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1 INTRODUCTION 

An application of the finite element method (FEM) for non-linear elastoplastic analysis of rein-
forced soil structures under axisymmetric condition is presented in this paper. 

The Mohr-Coulomb criterion suggested by Sloan & Booker (1986) and Abbo & Sloan 
(1995), which includes treatment of the singularities of the original Morh-Coulomb criterion, is 
used for modeling the foundation soil. A general formulation that considers associative and non-
associative elastoplastic models for soil was adopted. Hence, the influence of the dilatancy angle 
on the bearing capacity of reinforced soil could be investigated. The reinforcement is considered 
as linear elastic and the soil-reinforcement interface was considered rigid; thus interface ele-
ments were not considered in these analyses. 

The numerical simulation was conducted using the code ANLOG – Non Linear Analysis of 
Geotechnical Problems (Zornberg, 1989; Nogueira, 1998; Pereira, 2003; Oliveira, 2006). 

2 FINITE ELEMENT REPRESENTATION OF REINFORCED SOIL 

A discrete representation for reinforced soil structures is adopted in this study. Each component 
of reinforced soil structure—the soil, the reinforcement and the soil-reinforcement interface—
can be represented using a specific finite element with its own kinematic and constitutive equa-
tions. In the specific case of a bearing capacity problem of shallow foundations, the soil-
reinforcement interface was considered rigid and therefore is not discussed in this paper. 
 In considering an incremental formulation by FEM, the kinematic equation that describes the 
relationship between the increment of strain ( ε ) and the increment of nodal displacement ( û ) 
in each finite element can be written as: 

uBε ˆ  (1) 
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where  

NB   (2) 

  is a differential operator and N is the matrix that contains the interpolation functions Ni. Both 
the operator and matrix depend on the type of element adopted. The negative sign in Equation 1 
is a conventional indicator of positive compression. 

The increment of stress (  ) can be obtained using the incremental constitutive equation: 

  tD  (3) 

where Dt is the constitutive matrix defined in terms of the elastoplasticity formulation as: 

pet DDD   (4) 

where De is the elastic matrix and Dp is the plastic parcel of the constitutive matrix defined as: 
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a is the gradient of the yield function ( )h,(F σ ), b is the gradient of the potential plastic function 
( h),G(σ ), h is the hardening parameter and H is the hardening modulus. In the case of perfect 
plasticity, since hardening is not considered, H equals zero. 

Starting from an equilibrium configuration where the displacement field, the strain state, and 
the stress state are all known, a new equilibrium configuration, in terms of displacements, can be 
obtained using the modified Newton Raphson procedure with automatic load increment (No-
gueira, 1998). In this paper, only the elastic parcel of the constitutive matrix was considered in 
the iterative procedure used to obtain the global stiffness matrix.  

At each increment the iterative scheme satisfies, for a selected tolerance, the global equili-
brium, compatibility conditions, boundary conditions and constitutive relationships. Yet atten-
tion must be given to the stress integration scheme adopted to obtain the stress increments (Equ-
ation 3), in order to guarantee the Kuhn-Tucker conditions and the consistency condition. 

2.1 Soil representation 

The soil is represented by the quadratic quadrilateral isoparametric element (Q8). This element 
has two degree of freedom, u and v, in the directions r and y (radial and axial), respectively. The 
stress and strain vectors are defined as: 

 ryyr
T  σ  (6) 

 ryyr  
ε  (7) 

In which r/u . The kinematic matrix B can be written as: 
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where Ni is the i node shape function by the finite element Q8 (Nogueira, 1998). The 
stiffness matrix for axisymmetric condition for this element is given by: 
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where r̂  is the nodal global coordinate vector; (,) is the natural coordinate system and J is the 
Jacobian operator. 



 

1393 
 

To describe the stress-strain relationship a perfectly elastoplastic model with non-associative 
plasticity was adopted. The plastic parcel of the constitutive matrix is obtained using the mod-
ified Mohr-Coulomb criterion proposed by Sloan & Booker (1986) and Abbo & Sloan (1995) 
(Figure 1). The modified version of the Mohr-Coulomb model involves removal of the singu-
larities at the edges ( 6 ) and the apex of the original model. Its yield function is written 
as: 

       coscsin3Isina)(KIF 1
22

D2  (10) 
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 is the Lode angle, 1I  is the first invariant of the stress tensor; D2I  is the second invariant of the 

desviator stress tensor, D3I  is the third invariant of the desviator stress tensor, c and  are the 

material cohesion and internal friction angle, respectively. A transition angle ( T ) was intro-

duced to define the )(K   function on the Equation 10. Sloan & Booker (1986) suggest T  value 

range from 25 to 29. For the case in which T , 

 3sinBA)(K  (12) 

where 

     sin)3tantan3)((signal313tantan3cos31A TTTTT  (13) 

      sincos31sin)(signal3cos31B TTT  (14) 

Or, for the case in which T  
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Figure 1 - Mohr-Coulomb yield function (Abbo & Sloan, 1995). 

The parcel sina  was introduced to prevent the singularity related to the surface apex. For 
the parameter “a” Abbo & Sloan (1995) recommend 5% of (c cotan). The potential plastic 
function (G) can be written the same way as the yield function (F) but using the dilatancy angle 
() instead of the friction angle (). 

An important step in a non linear analysis using MEF relates to the integration of the constitu-
tive equation. This equation defines a set of ordinary differential equations for which the inte-
gration methodology can be either implicit or explicit. In this paper an explicit process with sub 
incrementation, as proposed by Sloan et al. (2001), was adopted. This methodology uses the 
modified Euler scheme that determines the size of the sub increment automatically evaluating 
the local error induced during integration of the parcel stress plastic.  



 

 

2.2 Reinforcement representation 

The reinforcement is represented by quadratic one-dimensional isoparametric elements (R3) 
(Oliveira, 2006). The reinforcement thickness is considered in the constitutive equation. This 
element has one degree of freedom, u', on its own longitudinal direction r'. The longitudinal di-
rection is related to the radial direction on the local coordinate system according to the following 
transformation: 

r̂r NT  (16) 

In which N is the matrix that contains the shape functions (Ni) for this element (Oliveira, 2006), 

 3311
T yryrr̂   is the nodal global coordinate vector, and  






















sencos00

00sencos







T  (17) 

where Jdet)ddr(cos  ; Jdet)ddy(sen  ; 22 )d/dy()d/dr(det J ; 















3

1i
i

i r
d

dN

d

dr
 

and 















3

1i
i

i y
d

dN

d

dy
. 

The R3 element has two components of strain and stress: longitudinal ( r  and r ) and cir-
cumferential (   and  ). The kinematic condition is given by the relation: 
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where û  is the vector of the nodal global displacement components (u,v). 
The constitutive matrix for the reinforcement element is given by: 
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where J is the reinforcement stiffness (kN/m), t is the reinforcement thickness and  is the Pois-
son ratio. 

The reinforcement stiffness matrix under axisymmetric condition is given by: 
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3 BEARING CAPACITY ON UNREINFORCED SOIL 

The analyses presented in this study involve smooth circular foundation subjected to vertical 
loading acting on the ground surface. The problem is analyzed under axisymmetric condition 
and is modeled as both flexible and rigid foundation using load and displacement controls re-
spectively (Figure 2). The foundation soil is considered weightless. As mentioned the soil is 
considered as an elastic perfectly plastic material described by a non-associative modified 
Mohr-Coulomb model. Both the friction and dilatancy angle were varied to assess their influ-
ence on the bearing capacity of the shallow foundation. According to Houlsby (1991) the dila-
tancy is a key factor in geotechnical problems involving kinematic movement restrictions, such 
as the bearing capacity of shallow and deep foundations. Results of this study are compared with 
results of studies that utilize equilibrium limit and limit analysis theories. 
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E=100Mpa; =0.30; c=10kPa; a=15%; T=29o; and  vary 
Figure 2 - Finite element mesh: a) full mesh; b) detail of the displacement imposed boundary condition; c) 
detail of stress imposed boundary condition 

An incremental-iterative modified Newton Raphson scheme with automatic loading incre-
ments is used considering a tolerance of 10-4 for the force criterion of convergence. For the 
stress integration algorithm the following tolerances are used: FTOL=10-9 and STOL=10-8. The 
FTOL tolerance is related to the transition condition from elastic to plastic state which is af-
fected by the finite precision arithmetic. The STOL tolerance is related to the local error in the 
stresses in the Euler modified schemes. 

Numerical results are presented in terms of the  factor which is a normalized stress defined 
as: 

  c/qAc/Q   (21) 

in which A is the footing area and Q is the reaction force at the foundation, defined as: 
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The reaction force is evaluated as the sum of the internal force’s vertical components equiva-
lent to the elements’s stress state right beneath the foundation. The cohesion is adopted to nor-
malize the results but in the case of cohesionless soil the atmospheric pressure can be adopted 
instead. 

Figure 3 presents the  factor versus normalized settlement (/B) curves obtained by ANLOG 
for flexible and rigid foundations and for different values of friction and dilatancy angles. It can 
be observed that associative analysis (=) provides the lowest displacement at failure. 

Table 1 presents normalized ultimate bearing capacity (ult), as shown in Figure 3. As ex-
pected, the ult value obtained for rigid foundation is higher than that obtained for a flexible 
foundation. The difference in ult values was approximately 9.5%, but the highest difference was 
observed in non-associative plasticity (approximately 11.2%). 

Analyses conducted in this study show that when the friction angle was decreased to 10° and 
20°, the ultimate bearing capacity factor (ult) was no longer affected by the dilatancy angle. For 
friction angle of 30° the associate plasticity analysis (=) provided the highest ultimate bearing 
capacity factor and the lowest displacement at failure. Zienkiewicz et al. (1975) observed a simi-
lar response for friction angles of 40°. Monahan & Dasgupta (1993) reported such behavior for 
friction angles higher than 25°.  

Table 2 presents a comparison between results obtained using ANLOG and those from a clas-
sical solution from equilibrium limit by Terzaghi (1943), limit analyses solution by Chen 



 

 

(1975), and a recent numerical solution based on limit analyses using FEM by Ribeiro (2005). 
Good agreement can be observed among these results. 
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                                             a)                                                           b) 
Figure 3 - Load versus displacement curves: a) Flexible foundation; b) Rigid foundation 

Table 1 - Normalized ultimate bearing capacity ( c/qultult  ) 

(�°) �(°) Flexible 
Foundation 

Rigid 
Foundation 

10 0 10.1 11.4 
10 10.4 11.4 

20 0 20.0 22.0 
20 20.4 22.4 

30 0 43.4 49.5 
30 49.5 54.0 

Table 2 - Ultimate bearing capacity values for flexible circular footing and associative plasticity 
(�°) This study 

ult  
Terzaghi (1943) 

( cN3.1 ) 
Chen (1975) Ribeiro (2005) 

10 10.4 10.86 9.98 11.91 
20 20.4 19.29 20.1 24.87 
30 49.5 39.18 49.3 52.76 

4 BEARING CAPACITY ON REINFORCED SOIL 

A rigid rough circular shallow foundation subjected to vertical loading is analyzed using differ-
ent reinforcement configurations. The soil is considered frictionless, weightless and elastic per-
fectly plastic with the following properties: E=10MPa; =0.49, c=30kPa, =0o, a=0, T=28o. The 
dilatancy angle () was varied during the study. A reinforcement of 4 m in diameter is consi-
dered linear elastic with: t=2.5mm, J=2500 kN/m and =0. The interface soil-reinforcement was 
considered rigid and therefore interface elements are not considered in these analyses. The finite 
element mesh and the boundary conditions are presented in Figure 4. 
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Figure 4 - Finite element mesh – Rigid rough circular without embedment shallow foundation 

Figure 5 illustrates the reinforcement layout considered in this study. B is the circular footing 
diameter, U is the depth to the first reinforcement layer, H is the space between each reinforce-
ment layer, N is the number of reinforcement layers; b is the diameter of reinforced zone and d 
is the depth of the last reinforcement layer. 
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Figure 5 - Layout of the rigid foundation on reinforced soil 

4.1 Unreinforced foundation 

For an unreinforced foundation, the ult  value obtained by ANLOG was 5.42. Potts and 

Zdravković (2001) have obtained 5.39. The difference, approximately 0.5%, is considered neg-
ligible. At this level the settlement obtained by ANLOG was 0.025m. 

Figure 6 illustrates the failure mechanism with displacement vectors. The failure mechanism 
is consistent with that proposed by Prandtl (1920) for strip footing. 
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Figure 6 - Failure mechanism – unreinforced soil 



 

 

4.1 Reinforced foundation 

Prediction of the bearing capacity was initially conducted considering a single layer of rein-
forcement under axisymmetric condition. The diameter of the reinforced zone is constant 
(b=4B) while the reinforcement depth varies from 0.05 B to 0.9 B. 

The bearing capacity improvement is evaluated by quantifying the bearing capacity ratio 
(BCR) defined as: 

0
ult

BCR



 (23) 

in terms of the κ  factor for the reinforced soil foundation and the ultimate bearing capacity for 

the unreinforced soil foundation (
0
ult ). For consistency, the BCR must be evaluated at a par-

ticular settlement level. For instance, BCR0.1 means the bearing capacity improvement is being 
evaluated with the κ  factor at a normalized settlement ( B/ ) of 0.1. 

The settlement reduction improvement is evaluated by the settlement reduction ratio (SRR) 
which is defined as: 
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where 0  is the settlement at the ultimate load of unreinforced foundation soil and r  is the set-
tlement of reinforced foundation soil at the ultimate load of unreinforced soil foundation. Figure 
7 illustrates these indexes. 
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                          a)                                                            b) 
Figure 7 - References parameters: a) r /B definition; b) ref  definition  

As expected, the settlement decreases because of the reinforcement of the foundation soil. A 
region can be defined through where the reinforcement location maximizes the SRR. In this case 
the higher value of SRR was around 40% from 0.05B to 0.35B (Figure 8). In terms of bearing 
capacity improvement, the results provided in Figure 8 indicate that there is little improvement 
for a single layer of reinforcement (maximum BCR was 14%). It should also be noted that there 
is an optimum depth as well as a limit depth, beyond which no improvement is verified.  

Figure 9 presents the displacement field at the failure for unreinforced soil foundation and the 
optimum and limit reinforcement positions. Note that the limit depth (Ulimit) coincides with the 
lowest point of the failure wedge and the optimum depth (Uoptimum) coincides with a high level of 
mobilized shear stress for the unreinforced foundation soil. 

The numerical results suggest that the reinforcement starts to work after the soil deforms plas-
tically. To investigate the influence of the number of reinforcement layers, the foundation set-
tlement reference of 0.05 m is adopted. Although this value is high in terms of allowed settle-
ment for a shallow foundation it was adopted to ensure that the load in the reinforcement is 
mobilized. The baseline geometry was: B=1m, U/B=0.05, H/B=0.1 and b/B=4. The parametric 
evaluation involved varying the number of the reinforcement layers (N). Results are shown in 
Figure 10. 
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Figure 8 - U/B influence on the BCR and the SRR 
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Figure 9 - Optimum and limit reinforcement position 
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Figure 10 - Influence of the number of reinforcement layers 

In this case, which involved circular footing and frictionless soil foundation, the bearing ca-
pacity improvement (BCR) was around 10% and the settlement reduction ratio (SRR) was 
around 6% as the number of reinforcements was increased from 5 to 10. Accordingly, the num-
ber of reinforcement layers should not exceed 4 to 7. 

A second parametric evaluation involved assessment of the influence of the space between 
each reinforcement layer (H) varying the number of reinforcement layers from 2 to 5. The geo-
metry was: B=1m, U/B=0.05 and b/B=4. Figure 11 presents the bearing capacity ratio (BCR) in 
terms of the number of reinforcement layers (N). Two different spaces  between the reinforce-
ment layers are considered: H/B=0.10 and 0.20. It can be observed that the bearing capacity in-
creases as the spacing decreases. 
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Figure 11 - Influence of the space between each reinforcement layer 

Figure 12 shows the horizontal displacement field of the unreinforced soil and of two confi-
gurations of reinforced soil (H/B=0.10 and H/B=0.20). This displacement field is at the settle-
ment level corresponding to an ultimate level of unreinforced soil (/B=0.05). The number of 
reinforcement layers (N=5) and the position of the first reinforcement layer (U/B=0.05) are con-
stant. The lowest horizontal displacement was observed when the H/B is 0.10. As expected, the 
results confirmed that high confinement improves bearing capacity. 
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Figure 12 - Horizontal displacement (m) – rigid foundation (ref/B=0.1) 

Adopting the foundation settlement reference (ref) of 0.05 m and maintaining B=1m, 
H/B=0.1, N=5 and b/B=4 as constant, the influence of the depth of the first reinforcement layer 
(U) was analyzed. In order to explain this influence the curve BCR versus U/B (Figure 13) was 
divided into 3 zones in terms of the bounded values (U/B)optimum and (U/B)limit. Zone 1 defines 
the suitable values for the position of the first layer. Zone 2 is characterized by a significant de-
crease in the bearing capacity ratio. In Zone 3 shows no improvement in bearing capacity. In 
this case the bounded values, (U/B)optimum and (U/B)limit, was respectively around 0.05 and 0.25. 
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Figure 13 - Influence of the first reinforcement layer depth – (ref/B=0.1) 
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Figure 14 shows the failure mechanisms for the case in which the depth of the top reinforce-
ment layer exceeds (U/B)limit. Note that the reinforced layer of soil works as a rigid and rough 
base. In this region both vertical and horizontal displacements are approximately zero. 

z(m)z(m)  
Figure 14 - Influence of the first reinforcement layer depth – (ref/B=0.1) 

5 CONCLUSIONS 

This paper presented a numerical simulation using FEM to analyze the bearing capacity of shal-
low foundations on reinforced soil under axisymmetric conditions. The modified Mohr-
Coulomb constitutive model was implemented into ANLOG. The implementation of the explicit 
integration stress algorithm proposed by Sloan et al (2001) was needed in order to obtain good 
performance of the Newton Raphson algorithm at the global level. 

The numerical results confirmed that the ultimate bearing capacity of a rigid shallow founda-
tion on unreinforced soil is higher than that on a flexible shallow foundation. The ultimate bear-
ing capacity of flexible foundations obtained numerically shows good agreement with the results 
obtained by equilibrium limit theory (Terzaghi, 1943) and limit analysis (Chen, 1975; Ribeiro, 
2005). 

The ultimate bearing capacity of unreinforced soil was not affected by the dilatancy angle 
when the friction angle is low but is relevant for comparatively high friction angles. Therefore, 
for a high friction angle the ult values are a little high in the case of associative plasticity. In 
general, the non-associative plasticity provides higher settlement at failure. Results presented in 
this paper agree with the results provided by Monahan & Dasgupta (1995) and Zienkiewics et al 
(1975). 

In order to show the influence of the reinforcement on the bearing capacity and settlement re-
duction, a parametric study was conducted using different reinforcement configurations. A rigid, 
rough, and shallow foundation under axisymmetric condition was considered in the analysis. 
The soil foundation was considered weightless and purely cohesive (=0) and the interface 
soil-reinforcement was considered rigid. Based on the results, it may be concluded that: 

The bearing capacity increases and the settlement reduction increases as the number of rein-
forcement layers increase. A cost-benefit analysis should be conducted to define the optimum 
number of reinforcement layers to be used.  

The bearing capacity ratio, which indicates the improvement on the bearing capacity, was ap-
proximately 14% for just one reinforcement layer; it may be considered modest. In this case the 
optimum depth for placing it is 0.1B and the limit depth is 0.5B. The reinforcement influence on 
the settlement, however, is significant (around 40% to 50%). The reinforcement starts to work 
after the soil deforms plastically, which often occur at a high level of settlement. 

The results show the existence of three regions related to the depth of the first reinforcement 
layer to consider. The first, Zone 1, defines the suitable value for this depth. Zone 2 is characte-
rized by a significant decrease in the bearing capacity ratio. Zone 3 corresponds to a lack of no 
influence on the bearing capacity. Effort should be made to identify these zones in order to de-
fine the best position for the reinforcement layer. 
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