 528581 524530 526583	8214590 8226532 8227097 8228190 8230298 8230857 8232685 8233253
PAJ 007 215 70 FR 7 Lagoas PAJ 116 PAJ 007 245 70 FR 7 Lagoas PAJ 117 PAJ 007 245 70 FR 7 Lagoas PAJ 117 PAJ 007 40 65 FR 7 Lagoas PAJ 118 PAJ 007 45 75 FR 7 Lagoas PAJ 119 PAJ 007 225 18 S0 7 Lagoas PAJ 120 PAJ 007 220 20 S0 7 Lagoas PAJ 121 PAJ 007 210 12 S0 7 Lagoas PAJ 122 PAJ 007 210 12 S0 7 Lagoas PAJ 123 PAJ 007 257 30 S0 7 Lagoas PAJ 123 PAJ 007 270 27 S0 7 Lagoas PAJ 124 PAJ 007 270 27 S0 7 Lagoas PAJ 124	537435 534554 532934 532374 532127 531810 528581 524530 526583	8226532 8227097 8228190 8230298 8230857 8232685 8233253
PAJ 007 245 70 FR 7 Lagoas PAJ 117 PAJ 007 40 65 FR 7 Lagoas PAJ 118 PAJ 007 45 75 FR 7 Lagoas PAJ 119 PAJ 007 45 75 FR 7 Lagoas PAJ 119 PAJ 007 225 18 S0 7 Lagoas PAJ 120 PAJ 007 220 20 S0 7 Lagoas PAJ 120 PAJ 007 210 12 S0 7 Lagoas PAJ 122 PAJ 007 195 15 S0 7 Lagoas PAJ 123 PAJ 007 257 30 S0 7 Lagoas PAJ 124 PAJ 007 270 27 S0 7 Lagoas PAJ 124	534554 532934 532374 532127 531810 528581 524530 526583	8227097 8228190 8230298 8230857 8232685 8233253
PAJ 007 40 65 FR 7 Lagoas PAJ 118 PAJ 007 45 75 FR 7 Lagoas PAJ 119 PAJ 007 225 18 S0 7 Lagoas PAJ 120 PAJ 007 220 20 S0 7 Lagoas PAJ 121 PAJ 007 220 20 S0 7 Lagoas PAJ 121 PAJ 007 210 12 S0 7 Lagoas PAJ 122 PAJ 007 210 12 S0 7 Lagoas PAJ 123 PAJ 007 257 30 S0 7 Lagoas PAJ 123 PAJ 007 270 27 S0 7 Lagoas PAJ 124 PAJ 007 270 27 S0 7 Lagoas PAJ 124	532934 532374 532127 531810 528581 524530 526583	8228190 8230298 8230857 8232685 8233253
PAJ 007 45 75 FR 7 Lagoas PAJ 119 PAJ 007 225 18 S0 7 Lagoas PAJ 120 PAJ 007 220 20 S0 7 Lagoas PAJ 120 PAJ 007 220 20 S0 7 Lagoas PAJ 121 PAJ 007 210 12 S0 7 Lagoas PAJ 122 PAJ 007 195 15 S0 7 Lagoas PAJ 123 PAJ 007 257 30 S0 7 Lagoas PSgm PAJ 007 270 27 S0 7 Lagoas PAJ 124	532374 532127 531810 528581 524530 526583	8230298 8230857 8232685 8233253
PAJ 007 225 18 S0 7 Lagoas PAJ 120 PAJ 007 220 20 S0 7 Lagoas PAJ 121 PAJ 007 210 12 S0 7 Lagoas PAJ 121 PAJ 007 210 12 S0 7 Lagoas PAJ 122 PAJ 007 195 15 S0 7 Lagoas PAJ 123 PAJ 007 257 30 S0 7 Lagoas psgm PAJ 007 270 27 S0 7 Lagoas PAJ 124 PAL 007 255 25 25 S0 7 Lagoas PAJ 124	532127 531810 528581 524530 526583	8230857 8232685 8233253
PAJ 007 220 20 S0 7 Lagoas PAJ 121 PAJ 007 210 12 S0 7 Lagoas PAJ 122 PAJ 007 195 15 S0 7 Lagoas PAJ 123 PAJ 007 257 30 S0 7 Lagoas PAJ 123 PAJ 007 270 27 S0 7 Lagoas PAJ 124 PAJ 007 275 32 S0 7 Lagoas PAJ 124	531810 528581 524530 526583	8232685 8233253
PAJ 007 210 12 S0 7 Lagoas PAJ 122 PAJ 007 195 15 S0 7 Lagoas PAJ 123 PAJ 007 257 30 S0 7 Lagoas PAJ 123 PAJ 007 257 30 S0 7 Lagoas pssgm PAJ 007 270 27 S0 7 Lagoas PAJ 124 PAL 007 255 25 50 7 Lagoas PAJ 125	528581 524530 526583	8233253
PAJ 007 195 15 S0 7 Lagoas PAJ 123 PAJ 007 257 30 S0 7 Lagoas pssgm PAJ 007 270 27 S0 7 Lagoas PAJ 124 PAJ 007 270 27 S0 7 Lagoas PAJ 124	524530 526583	0.000
PAJ 007 257 30 S0 7 Lagoas pssgm . PAJ 007 270 27 S0 7 Lagoas PAJ 124 . PAL 007 255 25 25 	526583	8232949
PAJ 007 270 27 S0 7 Lagoas PAJ 124 S0 PAJ 007 255 25 50 7 Lagoas PAJ 125 50 7 Lagoas 7 Lagoas 50 7 Lagoas 50 50 7 Lagoas 50 50 7 Lagoas 50		8232136
DAL007 255 25 S0 7 Lagran DAL125	596651	8353902
PAJ 007 255 55 50 7 Lagoas PAJ 125 5	595957	8353893
PAJ 007 238 35 S0 7 Lagoas PAJ 126 3	595152	8353695
PAJ 007 260 55 S0 7 Lagoas PAJ 127 .	594708	8354000
PAJ 007 125 70 v 7 Lagoas PAJ 127 b .	594552	8354162
PAJ 007 240 60 v 7 Lagoas PAJ 128	594241	8354441
PAJ 00723085V7 Lagoasurucuião	592977	8354058
DAL007 72 35 S0 7 Lagons DAL120	502085	0251010
PAJ 007 72 55 50 7 Lagoas PAJ 129 5 DAL 007 65 30 S0 7 Lagoas DAI 120 5	592065	0334040
PAL007 150 8 S0 7 Lagoas PAL131	501571	8354532
PAL000 140 85 FR 7 TVX 1	590222	8355818
PAL009 155 75 FR 7VX 2	590670	8355848
PAL009 150 80 FR 2 TVX 3	590973	8356127
PAL009 155 80 FR 2 TVX 4	591601	8356282
PAL009 170 75 FR 2 TVX 5	591661	8356580
PAL009 238 75 FR 2 TVX 6	591676	8356619
PAL009 255 70 FR 2 TVX 7	591696	8356747
	591656	8356837
PAL009 251 70 FR 2 TVX 8	501503	8356863
PAJ 009 251 70 FR ? TVX 8 . PAJ 009 315 10 S0 ? TVX 9 .	111.111	000000
PAJ 009 251 70 FR ? TVX 8 PAJ 009 315 10 S0 ? TVX 9 PAJ 009 315 15 S0 ? TVX 10	591506	8356828
PAJ 009 251 70 FR ? TVX 8 PAJ 009 315 10 S0 ? TVX 9 PAJ 009 315 15 S0 ? TVX 10 PAJ 009 335 15 S0 ? TVX 10	591595 591506 591470	8356828 8356858
PAJ 009 251 70 FR ? TVX 8 PAJ 009 315 10 S0 ? TVX 9 PAJ 009 315 15 S0 ? TVX 10 PAJ 009 335 15 S0 ? TVX 11 PAJ 009 335 15 S0 ? TVX 11 PAJ 009 340 10 S0 ? TVX 12	591595 591506 591470 591542	8356828 8356858 8356858
PAJ 009 251 70 FR ? TVX 8 PAJ 009 315 10 S0 ? TVX 9 PAJ 009 315 15 S0 ? TVX 10 PAJ 009 335 15 S0 ? TVX 11 PAJ 009 335 15 S0 ? TVX 11 PAJ 009 340 10 S0 ? TVX 12 PAJ 009 3 70 V ? TVX 13	591506 591506 591470 591542 591558	8356828 8356858 8356858 8356873
PAJ 009 251 70 FR ? TVX 8 PAJ 009 315 10 S0 ? TVX 9 PAJ 009 315 15 S0 ? TVX 10 9 PAJ 009 315 15 S0 ? TVX 10 9 PAJ 009 335 15 S0 ? TVX 11 9 PAJ 009 340 10 S0 ? TVX 12 9 PAJ 009 340 10 S0 ? TVX 12 9 PAJ 009 3 70 V ? TVX 13 9 PAJ 010 110 10 S0 7 Lagoas TVX 14 9	591506 591506 591470 591542 591558 591434	8356828 8356858 8356858 8356873 8356759
PAJ 009 251 70 FR ? TVX 8 PAJ 009 315 10 S0 ? TVX 9 PAJ 009 315 15 S0 ? TVX 10 PAJ 009 335 15 S0 ? TVX 10 PAJ 009 335 15 S0 ? TVX 11 PAJ 009 340 10 S0 ? TVX 12 PAJ 009 3 70 V ? TVX 13 PAJ 010 110 10 S0 7 Lagoas TVX 14	591506 591506 591470 591542 591558 591434 591465	8356828 8356858 8356858 8356873 8356759 8356763
PAJ 009 251 70 FR ? TVX 8 PAJ 009 315 10 S0 ? TVX 9 PAJ 009 315 15 S0 ? TVX 10 9 PAJ 009 315 15 S0 ? TVX 10 9 PAJ 009 335 15 S0 ? TVX 11 9 PAJ 009 340 10 S0 ? TVX 11 9 PAJ 009 340 10 S0 ? TVX 12 9 PAJ 009 3 70 V ? TVX 13 9 PAJ 010 110 10 S0 7 Lagoas TVX 14 9 PAJ 010 145 18 S0 7 Lagoas TVX 15 9 PAJ 010 136 15 S0 7 Lagoas PAI 135 9	591506 591506 591470 591542 591558 591434 591465 581015	8356828 8356858 8356858 8356873 8356759 8356763 8311297
PAJ 009 251 70 FR ? TVX 8 PAJ 009 315 10 S0 ? TVX 9 . PAJ 009 315 15 S0 ? TVX 10 . PAJ 009 335 15 S0 ? TVX 10 . PAJ 009 335 15 S0 ? TVX 11 . PAJ 009 340 10 S0 ? TVX 12 . PAJ 009 3 70 V ? TVX 13 . PAJ 010 110 10 S0 7 Lagoas TVX 14 . PAJ 010 145 18 S0 7 Lagoas PAJ 135 . PAJ 010 136 15 S0 7 Lagoas PAJ 135 . PAJ 010 237 23 S0 7 Lagoas PAJ 136 .	591505 591506 591470 591542 591558 591434 591465 581015 575643	8356828 8356858 8356858 8356873 8356759 8356763 8311297 8315735
PAJ 009 251 70 FR ? TVX 8 . PAJ 009 315 10 S0 ? TVX 9 . PAJ 009 315 15 S0 ? TVX 10 . PAJ 009 335 15 S0 ? TVX 10 . PAJ 009 335 15 S0 ? TVX 11 . PAJ 009 340 10 S0 ? TVX 12 . PAJ 009 3 70 V ? TVX 13 . PAJ 010 110 10 S0 7 Lagoas TVX 14 . PAJ 010 145 18 S0 7 Lagoas PAJ 135 . PAJ 010 136 15 S0 7 Lagoas PAJ 135 . PAJ 010 237 23 S0 7 Lagoas PAJ 136 . PAJ 010 355 60 FR 7 Lagoas PAJ 137 .	591506 591506 591470 591542 591558 591434 591465 581015 575643 576503	8356828 8356858 8356858 8356873 8356759 8356763 8311297 8315735 8314605

PAJ 010	193	68		FR	7 Lagoas	PAJ 137c	576923	8314598
PAJ 010	322	45		FR	7 Lagoas	PAJ 137d	576558	8314686
PAJ 010	327	50		FR	7 Lagoas	PAJ 138	576343	8313915
PAJ 011	300	20		SO	7 Lagoas	PAJ 139	-	-
PAJ 011	275	25		SO	7 Lagoas	PAJ 140	577646	8305021
PAJ 011	240	89		FR	7 Lagoas	PAJ 141	574382	8305854
PAJ 011	255	88		FR	7 Lagoas	PAJ 142	574270	8305386
PAJ 011	245	90		FR	7 Lagoas	PAJ 143	571100	8305138
PAJ 011	175	70		FR	7 Lagoas	PAJ 144	568492	8306884
PAJ 012	280	35		S0	7 Lagoas	PAJ 145	569912	8306637
PAJ 012	282	25		S0	7 Lagoas	PAJ 146	570651	8306145
PAJ 012	300	17		S0	7 Lagoas			
PAJ 011	320	80		V	7 Lagoas	Siglas		
PAJ 012	20	80		v	7 Lagoas	S0	Acamamen	to
PAJ 012	0	85		V	7 Lagoas	F	Falha	
PAJ 012	180	85		V	7 Lagoas	FR	Fratura ind	iscriminada
PAJ 012	150	75		V	7 Lagoas	V	Veio	
PAJ 012	197	80		V	7 Lagoas	v	Vênula	
PAJ 012	146	89		FR	7 Lagoas	le	Lineação de	e estria
PAJ 012	230	89		FR	7 Lagoas	j	Junta	
PAJ 012	175	70		FR	7 Lagoas	Sn	Foliação	ada
PAJ 012	160	88		FR	7 Lagoas	Sb	Bandament	iO
PAJ 012 b	278	20		S0	7 Lagoas	Lbt	Alinhament biotita	to de
PAJ 012 b	285	30		S0	7 Lagoas	jp	junta plumo	osa
PAJ 012 b	258	25		S0	7 Lagoas	lp	Eixo plumo	osa
PAJ 012 b	288	20		S0	7 Lagoas	Est	Estilolitos	
PAJ 012 b	300	25		S0	7 Lagoas	D	diques	
PAJ 012 b	15	85		V	7 Lagoas			
PAJ 012 b	0	87		v	7 Lagoas			
PAJ 012 b	349	82		v	7 Lagoas			
PAJ 013	297	32		S0	7 Lagoas			
PAJ 013	278	20		S0	7 Lagoas			
PAJ 013	256	15		S 0	7 Lagoas			
PAJ 013	255	20		S0	7 Lagoas			
PAJ 013	143	82		v	7 Lagoas			
PAJ 013	150	65		V	7 Lagoas			
PAJ 013	155	75		V	7 Lagoas			
PAJ 013	165	75		V	7 Lagoas			
PAJ 013	80	85		FR	7 Lagoas			
PAJ 013	146	73		FR	7 Lagoas			
PAJ 014	60	87		FR	7 Lagoas			
PAJ 014	65	75		FR	7 Lagoas			
PAJ 014	275	87		FR	7 Lagoas			
PAJ 014	275	80		FR	7 Lagoas			
PAJ 015	85	12		S 0	SSH			

PAJ 015	45	10			S0	SSH		
PAJ 015	30	10			S0	SSH		
PAJ 015	87	85			S0	SSH		
PAJ 015	85	22			S0	SSH		
PAJ 015	246	82			S0	SSH		
PAJ 015	255	20			S0	SSH		
PAJ 015	188	25			S0	SSH		
PAJ 015	275	30			S0	SSH		
PAJ 015	190	45			SO	SSH		
PAJ 015	345	60			SO	SSH		
PAJ 015	210	85			FR	SSH		
PAJ 015	20	80			FR	SSH		
PAJ 015	205	85			FR	SSH		
PAJ 015	210	89			FR	SSH		
PAJ 015	215	87			FR	SSH		
PAJ 015	140	80			FR	SSH		
PAJ 015	345	85			f	SSH		
PAJ 017	13	15			S0	7 Lagoas		
PAJ 017	205	10			S0	7 Lagoas		
PAJ 017	18	10			S0	7 Lagoas		
PAJ 017	50	5			S0	7 Lagoas		
PAJ 017	330	88			FR	7 Lagoas		
PAJ 017	335	80			FR	7 Lagoas		
PAJ 017	65	85			FR	7 Lagoas		
PAJ 017	240	85			FR	7 Lagoas		
PAJ 019	120	22			S0	SSH		
PAJ 019	276	12			S0	SSH		
PAJ 019	278	10			S0	SSH		
PAJ 019	210	5			S0	SSH		
PAJ 019			26	2	lb	SSH		
PAJ 019			65	28	lb	SSH		
PAJ 019			67	8	lb	SSH		
PAJ 019			58	15	lb	SSH		
PAJ 019	210	89			FR	SSH		
PAJ 019	20	87			FR	SSH		
PAJ 019	174	89			FR	SSH		
PAJ 019	100	85			FR	SSH		
PAJ 020	290	30			SO	SSH		
PAJ 020	50	50			SO	SSH		
PAJ 020	115	75			SO	SSH		
PAJ 020	68	35			SO	SSH		
PAJ 020	340	30			SO	SSH		
PAJ 020	90	20			SO	SSH		
PAJ 021	127	7			SO	SSH		
PAJ 021	335	10			SO	SSH		
PAJ 021	55	3			SO	SSH		

PAJ 021	230	10		S0	SSH		
PAJ 021	337	20		S0	SSH		
PAJ 021	130	10		S0	SSH		
PAJ 021	14	75		FR	SSH		
PAJ 021	195	75		FR	SSH		
PAJ 021	356	85		FR	SSH		
PAJ 021	82	87		FR	SSH		
PAJ 022	55	15		S0	a definir		
PAJ 022	130	15		S0	a definir		
PAJ 022	200	10		S0	a definir		
PAJ 022	280	10		S0	a definir		
PAJ 022	280	5		S0	a definir		
PAJ 022	336	10		SO	a definir		
PAJ 022	156	10		S0	a definir		
PAJ 022	63	5		S0	a definir		
PAJ 022	307	85		FR	a definir		
PAJ 022	238	85		FR	a definir		
PAJ 022	250	89		FR	a definir		
PAJ 022	256	89		FR	a definir		
PAJ 023	138	5		S0	SSH		
PAJ 023	120	5		S0	SSH		
PAJ 023	7	7		S0	SSH		
PAJ 023	10	7		S0	SSH		
PAJ 023	20	7		S0	SSH		
PAJ 023	77	89		FR	SSH		
PAJ 023	85	88		FR	SSH		
PAJ 023	75	87		FR	SSH		
PAJ 023	85	80		FR	SSH		
PAJ 023	84	85		FR	SSH		
PAJ 023	83	87		FR	SSH		
PAJ 023	78	87		FR	SSH		
PAJ 023	82	87		FR	SSH		
PAJ 023	245	85		FR	SSH		
PAJ 023	260	88		FR	SSH		
PAJ 023	176	90		FR	SSH		
PAJ 023	175	88		FR	SSH		
PAJ 023	170	88		FR	SSH		
PAJ 023	350	80		FR	SSH		
PAJ 023	345	80		FR	SSH		
PAJ 023	6	85		FR	SSH		
PAJ 023	165	90		FR	SSH		
PAJ 023	174	80		FR	SSH		
PAJ 023	350	85		FR	SSH		
PAJ 023	168	82		FR	SSH		
PAJ 023	169	80		FR	SSH		
PAJ 024	275	15		SO	?		

PAJ 025	330	5		S0	SSH		
PAJ 025	280	10		S0	SSH		
PAJ 025	325	10		S0	SSH		
PAJ 025	320	10		S0	SSH		
PAJ 025	86	5		S0	SSH		
PAJ 025	209	82		FR	SSH		
PAJ 025	195	85		FR	SSH		
PAJ 025	310	85		FR	SSH		
PAJ 025	305	75		FR	SSH		
PAJ 025	304	70		FR	SSH		
PAJ 025	306	82		FR	SSH		
PAJ 025	316	85		FR	SSH		
PAJ 026	79	3		S0	LJ		
PAJ 026	108	6		S0	LJ		
PAJ 026	322	8		S0	LJ		
PAJ 026	100	2		S0	LJ		
PAJ 026	5	2		S0	LJ		
PAJ 026	130	10		S0	LJ		
PAJ 026	125	2		S0	LJ		
PAJ 026	210	10		S0	LJ		
PAJ 026	155	8		S0	LJ		
PAJ 026	323	85		FR	LJ		
PAJ 026	147	90		FR	LJ		
PAJ 026	325	90		FR	LJ		
PAJ 026	250	90		FR	LJ		
PAJ 026	35	85		FR	LJ		
PAJ 026	40	85		FR	LJ		
PAJ 026	17	85		FR	LJ		
PAJ 026	226	87		FR	LJ		
PAJ 027	70	10		S 0	7 Lagoas		
PAJ 027	43	10		S 0	7 Lagoas		
PAJ 027	266	8		S 0	7 Lagoas		
PAJ 027	345	5		S 0	7 Lagoas		
PAJ 027	314	18		S 0	7 Lagoas		
PAJ 027	0	0		S0	7 Lagoas		
PAJ 027	315	10		S0	7 Lagoas		
PAJ 027	285	10		S0	7 Lagoas		
PAJ 027	287	15		S0	7 Lagoas		
PAJ 027	75	80		j	7 Lagoas		
PAJ 027	76	85		j	7 Lagoas		
PAJ 027	78	80		j	7 Lagoas		
PAJ 027	78	82		j	7 Lagoas		
PAJ 027	84	87		j	7 Lagoas		
PAJ 027	77	75		j	7 Lagoas		
PAJ 027	80	80		j	7 Lagoas		
PAJ 027	77	89		j	7 Lagoas		

PAJ 027	305	85		j	7 Lagoas		
PAJ 027	291	87		j	7 Lagoas		
PAJ 027	305	85		j	7 Lagoas		
PAJ 027	298	80		j	7 Lagoas		
PAJ 027	305	82		j	7 Lagoas		
PAJ 027	200	80		j	7 Lagoas		
PAJ 027	150	85		V	7 Lagoas		
PAJ 027	136	82		V	7 Lagoas		
PAJ 027	139	83		v	7 Lagoas		
PAJ 027	154	87		v	7 Lagoas		
PAJ 027	340	90		v	7 Lagoas		
PAJ 027	148	90		v	7 Lagoas		
PAJ 027	152	85		v	7 Lagoas		
PAJ 027	264	90		v	7 Lagoas		
PAJ 027	359	85		v	7 Lagoas		
PAJ 027	300	60		V	7 Lagoas		
PAJ 028	120	45		FR	0		
PAJ 028	125	35		FR			
PAJ 028	115	37		FR			
PAJ 029	338	85		FR	SSH		
PAJ 029	335	85		FR	SSH		
PAJ 029	350	80		FR	SSH		
PAI 029	351	90		FR	SSH		
PAJ 029	348	88		FR	SSH		
PAJ 029	336	85		1	SSH		
PAJ 029	340	85		i	SSH		
PAJ 029	296	90		i	SSH		
PAJ 029	310	85		i	SSH		
PAJ 029	200	87		i	SSH		
PAJ 029	193	75		i	SSH		
PAJ 029	38	45		FR	SSH		
PAJ 029	222	50		FR	SSH		
PAJ 030	305	15		SO	7 Lagoas		
PAJ 030	295	10		SO	7 Lagoas		
PAJ 030	314	18		SO	7 Lagoas		
PAJ 030	300	10		SO	7 Lagoas		
PAJ 030	355	90		FR	7 Lagoas		
PAJ 030	75	89		FR	7 Lagoas		
PAJ 030	35	90		FR	7 Lagoas		
PAJ 031	150	5		SO	7 Lagoas		
PAJ 031	209	3		SO	7 Lagoas		
PAJ 031	75	2		SO	7 Lagoas		
PAJ 031	105	2		i	7 Lagoas		
PAJ 031	305	88		;	7 Lagoas		
PAJ 031	300	90		;	7 Lagoas		
PAI 031	315	85		;	7 Lagoas		
	515	00		J			

PAJ 031	300	90			j	7 Lagoas		
PAJ 031	302	87			j	7 Lagoas		
PAJ 031	304	85			j	7 Lagoas		
PAJ 031	300	90			v	7 Lagoas		
PAJ 031	304	90			v	7 Lagoas		
PAJ 031	124	85			v	7 Lagoas		
PAJ 031	120	85			v	7 Lagoas		
PAJ 031	0	65			v	7 Lagoas		
PAJ 031	254	82			v	7 Lagoas		
PAJ 031	70	80			v	7 Lagoas		
PAJ 031	345	75			v	7 Lagoas		
PAJ 032	60	10			S0	7 Lagoas		
PAJ 032	295	85			V	7 Lagoas		
PAJ 032	210	80			V	7 Lagoas		
PAJ 032	98	85			V	7 Lagoas		
PAJ 032	125	90			V	7 Lagoas		
PAJ 032	135	70			V	7 Lagoas		
PAJ 032	210	80			V	7 Lagoas		
PAJ 032	55	90			V	7 Lagoas		
PAJ 032	314	87			F	7 Lagoas		
PAJ 032			61	42	le	7 Lagoas		
PAJ 032	23	80			F	7 Lagoas		
PAJ 032			103	52	le	7 Lagoas		
PAJ 032	300	10			S0	7 Lagoas		
PAJ 032	245	10			S0	7 Lagoas		
PAJ 032	270	5			S0	7 Lagoas		
PAJ 032	133	87			V	7 Lagoas		
PAJ 032	120	90			V	7 Lagoas		
PAJ 032	299	87			V	7 Lagoas		
PAJ 032	124	85			V	7 Lagoas		
PAJ 032	130	87			V	7 Lagoas		
PAJ 032	117	80			V	7 Lagoas		
PAJ 032	123	80			V	7 Lagoas		
PAJ 032	298	80			V	7 Lagoas		
PAJ 032	135	70			V	7 Lagoas		
PAJ 032	134	75			V	7 Lagoas		
PAJ 032	125	80			V	7 Lagoas		
PAJ 032	310	85			V	7 Lagoas		
PAJ 032	310	75			V	7 Lagoas		
PAJ 032	130	80			V	7 Lagoas		
PAJ 032	31	75			V	7 Lagoas		
PAJ 032	15	80			V	7 Lagoas		
PAJ 032	28	70			V	7 Lagoas		
PAJ 032	43	90			V	7 Lagoas		
PAJ 032	27	70			V	7 Lagoas		
PAJ 032	43	80			V	7 Lagoas		

1 1 1 00 V / Laguas	
PAJ 032 225 80 V 7 Lagoas	
PAJ 032 55 90 V 7 Lagoas	
PAJ 032 290 67 V 7 Lagoas	
PAJ 032 298 90 V 7 Lagoas	
PAJ 032 295 70 V 7 Lagoas	
PAJ 032 77 85 j 7 Lagoas	
PAJ 032 75 85 j 7 Lagoas	
PAJ 032 72 77 j 7 Lagoas	
PAJ 032 113 87 V 7 Lagoas	
PAJ 032 28 70 V 7 Lagoas	
PAJ 032 75 80 j 7 Lagoas	
PAJ 033 192 20 S0 7 Lagoas	
PAJ 033 216 15 S0 7 Lagoas	
PAJ 033 335 80 FR 7 Lagoas	
PAJ 033 345 85 FR 7 Lagoas	
PAJ 033 345 75 FR 7 Lagoas	
PAJ 033 305 80 FR 7 Lagoas	
PAJ 033 290 87 FR 7 Lagoas	
PAJ 033 220 85 FR 7 Lagoas	
PAJ 033 65 80 FR 7 Lagoas	
PAJ 033 78 20 v 7 Lagoas	
PAJ 034 160 15 S0 7 Lagoas	
PAJ 034 160 12 S0 7 Lagoas	
PAJ 034 110 5 S0 7 Lagoas	
PAJ 034 350 15 S0 7 Lagoas	
PAJ 034 351 20 S0 7 Lagoas	
PAJ 034 157 20 S0 7 Lagoas	
PAJ 034 145 17 S0 7 Lagoas	
PAJ 034 162 20 S0 7 Lagoas	
PAJ 034 140 5 S0 7 Lagoas	
PAJ 034 295 15 S0 7 Lagoas	
PAJ 034 290 10 S0 7 Lagoas	
PAJ 034 305 5 S0 7 Lagoas	
PAJ 034 310 85 FR 7 Lagoas	
PAJ 034 325 80 FR 7 Lagoas	
PAJ 034 322 75 FR 7 Lagoas	
PAJ 034 338 90 FR 7 Lagoas	
PAJ 034 330 88 FR 7 Lagoas	
PAJ 034 320 80 FR 7 Lagoas	
PAJ 034 327 82 FR 7 Lagoas	
PAJ 034 318 85 FR 7 Lagoas	
PAJ 036 260 15 S0 7 Lagoas	
PAJ 036 220 15 S0 7 Lagoas	
PAJ 036 253 15 S0 7 Lagoas	
PAJ 036 217 12 S0 7 Lagoas	

PAJ 036	220	10		S0	7 Lagoas			
PAJ 036	195	15		S0	7 Lagoas			
PAJ 036	220	15		S0	7 Lagoas			
PAJ 036	260	15		S0	7 Lagoas			
PAJ 036	215	15		S0	7 Lagoas			
PAJ 036	80	7		S0	7 Lagoas			
PAJ 036	124	15		S0	7 Lagoas			
PAJ 036	105	85		FR	7 Lagoas			
PAJ 036	100	75		FR	7 Lagoas			
PAJ 036	130	70		FR	7 Lagoas			
PAJ 036	120	90		FR	7 Lagoas			
PAJ 036	112	85		FR	7 Lagoas			
PAJ 036	96	87		FR	7 Lagoas		1	
PAJ 036	197	87		FR	7 Lagoas			
PAJ 036	60	85		FR	7 Lagoas			
PAJ 036	145	87		FR	7 Lagoas		1	
PAJ 036	68	85		FR	7 Lagoas			
PAJ 036	340	85		FR	7 Lagoas		1	
PAJ 036	0	90		FR	7 Lagoas	1	1	
PAJ 036	20	85		FR	7 Lagoas		1	
PAJ 036	0	70		v	7 Lagoas	1	1	
PAJ 036	355	85		v	7 Lagoas			
PAJ 036	2	72		v	7 Lagoas			
PAJ 036	342	85		v	7 Lagoas			
PAJ 036	200	82		v	7 Lagoas		1	
PAJ 036	254	70		Sn	Embasa	amento		
PAJ 036	243	70		Sn	Embasa	amento		
PAJ 036	258	65		Sn	Embasa	amento		
PAJ 036	260	80		Sn	Embasa	amento		
PAJ 036	260	78		Sn	Embasa	amento	1	
PAJ 036	265	75		Sn	Embasa	amento		
PAJ 036	253	90		Sn	Embasa	amento		
PAJ 036	252	80		Sn	Embasa	amento		
PAJ 036	260	90		Sn	Embasa	amento		
PAJ 036	19	85		j	Embasa	amento		
PAJ 036	14	85		j	Embasa	amento		
PAJ 036	205	90		FR	Embasa	amento		
PAJ 036	225	88		FR	Embasa	amento		
PAJ 036	322	75		j	Embasa	amento		
PAJ 036	318	80		j	Embasa	amento	1	
PAJ 036	323	82		j	Embasa	amento	1	
PAJ 036	330	75		FR	Embasa	amento		
PAJ 036	350	80		FR	Embasa	amento		
PAJ 036	185	85		FR	Embasa	amento		
PAJ 036	182	85		FR	Embasa	amento	1	
PAJ 036	170	85		FR	Embasa	amento		
5							1	1

PAJ 036	19	88		V	Embasamento
PAJ 036	20	85		V	Embasamento
PAJ 037	240	6		S0	7 Lagoas
PAJ 037	198	7		SO	7 Lagoas
PAJ 037	10	5		S0	7 Lagoas
PAJ 037	8	82		j	7 Lagoas
PAJ 037	175	85		FR	7 Lagoas
PAJ 037	246	77		V	7 Lagoas
PAJ 038	236	80		V	7 Lagoas
PAJ 038	240	85		V	7 Lagoas
PAJ 038	253	83		V	7 Lagoas
PAJ 038	50	70		V	7 Lagoas
PAJ 038	246	82		i	7 Lagoas
PAJ 038	236	80		i	7 Lagoas
PAJ 038	60	75		v	7 Lagoas
PAJ 038	245	70		i	7 Lagoas
PAJ 038	43	85		i	7 Lagoas
PAJ 038	85	90		i	7 Lagoas
PAJ 038	76	85		i	7 Lagoas
PAJ 038	104	80		i	7 Lagoas
PAJ 038	283	82		V	7 Lagoas
PAJ 038	292	70		V	7 Lagoas
PAJ 038	112	80		V	7 Lagoas
PAJ 038	155	85		i	7 Lagoas
PAJ 040	60	40		FR	Embasamento
PAJ 040	88	50		FR	Embasamento
PAJ 041	303	7		SO	7 Lagoas
PAJ 041	100	90		V	7 Lagoas
PAJ 041	270	85		V	7 Lagoas
PAJ 041	275	90		V	7 Lagoas
PAJ 041	257	90		V	7 Lagoas
PAJ 041	25	90		V	7 Lagoas
PAJ 041	160	90		j	7 Lagoas
PAJ 041	158	90		v	7 Lagoas
PAJ 041	164	89		V	7 Lagoas
PAJ 041	140	85		j	7 Lagoas
PAJ 042	358	75		FR	Embasamento
PAJ 042	2	80		FR	Embasamento
PAJ 042	4	82		FR	Embasamento
PAJ 042	75	35		FR	Embasamento
PAJ 042	86	27		FR	Embasamento
PAJ 042	115	72		FR	Embasamento
PAJ 042	110	80		FR	Embasamento
PAJ 042	30	25		FR	Embasamento
PAJ 043	238	5		S0	7 Lagoas
PAJ 044	55	5		S0	7 Lagoas

PAJ 044	0	5			S0	7 Lagoas		
PAJ 044	300	5			SO	7 Lagoas		
PAJ 044	215	5			S0	7 Lagoas		
PAJ 044	180	80			FR	7 Lagoas		
PAJ 044	195	90			FR	7 Lagoas		
PAJ 044	5	85			FR	7 Lagoas		
PAJ 044	185	90			FR	7 Lagoas		
PAJ 044	0	85			FR	7 Lagoas		
PAJ 044	206	87			FR	7 Lagoas		
PAJ 044	26	90			FR	7 Lagoas		
PAJ 044	285	85			FR	7 Lagoas		
PAJ 044	284	87			FR	7 Lagoas		
PAJ 044	295	60			FR	7 Lagoas		
PAJ 044	105	80			FR	7 Lagoas		
PAJ 044	115	75			FR	7 Lagoas		
PAJ 044	245	85			FR	7 Lagoas		
PAJ 044	140	87			FR	7 Lagoas		
PAJ 044	130	82			V	7 Lagoas		
PAJ 044	215	85			FR	7 Lagoas		
PAJ 044	228	85			FR	7 Lagoas		
PAJ 044	220	85			FR	7 Lagoas		
PAJ 046	340	35			SO	7 Lagoas		
PAJ 046	355	90			FR	7 Lagoas		
PAJ 046	315	80			FR	Embasamento		
PAJ 046	158	80			FR	Embasamento		
PAJ 046	40	70			FR	Embasamento		
PAJ 046	355	85			i	Embasamento		
PAJ 046	125	80			FR	Embasamento		
PAJ 046	130	70			FR	Embasamento		
PAJ 046	240	50			Sn	Embasamento		
PAJ 047	240	5			SO	7 Lagoas		
PAJ 047	120	40			SO	7 Lagoas		
PAJ 047	225	7			SO	7 Lagoas		
PAJ 047			22	2	lb	7 Lagoas		
PAJ 047			25	2	lb	7 Lagoas		
PAJ 047	65	80			V	7 Lagoas		
PAJ 047	64	90			V	7 Lagoas		
PAJ 047	310	90			FR	7 Lagoas		
PAJ 047	350	90			FR	7 Lagoas		
PAJ 048	295	75			Sn	Embasamento		
PAJ 048	320	45			Sn	Embasamento		
PAJ 048	295	70			Sn	Embasamento		
PAJ 048	225	75			Sn	Embasamento		
PAJ 048	255	40			Sn	Embasamento		
PAJ 048	15	80			FR	Embasamento		
PAI 048	8	75			FR	Embasamento		
, ~	-			1			1	

PAJ 048	5	90			FR	Embasamento	
PAJ 048	165	70			FR	Embasamento	
PAJ 048	290	7			S0	7 Lagoas	
PAJ 048	276	82			FR	7 Lagoas	
PAJ 048	286	80			FR	7 Lagoas	
PAJ 048	90	82			V	7 Lagoas	
PAJ 048	219	80			FR	7 Lagoas	
PAJ 048	216	77			FR	7 Lagoas	
PAJ 048	329	38			V	7 Lagoas	
PAJ 050	20	5			SO	7 Lagoas	
PAJ 050	97	60			SO	7 Lagoas	
PAJ 050	180	90			FR	7 Lagoas	
PAJ 050	300	85			FR	7 Lagoas	
PAJ 050	308	90			FR	7 Lagoas	
PAJ 050	80	90			V	7 Lagoas	
PAJ 050	330	85			FR	7 Lagoas	
PAJ 050	260	80			FR	7 Lagoas	
PAJ 050	70	80			FR	7 Lagoas	
PAJ 050	266	82			FR	7 Lagoas	
PAJ 052	255	67			Sn	Embasamento	
PAJ 052	255	65			Sn	Embasamento	
PAJ 052	253	68			Sn	Embasamento	
PAJ 052	318	87			j	Embasamento	
PAJ 052	150	87			j	Embasamento	
PAJ 052	147	85			j	Embasamento	
PAJ 052	295	82			j	Embasamento	
PAJ 052	305	90			j	Embasamento	
PAJ 052	145	85			j	Embasamento	
PAJ 052	172	80			j	Embasamento	
PAJ 052	175	85			j	Embasamento	
PAJ 052	35	46			j	Embasamento	
PAJ 052	40	30			j	Embasamento	
PAJ 052	25	20			j	Embasamento	
PAJ 052	43	15			j	Embasamento	
PAJ 052			106	70	Lbt	Embasamento	
PAJ 052	255	67			Sn	Embasamento	
PAJ 052	254	67			Sn	Embasamento	
PAJ 052	250	70			Sn	Embasamento	
PAJ 052	245	68			Sn	Embasamento	
PAJ 052	344	40			FR	Embasamento	
PAJ 052	355	60			FR	Embasamento	
PAJ 052	345	65			FR	Embasamento	
PAJ 052	357	75			FR	Embasamento	
PAJ 052	175	82			FR	Embasamento	
PAJ 052	195	68			FR	Embasamento	
PAJ 052	318	30			FR	Embasamento	

PAJ 052	20	85		FR	Emba	.sat	nento	
PAJ 052	28	50		FR	Emba	.sai	nento	
PAJ 052	15	50		FR	Emba	.sai	nento	
PAJ 052	20	45		FR	Emba	.sai	nento	
PAJ 052	96	80		FR	Emba	.sai	nento	
PAJ 052	77	50		FR	Emba	.sai	nento	
PAJ 052	264	65		V	Emba	.sai	nento	
PAJ 052	315	50		V	Emba	.sai	nento	
PAJ 052	145	80		FR	Emba	.sat	nento	
PAJ 052	144	75		FR	Emba	.sar	nento	
PAJ 052	141	70		FR	Emba	.sar	nento	
PAJ 052	146	65		FR	Emba	.sat	nento	
PAJ 052	20	60		FR	Emba	.sar	nento	
PAJ 053	45	22		SO	SSH ou LJ			
PAJ 053	38	20		SO	SSH ou LI			
PAJ 053	48	18		SO	SSH ou LI			
PAJ 053	203	12		SO	SSH ou			
PAJ 053	218	17		SO	SSH ou			
PAJ 053	223	5		SO	SSH ou			
PAJ 053	184	3		SO	SSH ou			
PAJ 053	215	15		FR	SSH ou			
PAJ 053	200	38		FR	SSH ou			
PAJ 053	205	27		FR	SSH ou			
PAJ 053	203	32		FR	SSH ou			
PAJ 053	226	25		FR	SSH ou			
PAJ 053	33	82		FR	SSH ou LI			
PAJ 053	34	80		FR	SSH ou LI			
PAJ 053	25	80		FR	SSH ou LI			
PAJ 053	30	80		FR	SSH ou LJ			
PAJ 053	0	75		FR	SSH ou LI			
PAJ 053	0	75		FR	SSH ou LJ			
PAJ 053	175	75		FR	SSH ou LJ			

PAJ 053	355	75			FR	SSH ou		
PAJ 053	195	30			FR	SSH ou		
PAJ 053	220	60			FR	SSH ou		
PAJ 053	217	90			FR	LJ SSH ou		
PAI 053	315	80			FR	LJ SSH ou		
DAL 052	210	20			ED	LJ		
PAJ 055	510	80			FK	LJ		
PAJ 053	310	90			FR	SSH ou LI		
PAJ 053	327	90			FR	SSH ou		
PAJ 053	338	80			FR	SSH ou		
PAJ 053	345	90			FR	LJ SSH ou		
PAL 053	271	80			FR	LJ		
111 055	271	00			TK	LJ		
PAJ 053	257	82			FR	SSH ou		
PAJ 053	100	60			FR	SSH ou		
PAJ 053	167	90			FR	SSH ou		
PAJ 053	168	85			FR	SSH ou		
PAJ 053	200	7			SO	LJ SSH ou		
DAL 053	132	5			50	LJ		
111 055	132	5				LJ		
PAJ 053	130	5			SO	SSH ou LJ		
PAJ 053	27	75			jp	SSH ou LI		
PAJ 053			116	2	lp	SSH ou		
PAJ 053	32	80			jp	SSH ou		
PAJ 053			125	5	lp	SSH ou		
PAJ 053	48	80			jp	SSH ou		
PAL053			128	0	ln	LJ SSH ou		
119 000			120		Ψ	LJ		
PAJ 053	350	90			j	SSH ou LJ		
PAJ 053	343	80			j	SSH ou		
PAJ 053	94	70			j	SSH ou		
						LJ		

PAJ 053	131	87			j	SSH ou			
DAL 052	0	80			:	LJ			
PAJ 055	8	80			J	LJ SSH ou			
PAJ 053	10	90			j	SSH ou			
DAL 052	10	00				LJ			
PAJ 053	40	90			lb	SSH ou LJ			
PAJ 053			310	0	lp	SSH ou			
						LJ			
PAJ 053	30	78			j	SSH ou LI			
PAJ 053	30	80			j	SSH ou			
DAL 052	220	80			•	LJ			
PAJ 055	520	80)	LJ SSH ou			
PAJ 053	317	85			j	SSH ou			
DAL 052	215	75			:				
FAJ 055	515	75)	LI			
PAJ 053	345	80			j	SSH ou			
						LJ			
PAJ 054	70	10			S0	LJ			
PAJ 054	85	5			S0	LJ			
PAJ 054	68	10			S0	LJ			
PAJ 054	302	30			SO	LJ			
PAJ 054	140	20			SO	LJ			
PAJ 054	130	20			SO	LJ			
PAJ 054			38	0	lb	LJ			
PAJ 054			40	0	lb	LJ			
PAJ 054	286	77			j	LJ			
PAJ 054	285	75			j	LJ			
PAJ 054	52	90			V	LJ			
PAJ 054	357	70			V	LJ			
PAJ 054	45	85			v	LJ			
PAJ 055	290	15			SO	SSH ou			
PAI 055	230	10			SO	SSH ou			
5		-				LJ			
PAJ 055	246	10			S0	SSH ou			
PAL 055	38	7			<u>\$0</u>	SSH ou			
1119 000	50	1			50	LJ			
PAJ 055	207	85			FR	SSH ou			
PAJ 055	205	85			FR	SSH ou			
DALOFE	100	07			ED	LJ SSII	\square		
PAJ 055	198	0/			ГK	LJ			
PAJ 055	206	85			FR	SSH ou			
						ப			

PAJ 055	155	90		FR	SSH ou		
PAJ 055	151	85		FR	SSH ou		
PAJ 055	230	80		FR	SSH ou		
PAJ 055	253	8		v	SSH ou		
PAJ 055	247	82		V	SSH ou LI		
PAJ 055	2	77		v	SSH ou LI		
PAJ 056	150	2		S0	SSH ou LI		
PAJ 056	175	2		S0	SSH ou LI		
PAJ 056	110	90		V	SSH ou LJ		
PAJ 056	110	80		v	SSH ou LJ		
PAJ 056	114	85		V	SSH ou LJ		
PAJ 056	205	90		v	SSH ou LI		
PAJ 058	309	2		S0	SSH ou LJ		
PAJ 058	311	5		SO	SSH ou LJ		
PAJ 058	52	80		FR	SSH ou LI		
PAJ 058	50	85		FR	SSH ou LJ		
PAJ 058	45	75		FR	SSH ou LI		
PAJ 058	43	72		FR	SSH ou LI		
PAJ 058	56	77		FR	SSH ou LI		
PAJ 058	113	85		FR	SSH ou LI		
PAJ 058	110	80		FR	SSH ou LJ		
PAJ 058	150	85		FR	SSH ou LJ		
PAJ 060	60	5		S0	SSH ou LI		
PAJ 060	65	75		SO	SSH ou LJ		
PAJ 060	250	2		SO	SSH ou LJ		
PAJ 060	90	85		j	SSH ou LI		
PAJ 060	85	85		FR	SSH ou LJ		
					5		

				-				
PAJ 060	290	85		FR	SSH ou LI			
PAJ 060	290	80		FR	SSH ou			
PAJ 060	5	90		v	LJ SSH ou			
5	-				LJ			
PAJ 060	65	80		v	SSH ou			
PAJ 060	35	75		FR	SSH ou			
DALOCO	245	05		ED	LJ	\vdash		
PAJ 060	345	85		ГК	LJ			
PAJ 061	285	5		S0	SSH ou			
PAJ 061	297	5		S0	SSH ou			
PAJ 061	188	70		FR	LJ SSH ou			
5					LJ			
PAJ 061	15	80		FR	SSH ou LJ			
PAJ 061	130	80		FR	SSH ou			
PAJ 061	125	80		FR	SSH ou	++		
	4.45				LJ	\square		
PAJ 061	145	70		FR	SSH ou LI			
PAJ 061	138	70		FR	SSH ou			
PAJ 061	230	90		FR	LJ SSH ou			
					LJ			
PAJ 061	75	55		FK	SSH ou LJ			
PAJ 061	85	20		S0	SSH ou LI			
PAJ 061	105	17		S0	SSH ou			
PAJ 061	64	9		S0	SSH ou			
PAL 061	245	5		\$0	LJ SSH ou	\vdash		
1119 001	273	5		50	LJ			
PAJ 061	310	30		S0	SSH ou LI			
PAJ 061	115	10		S0	SSH ou			
PAI 061	290	90		FR	LJ SSH ou			
					LJ			
PAJ 061	288	80		FR	SSH ou LI			
PAJ 061	300	78		FR	SSH ou			
PAJ 061	202	90		FR	SSH ou	$\left \right $		
	2	0.0		107	LJ		ļ	
PAJ 061	205	90		FR	SSH ou LI			
					ц			L

PAJ 061	194	90		FR	SSH ou				
PAI 061	10	85		FR	LJ SSH ou				
					LJ				
PAJ 061	285	90		FR	SSH ou				
DALOGA	210	05		ED	LJ				
PAJ 061	210	85		FK	SSH ou				
PAJ 061	303	5		SO	SSH ou				
5					LJ				
PAJ 064	310	60		SO	SS ?				
PAJ 064	322	27		SO	SS ?				
PAJ 064	326	52		SO	SS ?				
PAJ 064	305	35		SO	SS ?				
PAJ 064	295	75		SO	SS ?				
PAJ 064	295	75		SO	SS ?				
PAJ 064	308	32		SO	SS ?				
PAJ 064	304	80		SO	SS ?				
PAJ 064	317	77		SO	SS ?				
PAJ 064	295	30		SO	SS ?				
PAJ 064	200	85		FR	SS ?				
PAJ 064	120	50		FR	SS ?				
PAJ 064	224	87		FR	SS ?				
PAJ 064	120	7		SO	SS ?				
PAJ 064	40	10		S0	SS ?				
PAJ 064	90	30		SO	SS ?				
PAJ 064	83	30		SO	SS ?				
PAJ 064	146	55		SO	SS ?				
PAJ 064	105	67		S0	SS ?				
PAJ 064	82	62		SO	SS ?				
PAJ 064	63	30		SO	SS ?				
PAJ 064	91	12		SO	SS ?				
PAJ 064	87	60		SO	SS ?				
PAJ 064	110	25		SO	SS ?				
PAJ 064	290	65		FR	SS ?				
PAJ 064	296	75		FR	SS ?				
PAJ 065	105	65		FR	Uru				
PAJ 065	115	65		FR	Uru				
PAJ 065	280	75		FR	Uru				
PAJ 065	120	60		FR	Uru				
PAJ 065	70	85		FR	Uru				
PAJ 065	265	90		FR	Uru				
PAJ 065	305	90		FR	Uru				
PAJ 065	157	70		FR	Uru				
PAJ 065	158	70		FR	Uru				
PAJ 065	170	90		FR	Uru				
PAJ 065	7	90		FR	Uru				
PAJ 065	330	40		FR	Uru				
PAJ 065	165	52		FR	Uru				
---------	-----	----	--	----	------	------	-------	--	--
PAJ 065	221	75		FR	Uru				
PAJ 065	225	87		FR	Uru				
PAJ 065	245	75		FR	Uru				
PAJ 065	265	90		FR	Uru				
PAJ 065	70	85		FR	Uru				
PAJ 065	285	80		FR	Uru				
PAJ 065	185	90		FR	Uru				
PAJ 065	190	62		FR	Uru				
PAJ 065	245	57		FR	Uru				
PAJ 065	5	76		FR	Uru				
PAJ 067	355	85		FR	Emba	sar	nento		
PAJ 067	5	72		FR	Emba	sar	mento		
PAJ 068	90	85		FR	Emba	sar	mento		
PAJ 068	236	90		FR	Emba	sar	mento		
PAJ 068	267	90		FR	Emba	sar	mento		
PAJ 068	110	85		FR	Emba	sar	mento		
PAJ 068	170	90		FR	Emba	lsar	nento		
PAJ 068	190	75		FR	Emba	sar	mento		
PAJ 069	250	78		FR	Emba	sar	mento		
PAJ 069	230	85		FR	Emba	sar	mento		
PAJ 069	220	90		FR	Emba	sar	mento		
PAJ 069	285	57		Sn	Emba	sar	nento		
PAJ 069	290	60		Sn	Emba	sar	nento		
PAJ 070	320	35		Sn	Emba	sar	nento		
PAJ 070	312	30		Sn	Emba	sat	nento		
PAJ 070	307	35		Sn	Emba	sar	mento		
PAJ 070	330	62		V	Emba	sar	mento		
PAJ 071	180	50		V	Emba	sar	mento		
PAJ 071	55	85		FR	Emba	sar	mento		
PAJ 072	147	80		FR	Uru				
PAJ 072	130	85		FR	Uru				
PAJ 072	136	90		FR	Uru				
PAJ 072	132	85		FR	Uru				
PAJ 072	310	85		FR	Uru				
PAJ 072	118	87		FR	Uru				
PAJ 072	134	77		FR	Uru				
PAJ 072	138	75		FR	Uru				
PAJ 072	138	87		FR	Uru				
PAJ 072	145	75		FR	Uru				
PAJ 072	138	80		FR	Uru				
PAJ 072	128	90		FR	Uru				
PAJ 072	327	80		FR	Uru				
PAJ 072	128	70		FR	Uru				
PAJ 072	215	80		FR	Uru				
PAJ 072	32	85		FR	Uru				
~									

PAJ 072	40	75		FR	Uru		
PAJ 072	42	80		FR	Uru		
PAJ 072	45	85		FR	Uru		
PAJ 072	28	90		FR	Uru		
PAJ 072	50	75		FR	Uru		
PAJ 072	48	70		FR	Uru		
PAJ 072	57	80		FR	Uru		
PAJ 072	20	85		FR	Uru		
PAJ 072	40	60		FR	Uru		
PAJ 073	323	10		S0	7 Lagoas		
PAJ 073	357	35		S0	7 Lagoas		
PAJ 073	53	7		S0	7 Lagoas		
PAJ 073	132	58		FR	7 Lagoas		
PAJ 073	130	90		FR	7 Lagoas		
PAJ 073	304	76		FR	7 Lagoas		
PAJ 073	113	75		FR	7 Lagoas		
PAJ 073	127	75		V	7 Lagoas		
PAJ 073	75	80		FR	7 Lagoas		
PAJ 073	245	82		FR	7 Lagoas		
PAJ 073	253	72		FR	7 Lagoas		
PAJ 073	167	83		FR	7 Lagoas		
PAJ 073	169	75		FR	7 Lagoas		
PAJ 073	68	80		FR	7 Lagoas		
PAJ 073	290	6		S0	7 Lagoas		
PAJ 074	60	5		S0	7 Lagoas		
PAJ 074	309	87		FR	7 Lagoas		
PAJ 074	330	75		FR	7 Lagoas		
PAJ 074	305	79		FR	7 Lagoas		
PAJ 074	304	85		FR	7 Lagoas		
PAJ 074	306	87		FR	7 Lagoas		
PAJ 074	123	90		v	7 Lagoas		
PAJ 074	128	70		v	7 Lagoas		
PAJ 074	46	86		FR	7 Lagoas		
PAJ 074	30	80		FR	7 Lagoas		
PAJ 074	247	87		FR	7 Lagoas		
PAJ 074	0	85		FR	7 Lagoas		
PAJ 074	24	90		FR	7 Lagoas		
PAJ 074	27	85		v	7 Lagoas		
PAJ 074	3	75		FR	7 Lagoas		
PAJ 074	8	87		v	7 Lagoas		
PAJ 074	228	5		Estlctt	7 Lagoas		
PAJ 075	210	5		S0	7 Lagoas		
PAJ 075	315	80		FR	7 Lagoas		
PAJ 075	38	90		FR	7 Lagoas		
PAJ 075	300	88		FR	7 Lagoas		
PAJ 075	132	90		FR	7 Lagoas		

PAJ 075	135	87		FR	7 Lagoas			
PAJ 075	52	90		FR	7 Lagoas			-
PAJ 075	15	87		FR	7 Lagoas			
PAJ 075	23	86		FR	7 Lagoas			
PAJ 075	2	85		FR	7 Lagoas			
PAJ 076	320	78		D	Emba	san	nento	
PAJ 076	293	85		D	Emba	san	nento	
PAJ 076	145	85		D	Emba	san	nento	
PAJ 076	130	60		D	Emba	san	nento	
PAJ 076	220	90		D	Emba	san	nento	
PAJ 076	357	80		D	Emba	san	nento	
PAJ 076	356	45		D	Emba	san	nento	
PAJ 076	238	90		D	Emba	san	nento	
PAJ 076	8	75		D	Emba	san	nento	
PAJ 076	236	77		D	Emba	san	nento	
PAJ 076	30	66		D	Emba	san	nento	
PAJ 076	32	50		D	Emba	san	nento	
PAJ 076	222	80		D	Emba	san	nento	
PAJ 076	182	67		D	Emba	san	nento	
PAJ 076	180	60		D	Emba	san	nento	
PAJ 076	73	70		D	Emba	san	nento	
PAJ 076	54	65		D	Emba	san	nento	
PAJ 076	193	66		D	Emba	san	nento	
PAJ 076	278	80		D	Emba	san	nento	
PAJ 076	247	75		D	Emba	san	nento	
PAJ 076	170	65		D	Emba	san	nento	
PAJ 076	163	75		D	Emba	san	nento	
PAJ 076	87	85		j	Emba	san	nento	
PAJ 076	280	90		j	Emba	san	nento	
PAJ 076	106	80		j	Emba	san	nento	
PAJ 076	98	80		j	Emba	san	nento	
PAJ 076	200	64		j	Emba	san	nento	
PAJ 076	350	80		j	Emba	san	nento	
PAJ 076	105	80		j	Emba	san	nento	
PAJ 076	73	70		Sn	Emba	san	nento	
PAJ 076	154	75		V	Emba	san	nento	
PAJ 076	165	85		V	Emba	san	nento	
PAJ 076	320	65		D	Emba	san	nento	
PAJ 076	92	67		F	Emba	san	nento	
PAJ 076	85	57		F	Emba	san	nento	
PAJ 076	87	65		F	Emba	san	nento	1
PAJ 076	90	70		F	Emba	san	nento	1
PAJ 076	252	85		F	Emba	san	nento	1
PAJ 076	79	90		F	Emba	san	nento	1
PAJ 076	85	90		FR	Emba	san	nento	
PAJ 076	86	75		FR	Emba	san	nento	

PAJ 076	85	80		FR	Embasamento
PAJ 076	280	90		FR	Embasamento
PAJ 076	277	75		FR	Embasamento
PAJ 076	354	90		FR	Embasamento
PAJ 076	170	70		FR	Embasamento
PAJ 076	194	90		FR	Embasamento
PAJ 076	20	90		FR	Embasamento
PAJ 076	18	88		FR	Embasamento
PAJ 076	48	90		FR	Embasamento
PAJ 076	300	90		FR	Embasamento
PAJ 076	302	90		FR	Embasamento
PAJ 076	263	82		Sn	Embasamento
PAJ 076	285	75		F	Embasamento
PAJ 076	277	90		F	Embasamento
PAJ 077	290	85		Sn	Embasamento
PAJ 077	268	90		Sn	Embasamento
PAJ 077	144	45		Sn	Embasamento
PAJ 077	337	70		j	Embasamento
PAJ 077	245	90		j	Embasamento
PAJ 078	204	12		S0	7 Lagoas
PAJ 078	205	10		S0	7 Lagoas
PAJ 078	194	87		FR	7 Lagoas
PAJ 078	286	87		FR	7 Lagoas
PAJ 078	302	90		FR	7 Lagoas
PAJ 078	345	90		FR	7 Lagoas
PAJ 078	9	80		FR	7 Lagoas
PAJ 078	237	90		FR	7 Lagoas
PAJ 078	50	90		FR	7 Lagoas
PAJ 079	57	5		v	7 Lagoas
PAJ 079	302	90		v	7 Lagoas
PAJ 079	310	80		v	7 Lagoas
PAJ 079	195	85		v	7 Lagoas
PAJ 079	301	90		FR	7 Lagoas
PAJ 079	308	85		v	7 Lagoas
PAJ 079	30	80		FR	7 Lagoas
PAJ 079	45	90		v	7 Lagoas
PAJ 079	290	85		v	7 Lagoas
PAJ 079	275	90		FR	7 Lagoas
PAJ 079	196	85		FR	7 Lagoas
PAJ 080	57	15		SO	7 Lagoas
PAJ 080	290	10		SO	7 Lagoas
PAJ 080	276	6		SO	7 Lagoas
PAJ 080	308	7		SO	7 Lagoas
PAJ 080	292	90		V	7 Lagoas
PAJ 080	291	80		V	7 Lagoas
PAJ 080	118	90		V	7 Lagoas

PAJ 080	302	87		v	7 Lagoas		
PAJ 080	296	75		v	7 Lagoas		
PAJ 080	292	85		V	7 Lagoas		
PAJ 080	114	80		v	7 Lagoas		
PAJ 080	115	85		v	7 Lagoas		
PAJ 080	222	85		FR	7 Lagoas		
PAJ 080	77	75		FR	7 Lagoas		
PAJ 080	88	80		FR	7 Lagoas		
PAJ 080	190	85		FR	7 Lagoas		
PAJ 080	183	80		FR	7 Lagoas		
PAJ 080	253	85		FR	7 Lagoas		
PAJ 080	290	87		FR	7 Lagoas		
PAJ 080	208	85		FR	7 Lagoas		
PAJ 081	104	90		V	7 Lagoas		
PAJ 081	105	89		FR	7 Lagoas		
PAJ 081	100	80		FR	7 Lagoas		
PAJ 081	288	83		FR	7 Lagoas		
PAJ 081	192	88		FR	7 Lagoas		
PAJ 081	190	85		FR	7 Lagoas		
PAJ 081	165	88		FR	7 Lagoas		
PAJ 081	100	85		FR	7 Lagoas		
PAJ 081	104	75		FR	7 Lagoas		
PAJ 081	228	90		FR	7 Lagoas		
PAJ 082	85	4		S0	7 Lagoas		
PAJ 082	70	7		S0	7 Lagoas		
PAJ 082	115	90		V	7 Lagoas		
PAJ 082	294	80		V	7 Lagoas		
PAJ 082	208	85		FR	7 Lagoas		
PAJ 082	100	90		FR	7 Lagoas		
PAJ 082	105	90		FR	7 Lagoas		
PAJ 082	160	90		FR	7 Lagoas		
PAJ 082	210	88		FR	7 Lagoas		
PAJ 082	215	85		FR	7 Lagoas		
PAJ 082	218	90		FR	7 Lagoas		
PAJ 082	120	90		FR	7 Lagoas		
PAJ 082	95	90		FR	7 Lagoas		
PAJ 082	110	90		FR	7 Lagoas		
PAJ 082	100	90		FR	7 Lagoas		
PAJ 082	180	84		FR	7 Lagoas		
PAJ 082	190	88		FR	7 Lagoas		
PAJ 082	350	90		FR	7 Lagoas		
PAJ 082	190	83		FR	7 Lagoas		
PAJ 083	290	3		SO	7 Lagoas		
PAJ 083	175	90		FR	7 Lagoas		
PAJ 083	0	85		FR	7 Lagoas		
PAJ 083	170	75		FR	7 Lagoas		

PAJ 083	355	85			FR	7 Lagoas			
PAJ 083	2	85			FR	7 Lagoas			
PAJ 083	298	80			FR	7 Lagoas			
PAJ 083	300	90			FR	7 Lagoas			
PAJ 083	305	85			FR	7 Lagoas			
PAJ 083	280	90			FR	7 Lagoas			
PAJ 083	225	90			FR	7 Lagoas			
PAJ 083	43	85			FR	7 Lagoas			
PAJ 083	255	80			FR	7 Lagoas			
PAJ 083	145	85			FR	7 Lagoas			
PAJ 084	335	5			SO	7 Lagoas			
pre						Ŭ			
PAJ 084	233	90			FR	7 Lagoas			
pre DAL 084	20	70			ED	71.000.00			
nre	20	19			ГK	7 Lagoas			
PAJ 084	285	75			FR	7 Lagoas			
PAJ 084	288	80			FR	7 Lagoas			
PAJ 084	285	85			FR	7 Lagoas			
PAJ 084	353	87			FR	7 Lagoas			
PAJ 084	38	85			FR	7 Lagoas			
PAJ 084	305	85			V	7 Lagoas			
PAI 084	292	77			V	7 Lagoas			
PAJ 084	120	85			V	7 Lagoas			
PAJ 084	125	90			v	7 Lagoas			
PAJ 084	132	90			v	7 Lagoas			
PAJ 084	202	82			v	7 Lagoas			
PAJ 084	210	85			V	7 Lagoas			
PAJ 084	180	80			V	7 Lagoas			
PAJ 084	38	82			v	7 Lagoas			
PAJ 084	108	90			FR	7 Lagoas			
PAJ 084	30	80			FR	7 Lagoas			
PAJ 084	315	80			FR	7 Lagoas			
PAJ 084	35	85			FR	7 Lagoas			
PAJ 085	90	5			S0	7 Lagoas			
PAJ 085	308	90			FR	7 Lagoas			
PAJ 085	277	80			v	7 Lagoas			
PAJ 085	268	80			V	7 Lagoas			
PAJ 085	222	80			FR	7 Lagoas			
PAJ 085	290	80			FR	7 Lagoas			
PAJ 085	98	80			V	7 Lagoas			
PAJ 085	292	80			FR	7 Lagoas			
PAJ 085	332	90			FR	7 Lagoas			
PAJ 085	338	85			FR	7 Lagoas			
PAJ 085	320	90			FR	7 Lagoas			
PAJ 086	4	5			SO	7 Lagoas			
PAJ 086	190	85			FR	7 Lagoas			
5			1			0	1	1	

PAJ 086	15	85			FR	7 Lagoas		
PAJ 086	95	80			FR	7 Lagoas		
PAJ 086	289	85			FR	7 Lagoas		
PAJ 086	285	88			FR	7 Lagoas		
PAJ 087	290	82			FR	7 Lagoas		
PAJ 087	200	90			FR	7 Lagoas		
PAJ 087	54	7			S0	7 Lagoas		
PAJ 088	194	65			S0	7 Lagoas		
PAJ 088	5	85			FR	7 Lagoas		
PAJ 088	15	90			FR	7 Lagoas		
PAJ 088	290	85			FR	7 Lagoas		
PAJ 088	112	85			FR	7 Lagoas		
PAJ 088	280	85			FR	7 Lagoas		
PAJ 088	0	3			S0	7 Lagoas		
PAJ 088	50	85			FR	7 Lagoas		
PAJ 088	310	80			FR	7 Lagoas		
PAJ 088	314	90			FR	7 Lagoas		
PAJ 088	165	77			FR	7 Lagoas		
PAJ 088	320	88			FR	7 Lagoas		
PAJ 088	100	18			S0	7 Lagoas		
PAJ 088	288	70			V	7 Lagoas		
PAJ 088	155	12			S0	7 Lagoas		
PAJ 088	190	80			FR	7 Lagoas		
PAJ 088	198	75			FR	7 Lagoas		
PAJ 088	200	90			FR	7 Lagoas		
PAJ 088	185	80			FR	7 Lagoas		
PAJ 088	23	85			FR	7 Lagoas		
PAJ 088	208	90			FR	7 Lagoas		
PAJ 088	295	85			FR	7 Lagoas		
PAJ 088	288	75			FR	7 Lagoas		
PAJ 088	290	85			v	7 Lagoas		
PAJ 088	290	65			FR	7 Lagoas		
PAJ 088	308	80			FR	7 Lagoas		
PAJ 088	295	81			FR	7 Lagoas		
PAJ 088	288	70			FR	7 Lagoas		
PAJ 088	293	80			FR	7 Lagoas		
PAJ 088	298	88	350	0	V	7 Lagoas		
PAJ 088	298	90			FR	7 Lagoas		
PAJ 088	130	35			Est	7 Lagoas		
PAJ 088	115	40			Est	7 Lagoas		
PAJ 089	120	10			SO	7 Lagoas		
PAJ 089	125	6			SO	7 Lagoas		
PAJ 089	128	35			S0	7 Lagoas		
PAJ 089	202	75			FR	7 Lagoas		
PAJ 089	205	85			jp	7 Lagoas		
PAJ 089			118	12	lp	7 Lagoas		

PAJ 089	200	83			FR	7 Lagoas		
PAJ 089	208	85			FR	7 Lagoas		
PAJ 089	200	85			FR	7 Lagoas		
PAJ 089	208	90			FR	7 Lagoas		
PAJ 089	157	87			FR	7 Lagoas		
PAJ 089	265	77			FR	7 Lagoas		
PAJ 089	270	80			FR	7 Lagoas		
PAJ 089	275	75			FR	7 Lagoas		
PAJ 089	298	80			FR	7 Lagoas		
PAJ 089	264	70			FR	7 Lagoas		
PAJ 089	260	80			FR	7 Lagoas		
PAJ 090	210	82			FR	LJ		
PAJ 090	52	85			FR	LJ		
PAJ 090	282	90			FR	LJ		
PAJ 090	285	90			FR	LJ		
PAJ 090	290	80			FR	LJ		
PAJ 090	295	80			FR	LJ		
PAJ 090	310	90			FR	LJ		
PAJ 090	38	80			FR	LJ		
PAJ 090	205	80			v	LJ		
PAJ 090	200	65			v	LJ		
PAJ 090	205	75			v	LJ		
PAJ 090	200	90			v	LJ		
PAJ 090	100	12			SO	LJ		
PAJ 090	35	5			SO	LJ		
PAJ 090	305	40			F	LJ		
PAJ 090			320	35	le	LJ		
PAJ 090	335	22			F	LJ		
PAJ 090			320	15	le	LJ		
PAJ 090	330	22			F	LJ		
PAJ 090			328	18	le	LJ		
PAJ 091	214	32			S0	SSH ou		
PAJ 091	222	60			SO	SSH ou		
5						LJ		
PAJ 091	218	28			SO	SSH ou		
DAL 001	215	20			50	LJ		
PAJ 091	215	20			50	LJ		
PAJ 091	275	5			SO	SSH ou		
PAI 091	285	10			<u>S0</u>	SSH ou		
111,071	100					LJ		
PAJ 091			300	5	lb	SSH ou		
PAJ 091	210	87			FR	SSH ou		
						LJ		
PAJ 091	95	85			FR	SSH ou		
						LJ		

DAL 001	275	87		FR	SSH ou	1		
111 091	275	07		ГК	LJ			
PAJ 091	260	85		FR	SSH ou			
PAJ 091	272	80		FR	SSH ou			
DAL 004	270	07		ED	LJ			
PAJ 091	270	87		FK	SSH ou LJ			
PAJ 091	268	78		FR	SSH ou LI			
PAJ 091	268	80		FR	SSH ou			
PAJ 091	25	87		FR	SSH ou			
PAJ 091	28	85		FR	LJ SSH ou			
DAL 004		75		ED	LJ			
PAJ 091	23	/5		FK	SSH ou LJ			
PAJ 091	20	85		FR	SSH ou LI			
PAJ 091	26	80		FR	SSH ou			
PAJ 091	30	85		FR	SSH ou			
PAJ 091	206	70		FR	LJ SSH ou			
DAL 004	207	05		ED	LJ			
PAJ 091	207	85		FK	SSH ou LJ			
PAJ 091	206	85		FR	SSH ou LI			
PAJ 091	4	75		FR	SSH ou			
PAJ 092	120	15		SO	LJ			
PAJ 092	118	32		SO	LJ			
PAJ 092	60	4		S0	LJ			
PAJ 092	75	12		S0	LJ			
PAJ 092	93	25		S0	LJ			
PAJ 092	103	32		S0	LJ			
PAJ 092	200	80		v	LJ			
PAJ 092	3	80		V	LJ			
PAJ 092	12	90		v	LJ			
PAJ 092	15	80		v	LJ			
PAI 092	198	85		v	LI			
PAI 092	310	80		v	LI	-		
PAI 092	320	50		v	L			
PAI 092	315	90		v	LI			
PAL 092	345	60		v	L	-		
PAL 092	350	55		v	LI I	-		
PAL 002	33	90		FR	II	-		
PAL002	45	85		FR		-		
DAL 002	300	60		ED				
FAJ 092	500	00		1'I	LJ			

PAJ 092	110	90			jp	LJ		
PAJ 092			195	10	lp	LJ		
PAJ 092	274	75			jp	LJ		
PAJ 092			180	10	lp	LJ		
PAJ 092	133	87			jp	LJ		
PAJ 092			220	5	lp	LJ		
PAJ 093	215	5			SO	SSH ou		
-						LJ		
PAJ 093	350	40			S0	SSH ou		
DAL 002	276	10			50	LJ		
PAJ 095	270	10			30	II		
PAJ 093	176	10			SO	SSH ou		
5						LJ		
PAJ 093	202	22			S0	SSH ou		
DALOOD	2(0)	07				LJ		
PAJ 093	260	85			FR	SSH ou		
PAL 093	90	80			FR	SSH ou		
1119 095	20	00			ÎŔ	LJ		
PAJ 093	55	85			FR	SSH ou		
						LJ		
PAJ 094	66	10			SO	LJ		
PAJ 094	119	25			SO	LJ		
PAJ 094	35	2			S0	LJ		
PAJ 094	240	75			V	LJ		
PAJ 094	233	75			V	LJ		
PAJ 094	230	70			V	LJ		
PAJ 094	240	90			V	LJ		
PAJ 094	58	90			V	LJ		
PAJ 094	50	90			V	LJ		
PAJ 094	18	70			v	LJ		
PAJ 094	353	90			V	LJ		
PAJ 094	98	85			FR	LJ		
PAJ 094	285	80			FR	LJ		
PAJ 094	200	80			FR	LJ		
PAJ 094	170	85			FR	LJ		
PAJ 094	115	85			FR	LJ		
PAJ 094	83	10			S0	LJ		
PAJ 095	310	10			S0	SSH ou		
						LJ		
PAJ 095	320	20			S0	SSH ou		
DAL 005			304	17	10	LJ SSH ou		
111 090			504	1 /	10	LI		
PAJ 095	329	20			SO	SSH ou		
-						LJ		
PAJ 095			266	5	le	SSH ou		
DALOOF	200	20			80	LJ		
PAJ 095	308	20			50	55H ou		
						ப		

PAJ 095	115	60			SO	SSH ou	
PAJ 095	115	50			S 0	SSH ou	
PAJ 095			120	50	le	SSH ou	
PAJ 095	342	17			SO	SSH ou	
PAJ 095			33	10	lb	LJ SSH ou	
PAJ 095	44	88			V	LJ SSH ou	
DAL 095	135	85			V	LJ SSH ou	
DAL 005	220	05				LJ	
PAJ 095	238	85			FK	LJ	
PAJ 095	98	22			SO	SSH ou LJ	
PAJ 095			128	18	le	SSH ou LI	
PAJ 096	130	18			SO	SSH ou SSD	
PAJ 096	75	18			SO	SSH ou SSD	
PAJ 096	85	10			SO	SSH ou SSD	
PAJ 096	165	15			SO	SSH ou SSD	
PAJ 096	240	5			SO	SSH ou SSD	
PAJ 096	232	85			FR	SSH ou SSD	
PAJ 096	235	90			FR	SSH ou SSD	
PAJ 096	238	86			FR	SSH ou SSD	
PAJ 096	245	85			FR	SSH ou SSD	
PAJ 096	60	90			FR	SSH ou SSD	
PAJ 096	69	88			FR	SSH ou SSD	
PAJ 096	39	90			FR	SSH ou SSD	
PAJ 096	142	80			FR	SSH ou SSD	
PAJ 096	120	80			FR	SSH ou SSD	
PAJ 096	280	85			FR	SSH ou SSD	
PAJ 096	295	85			FR	SSH ou SSD	
PAJ 097	136	15			SO	SSH ?	
PAJ 097	276	75			SO	SSH ?	

PAJ 097	112	25			SO	SSH ?		
PAJ 097	272	55			S0	SSH ?		
PAJ 097	104	85			S0	SSH ?		
PAJ 097	88	15			SO	SSH ?		
PAJ 097			90	19	lb	SSH ?		
PAJ 097			195	5	lb	SSH ?		
PAJ 097			25	5	lb	SSH ?		
PAJ 097			18	4	lb	SSH ?		
PAJ 097			205	0	lb	SSH ?		
PAJ 097	108	65			FR	SSH ?		
PAJ 097	100	70			FR	SSH ?		
PAI 097	95	75			FR	SSH ?		
PAI 097	103	70			FR	SSH ?		
PAI 097	14	75			FR	SSH ?		
PAL 097	13	75			FR	SSH ?		
PAL 098	143	20			SO	SSH ou		
1119 070	115	20			50	LJ		
PAJ 098	199	87			FR	SSH ou		
						LJ		
PAJ 098	19	90			FR	SSH ou		
DAL 009	21	07			Ер	LJ SSH ou		
r 11j 090	21	07			TK	LI		
PAJ 098	44	79			jp	SSH ou		
					· · ·	LJ		
PAJ 098			131	0	lp	SSH ou		
DAL 000	235	6			\$0	LJ SSH ou		
r 11j 099	235	0			30	LI		
PAJ 099	303	55			SO	SSH ou		
						LJ		
PAJ 099			213	2	lb	SSH ou		
DAL 000			107	F	115	LJ		
FAJ 099			10/	5	ID	LI		
PAJ 099			197	0	lb	SSH ou		
5						LJ		
PAJ 099	282	70			SO	SSH ou		
DAL 000	((7			50	LJ		
PAJ 099	00	/			50	SSH ou		
PAJ 099	204	86			FR	SSH ou		
						LJ		
PAJ 099	205	82			FR	SSH ou		
DAL 000	206	05			Ер	LJ SSU		
PAJ 099	200	60			ГК	LI		
PAJ 099	16	85			FR	SSH ou		
						LJ		
PAJ 099	17	85			FR	SSH ou		
						LJ		

DAL 000	1 Г	07	T		ED	CCLI	T			
PAJ 099	15	8/			FK	LI SSH ou				
PAJ 099	210	87			jp	SSH ou				
						LJ				
PAJ 099			300	2	lp	SSH ou				
DAL 000	0.0	70		-	ED					
PAJ 099	98	70			FK	SSH ou LJ				
PAI 099	255	72			FR	SSH ou				
1119 000	155	12			110	LJ				
PAJ 100	198	85			FR	LJ				
PAJ 100	200	85			FR	LJ				
PAJ 100	95	84			FR	LJ				
DAI 101	260	5			<u>\$0</u>	SSH ou				
1119 101	200	5			50	LJ				
PAJ 101	95	5			SO	SSH ou				
5						LI				
PAI 101	185	8			<u>S0</u>	SSH ou	1			
1119 101	105	0			50	II				
DAI 101	00	00			ED					
FAJ 101	90	90			ΓK	JI SSH OU				
DALAGA	05	05			ED	LJ				
PAJ 101	85	85			FK	SSH ou				
DALAGA	0.0	0.0			ED	LJ				
PAJ 101	98	90			FR	SSH ou				
DAI 101	107	05			ED					
171 <u>9</u> 101	197	05			ГK	LJ				
PAI 101	195	85			FR	SSH ou				
	- / -					LJ				
PAJ 101	204	77			FR	SSH ou				
5						LI				
PAI 101	292	85			V	SSH ou				
1119 101	_/_	00			·	LI				
PAI 101	100	90			V	SSH ou				
1119 101	100	,,,			•	II				
DAI 101	340	40			ED	SSH ou				
FAJ 101	340	40			ГK	LI				
PAI 101	25	85			FR	SSH ou				
1119 101	10	00			110	LJ				
PAJ 101	28	85			FR	SSH ou				
5						LJ				
PAJ 101	188	70			FR	SSH ou				
5						LJ				
PAI 101	350	5			SO	SSH ou				
5						LJ				
PAJ 101	146	30			S0	SSH ou				
						LJ				
PAJ 102	168	20			SO	LJ	[
PAJ 102			150	18	le	LJ	Ĺ			
PAJ 102			146	18	le	LĪ	1		1	
PAJ 102			144	30	le	LI	$\left \right $			
PAI 102	204	72			50	II.	\vdash		1	
DAI 102	142	75			50	 тт	-			
PAJ 102	143	/ 5			50	LJ				

PAJ 102	105	30			S0	LJ		
PAJ 102	115	55			S0	LJ		
PAJ 102	150	38			S0	LJ		
PAJ 102	274	45			S0	LJ		
PAJ 102	110	20			S0	LJ		
PAJ 102	134	15			S0	LJ		
PAJ 102			115	13	le	LJ		
PAJ 102	158	17			S0	LJ		
PAJ 102			147	12	le	LJ		
PAJ 102	233	90			V	LJ		
PAJ 102	210	80			V	LJ		
PAJ 102	25	85			V	LJ		
PAJ 102	135	45			S0	LJ		
PAJ 102	313	72			S0	LJ		
PAJ 102			186	12	lb	LJ		
PAJ 102	170	20			S0	LJ		
PAJ 102	140	35			S0	LJ		
PAJ 102			135	20	le	LJ		
PAJ 102	115	70			S0	LJ		
PAJ 102	145	45			S0	LJ		
PAJ 102	293	80			S0	LJ		
PAJ 102	175	30			S0	LJ		
PAJ 102	140	30			S0	LJ		
PAJ 102			105	20	le	LJ		
PAJ 102	143	40			S0	LJ		
PAJ 102			105	30	le	LJ		
PAJ 102	142	25			S0	LJ		
PAJ 102			130	20	le	LJ		
PAJ 102	110	15			S0	LJ		
PAJ 102			115	13	le	LJ		
PAJ 102	120	15			S0	LJ		
PAJ 102			114	15	le	LJ		
PAJ 102	332	20			V	LJ		
PAJ 102	285	22			V	LJ		
PAJ 102	324	16			V	LJ		
PAJ 102	242	30			V	LJ		
PAJ 102	138	45			V	LJ		
PAJ 102	250	80			V	LJ		
PAJ 102	320	65			V	LJ		
PAJ 102			135	0	li	LJ		
PAJ 102	255	5			v	LJ		
PAJ 102	125	55			v	LJ		
PAJ 103	230	15			SO	LJ		
PAJ 103	198	90			v	LJ		
PAJ 103	202	90			v	LJ		
PAJ 103	255	90			v	LJ		

Piatti B.G., 2021, Arcabouço estrutural	e evolução tectônica	do Alto de	Januária (MG)
---	----------------------	------------	---------------

I	PAJ 104	315	30			F	Uru ?			
ľ	PAJ 104			290	25	le	Uru ?			
ľ	PAJ 105	60	5			S0	SSD			
	PAJ 105	30	90			FR	SSD			
ľ	PAJ 105	32	80			FR	SSD			
ľ	PAJ 105	208	90			FR	SSD			
ľ	PAJ 105	210	85			FR	SSD			
ľ	PAJ 105	300	85			FR	SSD			
ľ	PAJ 105	65	90			FR	SSD			
ľ	PAJ 106	35	15			SO	Uru			
ľ	PAJ 106	280	90			FR	Uru			
ľ	PAJ 106	278	90			FR	Uru			
	PAJ 106	90	85			FR	Uru			
	PAJ 106	285	90			FR	Uru			
	PAJ 107	50	70			FR	Uru			
	PAJ 107	52	90			FR	Uru			
	PAJ 107	45	75			FR	Uru			
	PAJ 107	225	80			FR	Uru			
	PAJ 107	43	80			FR	Uru			
	PAJ 107	49	90			FR	Uru			
	PAJ 107	130	85			FR	Uru			
	PAJ 107	140	87			FR	Uru			
ľ	PAJ 107	142	90			FR	Uru			
ľ	PAJ 107	145	90			FR	Uru			
	PAJ 107	330	75			FR	Uru			
	PAJ 107	325	85			FR	Uru			
ľ	PAJ 107	48	80			FR	Uru			
	PAJ 108	288	85			FR	Uru			
	PAJ 108	285	85			FR	Uru			
	PAJ 108	298	90			FR	Uru			
	PAJ 108	109	75			FR	Uru			
	PAJ 108	258	80			FR	Uru			
	PAJ 108	100	85			FR	Uru			
	PAJ 108	23	85			FR	Uru			
	PAJ 108	20	80			FR	Uru			
	PAJ 108	195	70			FR	Uru			
	PAJ 108	122	75			FR	Uru			
	PAJ 108	204	75			FR	Uru			
	PAJ 108	17	75			FR	Uru			
	PAJ 108	192	85			FR	Uru			
ľ	PAJ 109	300	85			FR	Uru			
ļ	PAJ 109	326	90			FR	Uru	1		
ļ	PAJ 109	275	85			FR	Uru	1		
ľ	PAJ 109	273	85			FR	Uru			
ĺ	PAJ 109	96	80			FR	Uru			
l	PAJ 109	85	82			FR	Uru			
								_	 	

PAJ 109	173	80		FR	Uru		
PAJ 109	0	90		FR	Uru		
PAJ 109	170	83		FR	Uru		
PAJ 109	230	80		FR	Uru		
PAJ 109	235	87		FR	Uru		
PAJ 111	210	77		FR	Uru		
PAJ 111	222	80		FR	Uru		
PAJ 111	228	85		FR	Uru		
PAJ 111	220	70		FR	Uru		
PAJ 111	2	90		FR	Uru		
PAJ 111	277	88		FR	Uru		
PAJ 111	285	90		FR	Uru		
PAJ 111	137	85		FR	Uru		
PAJ 111	150	82		FR	Uru		
PAJ 111	335	80		FR	Uru		
PAJ 111	131	82		FR	Uru		
PAJ 112	344	5		S0	Uru		
PAJ 112	38	85		FR	Uru		
PAJ 112	222	83		FR	Uru		
PAJ 112	283	90		FR	Uru		
PAJ 112	294	90		FR	Uru		
PAJ 112	83	87		FR	Uru		
PAJ 112	210	75		FR	Uru		
PAJ 112	192	85		FR	Uru		
PAJ 112	343	87		FR	Uru		
PAJ 113	257	4		SO	Uru		
PAJ 113	358	6		SO	Uru		
PAJ 113	220	85		FR	Uru		
PAJ 113	218	80		FR	Uru		
PAJ 113	163	87		FR	Uru		
PAJ 113	160	65		FR	Uru		
PAJ 113	81	88		FR	Uru		
PAJ 113	100	80		FR	Uru		
PAJ 113	1	83		FR	Uru		
PAJ 113	135	80		FR	Uru		
PAJ 114	307	22		SO	Uru		
PAJ 114	285	25		SO	Uru		
PAJ 114	310	25		SO	Uru		
PAJ 114	145	67		FR	Uru		
PAJ 114	143	60		FR	Uru		
PAJ 114	155	85		FR	Uru		
PAJ 114	180	50		FR	Uru		
PAJ 115	5	2		SO	LJ		
PAJ 115	10	80		FR	LJ		
PAJ 115	160	90		FR	LJ		
PAJ 115	310	88		FR	LJ		

PAJ 115	135	85			FR	LJ		
PAJ 115	310	78			FR	LJ		
PAJ 115	305	90			FR	LJ		
PAJ 115	115	85			FR	LJ		
PAJ 115	65	80			FR	LJ		
PAJ 115	87	88			FR	LJ		
PAJ 115	95	70			FR	LJ		
PAJ 115	75	80			FR	LJ		
PAJ 115	80	85			FR	LJ		
PAJ 115	90	85			v	LJ		
PAJ 115	220	85			FR	LJ		
PAJ 116	260	10			S0	SSH		
PAJ 116	70	2			FR	SSH		
PAJ 116	45	85			FR	SSH		
PAJ 116	44	82			FR	SSH		
PAJ 116	46	85			FR	SSH		
PAJ 116	42	85			FR	SSH		
PAJ 116	30	85			FR	SSH		
PAJ 116	45	80			FR	SSH		
PAJ 116	3	80			FR	SSH		
PAJ 116	0	75			FR	SSH		
PAJ 116	2	82			FR	SSH		
PAJ 116	6	82			FR	SSH		
PAJ 116	280	90			FR	SSH		
PAJ 116	270	83			FR	SSH		
PAJ 116	105	75			FR	SSH		
PAJ 116	277	90			FR	SSH		
PAJ 116	106	90			FR	SSH		
PAJ 116	102	82			FR	SSH		
PAJ 116	185	90			FR	SSH		
PAJ 116			273	5	le	SSH		
PAJ 117	102	2			SO	SSH		
PAJ 117	60	85			FR	SSH		
PAJ 117	235	90			FR	SSH		
PAJ 117	322	80			FR	SSH		
PAJ 117	325	85			FR	SSH		
PAJ 117	0	90			FR	SSH		
PAJ 117	220	85			FR	SSH		
PAJ 117	353	80			FR	SSH		
PAJ 117	52	85			FR	SSH		
PAJ 117	325	90			FR	SSH		
PAJ 117	325	84			FR	SSH		
PAJ 117	328	90			FR	SSH		
PAJ 117	173	5			SO	SSH		
PAJ 117	174	88			FR	SSH		
PAJ 117	168	90			FR	SSH		

PAJ 117	300	78			FR	SSH		
PAJ 117	110	80			FR	SSH		
PAJ 118	113	5			S0	SSH		
PAJ 118	284	25			S0	SSH		
PAJ 118	160	10			S0	SSH		
PAJ 118	50	12			S0	SSH		
PAJ 118	134	30			S0	SSH		
PAJ 118	145	20			S0	SSH		
PAJ 118	333	15			S0	SSH		
PAJ 119	131	5			S0	SSH		
PAJ 120	118	90			FR	SSH		
PAJ 120	189	85			FR	SSH		
PAJ 121	262	7			S0	LJ		
PAJ 121	117	87			v	LJ		
PAJ 121	35	87			FR	LJ		
PAJ 121	216	82			FR	LJ		
PAJ 122	40	5			S0	LJ		
PAJ 122	148	10			S0	LJ		
PAJ 122	135	5			S0	LJ		
PAJ 122	218	85			FR	LJ		
PAJ 122	215	90			FR	LJ		
PAJ 122	30	85			FR	LJ		
PAJ 122	205	90			V	LJ		
PAJ 122	293	90			FR	LJ		
PAJ 122	295	85			FR	LJ		
PAJ 122	123	75			FR	LJ		
PAJ 122	125	80			FR	LJ		
PAJ 124	220	4			S0	SSH		
PAJ 124	300	85			FR	SSH		
PAJ 124	295	85			FR	SSH		
PAJ 124	298	77			FR	SSH		
PAJ 124	303	87			FR	SSH		
PAJ 124	290	85			FR	SSH		
PAJ 124	25	90			FR	SSH		
PAJ 124	35	80			FR	SSH		
PAJ 124	30	85			FR	SSH		
PAJ 124	253	85			FR	SSH		
PAJ 125	20	18			S0	Uru ?		
PAJ 125	153	25			S0	Uru ?		
PAJ 125	280	70			FR	Uru ?		
PAJ 125	255	76			FR	Uru ?		
PAJ 126	150	5			SO	LJ		
PAJ 126	86	85			FR	ĹĴ		
PAJ 126	40	80			FR	ĹĴ		
PAJ 126	312	80			FR	LJ	1	
PAJ 126	310	80			FR	LJ	1	
			1			5	1	

PA 127 230 38 S0 SSH ou IJ I PA 127 170 70 S0 SSH ou IJ I PA 127 325 50 S0 SSH ou IJ I PA 127 248 30 S0 SSH ou IJ II PA 127 180 35 S0 SSH ou IJ II PA 127 180 35 S0 SSH ou IJ II PA 127 105 15 S0 SSH ou IJ II PA 127 105 15 S0 SSH ou IJ II PA 127 305 15 S0 SSH ou IJ II PA 127 305 15 S0 SSH ou IJ II PA 127 300 90 v SSH ou IJ II PA 127 128 85 v SSH ou IJ II PA 127 128 85 v SSH ou IJ II PA 127 140 40 S0 SSH ou IJ II PA 127 120 35 S0 <	PAJ 126	38	82		FR	LJ			
PAJ 127 170 70 S0 SSH ou IJ I PAJ 127 325 50 S0 SSH ou IJ I PAJ 127 325 50 S0 SSH ou IJ I PAJ 127 248 30 S0 SSH ou IJ I PAJ 127 180 35 S0 SSH ou IJ I PAJ 127 105 15 S0 SSH ou IJ I PAJ 127 105 15 S0 SSH ou IJ I PAJ 127 125 30 S0 SSH ou IJ I PAJ 127 145 3 S0 SSH ou IJ I PAJ 127 145 3 S0 SSH ou IJ I PAJ 127 148 85 V SSH ou IJ I PAJ 127 128 85 V SSH ou IJ I PAJ 127 140 40 S0 SSH ou IJ I PAJ 127 140 40 <	PAJ 127	230	38		S0	SSH ou			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						LJ			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PAJ 127	170	70		S0	SSH ou LI			
PAJ 127 248 30 S0 SH ou JJ J PAJ 127 180 35 S0 SSH ou JJ III III PAJ 127 105 15 S0 SSH ou JJ III III PAJ 127 105 15 S0 SSH ou JJ III III PAJ 127 125 30 S0 SSH ou JJ III III PAJ 127 305 15 S0 SSH ou JJ III III PAJ 127 305 15 S0 SSH ou JJ III III PAJ 127 145 3 S0 SSH ou JJ III III PAJ 127 128 85 V SSH ou JJ III III PAJ 127 128 85 V SSH ou JJ III III PAJ 127 140 40 S0 SSH ou JJ III III PAJ 127 198 40 S0 SSH ou JJ III IIII PAJ 127 198 40 S0 SSH ou JJ III	PAI 127	325	50		SO	SSH ou			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1119 121	020	00		00	LJ			
PAJ 127 180 35 SO SH ou LJ LJ PAJ 127 PAJ 127 105 15 SO SSH ou LJ IJ PAJ 127 125 30 SO SSH ou LJ IJ PAJ 127 125 30 SO SSH ou LJ IJ PAJ 127 125 30 SO SSH ou LJ IJ PAJ 127 145 3 SO SSH ou LJ IJ PAJ 127 140 A0 V SSH ou LJ IJ PAJ 127 128 85 V SSH ou LJ IJ PA	PAJ 127	248	30		S0	SSH ou			
PAJ 127 180 35 S0 SSH ou IJ SSH ou IJ PAJ 127 105 15 S0 SSH ou IJ III PAJ 127 125 30 S0 SSH ou IJ III PAJ 127 125 30 S0 SSH ou IJ III PAJ 127 145 3 S0 SSH ou IJ III PAJ 127 145 3 S0 SSH ou IJ III PAJ 127 300 90 V SSH ou IJ III PAJ 127 128 85 V SSH ou IJ III PAJ 127 140 40 S0 SSH ou IJ III PAJ 127 140 40 S0 SSH ou IJ III PAJ 127 140 40 S0 SSH ou IJ III PAJ 127 198 40 S0 SSH ou IJ III PAJ 127 170 25 S0 SSH ou IJ III PAJ 127 200 80 FR SSH ou IJ III PAJ 127 200 <						LJ			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PAJ 127	180	35		S0	SSH ou LI			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PAI 127	105	15		SO	SSH ou			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						LJ			
PAJ 127 305 15 S0 SKH ou LJ S0 SKH ou LJ S1 PAJ 127 145 3 S0 SKH ou LJ S1 S0 SKH ou LJ S1 S1 </td <td>PAJ 127</td> <td>125</td> <td>30</td> <td></td> <td>S0</td> <td>SSH ou</td> <td></td> <td></td> <td></td>	PAJ 127	125	30		S0	SSH ou			
PAJ 127 305 15 S0 SSH ou LJ III PAJ 127 145 3 S0 SSH ou LJ III PAJ 127 300 90 v SSH ou LJ III PAJ 127 128 85 v SSH ou LJ III PAJ 127 128 85 v SSH ou LJ III PAJ 127 140 40 S0 SSH ou LJ III PAJ 127 198 40 S0 SSH ou LJ III PAJ 127 170 25 S0 SSH ou LJ III PAJ 127 170 25 S0 SSH ou LJ III PAJ 127 200 80 FR SSH ou LJ III PAJ 127 200 80 FR SSH ou LJ III PAJ 127 298 80<						LJ			
PAJ 127 145 3 S0 SSH ou IJ III PAJ 127 300 90 v SSH ou IJ III IIII IIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	PAJ 127	305	15		S0	SSH ou			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	D 1 1 1 0 7				2.0	LJ			
PAJ 127 300 90 v SSH ou LJ LJ Image: Constraint of the system	PAJ 127	145	3		S 0	SSH ou			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DAI 127	200	00			LJ SSU ou			
PAJ 127 128 85 v SH ou LJ set PAJ 127 310 82 v SSH ou LJ - - PAJ 127 140 40 S0 SSH ou LJ - - PAJ 127 140 40 S0 SSH ou LJ - - PAJ 127 290 35 S0 SSH ou LJ - - PAJ 127 198 40 S0 SSH ou LJ - - PAJ 127 198 40 S0 SSH ou LJ - - PAJ 127 198 40 S0 SSH ou LJ - - PAJ 127 302 20 S0 SSH ou LJ - - PAJ 127 200 80 FR SSH ou LJ - - PAJ 127 200 80 FR SSH ou LJ - - PAJ 127 298 80 FR SSH ou LJ - - PAJ 127 78 75 FR SSH ou LJ - - PAJ 1	FAJ 127	300	90		v	II			
PAJ 127 310 82 v SSH ou IJ IJ PAJ 127 140 40 S0 SSH ou IJ III III PAJ 127 140 40 S0 SSH ou IJ III III PAJ 127 290 35 S0 SSH ou IJ III III PAJ 127 198 40 S0 SSH ou IJ III IIII PAJ 127 198 40 S0 SSH ou IJ IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	PAI 127	128	85		v	SSH ou			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1119 1-1	-=0	00		·	LJ			
I_{1} I_{2} I_{3} I_{2} I_{3} I_{2} I_{3} PAJ 127 140 40 S0 SSH ou I_{1} I_{3} </td <td>PAJ 127</td> <td>310</td> <td>82</td> <td></td> <td>v</td> <td>SSH ou</td> <td></td> <td></td> <td></td>	PAJ 127	310	82		v	SSH ou			
PAJ 127 140 40 S0 SSH ou IJ III PAJ 127 290 35 S0 SSH ou IJ III PAJ 127 198 40 S0 SSH ou IJ III PAJ 127 198 40 S0 SSH ou IJ III PAJ 127 302 20 S0 SSH ou IJ III PAJ 127 302 20 S0 SSH ou IJ III PAJ 127 170 25 S0 SSH ou IJ III PAJ 127 200 80 FR SSH ou IJ III PAJ 127 200 80 FR SSH ou IJ III PAJ 127 300 70 FR SSH ou IJ III PAJ 127 298 80 FR SSH ou IJ III PAJ 127 304 85 FR SSH ou IJ III PAJ 127 304 85 FR SSH ou IJ III PAJ 127 80 75 FR SSH ou IJ III PAJ 128 140	5					LJ			
PAJ 127 290 35 S0 SSH ou LJ LJ Image: Constraint of the second	PAJ 127	140	40		S0	SSH ou			
PAJ 127 290 35 S0 SSH ou LJ PAJ 127 198 40 S0 SSH ou LJ PAJ 127 302 20 S0 SSH ou LJ PAJ 127 302 20 S0 SSH ou LJ PAJ 127 170 25 S0 SSH ou LJ PAJ 127 170 25 S0 SSH ou LJ PAJ 127 200 80 FR SSH ou LJ PAJ 127 200 80 FR SSH ou LJ PAJ 127 300 70 FR SSH ou LJ PAJ 127 298 80 FR SSH ou LJ PAJ 127 298 80 FR SSH ou LJ PAJ 127 304 85 FR SSH ou LJ PAJ 127 78 75 FR SSH ou LJ PAJ 127 78 75 FR SSH ou LJ PAJ 127 80 75 FR SSH ou						LJ			
PAJ 127 198 40 S0 SSH ou LJ I I I PAJ 127 302 20 S0 SSH ou LJ IJ II III PAJ 127 302 20 S0 SSH ou LJ III III III PAJ 127 170 25 S0 SSH ou LJ III III IIII PAJ 127 200 80 FR SSH ou LJ IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	PAJ 127	290	35		S0	SSH ou			
PAJ 127 198 40 50 SSH ou LJ PAJ 127 302 20 S0 SSH ou LJ PAJ 127 170 25 S0 SSH ou LJ PAJ 127 170 25 S0 SSH ou LJ PAJ 127 200 80 FR SSH ou LJ PAJ 127 200 80 FR SSH ou LJ PAJ 127 200 80 FR SSH ou LJ PAJ 127 300 70 FR SSH ou LJ PAJ 127 304 85 FR SSH ou LJ PAJ 127 78 75 FR SSH ou LJ PAJ 127 78 75 FR SSH ou LJ PAJ 127 80 75 FR SSH ou LJ PAJ 127 80 75 FR SSH ou LJ PAJ 128 140 84 V LJ IJ IJ PAJ 128 139 79 V LJ	DAI 127	100	40		50	LJ			
PAJ 127 302 20 S0 SUB ou LJ SUB ou LJ <td>PAJ 127</td> <td>198</td> <td>40</td> <td></td> <td>50</td> <td></td> <td></td> <td></td> <td></td>	PAJ 127	198	40		50				
PAJ 127 170 25 S0 SU or LJ SU or LJ PAJ 127 170 25 S0 SSH ou LJ LJ Image: Constraint of LJ	PAI 127	302	20		SO	SSH ou			
PAJ 127 170 25 S0 SSH ou LJ LJ PAJ 127 200 80 FR SSH ou LJ III PAJ 127 300 70 FR SSH ou LJ III PAJ 127 300 70 FR SSH ou LJ III PAJ 127 298 80 FR SSH ou LJ III PAJ 127 298 80 FR SSH ou LJ III PAJ 127 304 85 FR SSH ou LJ III PAJ 127 304 85 FR SSH ou LJ III PAJ 127 78 75 FR SSH ou LJ III PAJ 127 80 75 FR SSH ou LJ III PAJ 128 140 84 V IJ III PAJ 128 138 85 V IJ III PAJ 128 139 79 v IJ III						LJ			
PAJ 127 200 80 FR SSH ou LJ II III III PAJ 127 300 70 FR SSH ou LJ III III III IIII IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	PAJ 127	170	25		S0	SSH ou			
PAJ 127 200 80 FR SSH ou I PAJ 127 300 70 FR SSH ou IJ I PAJ 127 298 80 FR SSH ou IJ I I PAJ 127 298 80 FR SSH ou IJ I I I PAJ 127 298 80 FR SSH ou IJ I I I I PAJ 127 304 85 FR SSH ou IJ I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	-					LJ			
PAJ 127 300 70 FR SSH ou IJ III IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	PAJ 127	200	80		FR	SSH ou			
PAJ 127 300 70 FR SSH ou IJ III PAJ 127 298 80 FR SSH ou IJ III PAJ 127 304 85 FR SSH ou IJ III III PAJ 127 304 85 FR SSH ou IJ III III III IIII PAJ 127 78 75 FR SSH ou IJ IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	D + I + 07	• • • •				LJ			
PAJ 127 298 80 FR SSH ou III IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	PAJ 127	300	70		FR	SSH ou			
FAJ 127 298 80 FR SSH 60 IJ PAJ 127 304 85 FR SSH 60 IJ PAJ 127 78 75 FR SSH 60 IJ PAJ 127 78 75 FR SSH 00 IJ PAJ 127 80 75 FR SSH 00 IJ PAJ 128 140 84 V IJ III PAJ 128 138 85 V IJ III PAJ 128 139 79 V IJ III III	DAI 127	208	80		ED	LJ SSH ou			
PAJ 127 304 85 FR SSH ou IJ PAJ 127 78 75 FR SSH ou IJ PAJ 127 78 75 FR SSH ou IJ PAJ 127 80 75 FR SSH ou IJ PAJ 127 80 75 FR SSH ou IJ PAJ 128 140 84 V IJ III PAJ 128 138 85 V IJ III PAJ 128 139 79 v IJ III III	111 127	290	00		ГK	LI			
PAJ 127 78 75 FR SSH ou LJ LJ PAJ 127 80 75 FR SSH ou LJ SSH ou LJ Image: Comparison of the second se	PAI 127	304	85		FR	SSH ou			
PAJ 127 78 75 FR SSH ou LJ Image: SSH ou LJ Image: SSH ou LJ PAJ 127 80 75 FR SSH ou LJ Image: SSH ou LJ	5					LJ			
PAJ 127 80 75 FR SSH ou LJ PAJ 128 140 84 V LJ PAJ 128 138 85 V LJ PAJ 128 139 79 v LJ	PAJ 127	78	75		FR	SSH ou			
PAJ 127 80 75 FR SSH ou LJ SSH ou LJ PAJ 128 140 84 V LJ PAJ 128 138 85 V LJ PAJ 128 139 79 v LJ						LJ			
PAJ 128 140 84 V LJ Image: Constraint of the second s	PAJ 127	80	75		FR	SSH ou			
PAJ 128 140 84 V LJ PAJ 128 138 85 V LJ PAJ 128 139 79 v LJ	D 4 1 4 2 0	4.40	<u></u>		T 7	LJ	\square		
PAJ 128 138 85 V LJ PAJ 128 139 79 v LJ	PAJ 128	140	84		V	LJ	\square		
PAJ 128 139 79 v LJ	PAJ 128	138	85		V	LJ	\square		
	PAJ 128	139	79		v	LJ			
PAJ 128 312 85 v LJ	PAJ 128	312	85		v	LJ			
PAJ 128 150 80 V LJ	PAJ 128	150	80		V	LJ			
PAJ 128 76 75 FR LJ	PAJ 128	76	75		FR	LJ	$ \top$		

PAJ 128	80	80			V	LJ		
PAJ 128	82	85			FR	LJ		
PAJ 128	85	88			FR	LJ		
PAJ 129	263	3			S0	LJ		
PAJ 129	170	90			FR	LJ		
PAJ 129	175	90			FR	LJ		
PAJ 129	355	90			FR	LJ		
PAJ 129	175	87			FR	LJ		
PAJ 129	215	85			FR	LJ		
PAJ 129	213	85			FR	LJ		
PAJ 129	220	80			FR	LJ		
PAJ 129	35	90			FR	LJ		
PAJ 129	217	85			FR	LJ		
PAJ 129	75	85			FR	LJ		
PAJ 129	78	90			FR	LJ		
PAJ 129	90	88			FR	LJ		
PAJ 130	230	82			FR	LJ		
PAJ 130	55	90			FR	LJ		
PAJ 130	55	90			FR	LJ		
PAJ 130	160	75			FR	LJ		
PAJ 130	150	82			FR	LJ		
PAJ 131	12	18			SO	LJ		
PAJ 131	265	70			FR	SSH ou		
						LJ		
PAJ 131	165	85			FR	SSH ou		
PAI 131	185	90			FR	LJ SSH ou		
1119 1.51	105	20			1 K	LI		
PAJ 131	357	80			FR	SSH ou		
						LJ		
PAJ 131	95	60			SO	SSH ou		
PAI 131	240	40			<u>\$0</u>	SSH ou		
1119 1.51	210	10			50	LJ		
PAJ 131	214	50			S0	SSH ou		
						LJ		
PAJ 131	7	25			SO	SSH ou		
PAL135	95	5			<u> </u>	7 Lagoas		
PAI 135	55	5			<u> </u>	7 Lagoas		
PAI 135	100	90			V	7 Lagoas		
PAI 135	103	80			V	7 Lagoas		
PAI 135	105	80			, V	7 Lagoas		
PAI 135	110	90			, V	7 Lagoas		
PAI 135	285	88			, V	7 Lagoas		
PAI 135	118	82			V	7 Lagoas		
PAI 135	120	90			V	7 Lagoas		
PAI 135			205	5	le	7 Lagoas		
PAI 135	118	90	200		V	7 1 20025		
111 155	110	20			, v	1 Lagoas		

PAI 135			210	2	le	7 Lagoas		
PAI 135	108	85		_	V	7 Lagoas		
PAJ 135	114	85			V	7 Lagoas		
PAJ 135	110	84			V	7 Lagoas		
PAJ 135	110	87			V	7 Lagoas		
PAJ 135	283	80			V	7 Lagoas		
PAJ 135	170	5			S0	7 Lagoas		
PAJ 135	110	80			V	7 Lagoas		
PAJ 135			202	2	le	7 Lagoas		
PAJ 136	300	2			S0	7 Lagoas		
PAJ 136	47	5			S0	7 Lagoas		
PAJ 136	222	90			FR	7 Lagoas		
PAJ 136	225	80			FR	7 Lagoas		
PAJ 136	208	85			FR	7 Lagoas		
PAJ 136	222	79			FR	7 Lagoas		
PAJ 136	45	82			FR	7 Lagoas		
PAJ 136	104	80			V	7 Lagoas		
PAJ 136	115	90			FR	7 Lagoas		
PAJ 136	132	85			FR	7 Lagoas		
PAJ 136	305	80			FR	7 Lagoas		
PAJ 136	305	90			FR	7 Lagoas		
PAJ 136	198	90			FR	7 Lagoas		
PAJ 136	120	10			S0	7 Lagoas		
PAJ 137	205	5			S0	7 Lagoas		
PAJ 137	78	2			S0	7 Lagoas		
PAJ 137	105	85			FR	7 Lagoas		
PAJ 137	276	82			FR	7 Lagoas		
PAJ 137	275	80			FR	7 Lagoas		
PAJ 137	97	90			FR	7 Lagoas		
PAJ 137	290	90			FR	7 Lagoas		
PAJ 137	180	80			FR	7 Lagoas		
PAJ 137	265	85			FR	7 Lagoas		
PAJ 137	75	90			FR	7 Lagoas		
PAJ 137	63	80			FR	7 Lagoas		
PAJ 137	82	85			FR	7 Lagoas		
PAJ 137	305	82			FR	7 Lagoas		
PAJ 137	215	80			FR	7 Lagoas		
PAJ 137	88	80			FR	7 Lagoas		
PAJ 137	88	85			FR	7 Lagoas		
PAJ 137	45	5			S0	7 Lagoas		
PAJ 137	5	40			S0	7 Lagoas		
PAJ 137	215	10			S0	7 Lagoas		
PAJ 137	10	8			S0	7 Lagoas		
PAJ 137	350	40			S0	7 Lagoas		
PAJ 137	322	2			S0	7 Lagoas		
PAJ 137	215	80			S0	7 Lagoas		

PAJ 138	242	3			S0	7 Lagoas			
PAJ 138	124	10			S0	7 Lagoas			
PAJ 138	180	4			S0	7 Lagoas			
PAJ 138	78	85			FR	7 Lagoas			
PAJ 138	124	10			FR	7 Lagoas			
PAJ 138	120	85			FR	7 Lagoas			
PAJ 138	295	90			V	7 Lagoas			
PAJ 138	120	80			V	7 Lagoas			
PAJ 138	110	90			V	7 Lagoas			
PAJ 138	127	90			V	7 Lagoas			
PAJ 138	105	90			V	7 Lagoas			
PAJ 138	100	90			V	7 Lagoas			
PAJ 138	0	85			V	7 Lagoas			
PAJ 138	75	88			v	7 Lagoas			
PAJ 139	90	7			S0	7 Lagoas			
PAJ 139	283	87			FR	7 Lagoas			
PAJ 139	120	85			v	7 Lagoas			
PAJ 139	132	80			v	7 Lagoas			
PAJ 141	310	80			FR	7 Lagoas			
PAJ 141	305	90			v	7 Lagoas			
PAJ 141	305	88			FR	7 Lagoas			
PAJ 141	100	80			FR	7 Lagoas			
PAJ 141	97	85			V	7 Lagoas			
PAJ 141	110	90			V	7 Lagoas			
PAJ 141	110	80			V	7 Lagoas			
PAJ 142	78	2			S0	7 Lagoas			
PAJ 142	295	70			V	7 Lagoas			
PAJ 142	288	90			V	7 Lagoas			
PAJ 142	300	70			V	7 Lagoas			
PAJ 143	25	7			S0	7 Lagoas			
PAJ 143	70	5			S0	7 Lagoas			
PAJ 143	15	90			FR	7 Lagoas			
PAJ 143	310	85			FR	7 Lagoas			
PAJ 144	88	5			S0	7 Lagoas			
PAJ 144	190	90			FR	7 Lagoas			
PAJ 144	215	80			FR	7 Lagoas			
PAJ 144	288	87			FR	7 Lagoas			
PAJ 144	280	78			FR	7 Lagoas			
PAJ 144	275	80			FR	7 Lagoas			
PAJ 144	274	85			FR	7 Lagoas			
PAJ 146	220	90			V	7L			
PAJ 146	215	80			V	7L			
PAJ 146	225	78			V	7L			
PAJ 146	198	80			V	7L			
PAJ 146	288	80			V	7L			
PAJ 146	283	78			V	7L			
-	l	1	1	1	l		1	1	

Piatti B.G., 2021, Arcabouço estrutural e evolução tectônica do Alto de Januária (MG)...

PAJ 146	108	90		V	7L		
PAJ 146	280	75		V	7L		
PAJ 146	105	90		V	7L		
PAJ 146	25	90		Est	7L		
PAJ 146	30	85		Est	7L		
PAJ 146	240	10		S0	7L		
PAJ 146	62	70		S0	7L		
PAJ 146	18	2		S0	7L		
PAJ 146	218	45		S0	7L		
PAJ 146	230	27		S0	7L		