System-Level Partitioning with Uncertainty

Jones Albuquerque
Diégenes Cecilio da Silva Jr.

Claudionor Coelho Jr.

Carlos Frederico Cavalcanti
Anténio Otavio Fernandes

Computer Science Department
DCC - ICEx - UFMG. Caixa Postal 702.
30161-970. Belo Horizonte, MG - BRAZIL

Abstract

Several models and algorithms have been proposed in the
past to generate HW/SW components for system-level de-
signs. However, they were focused on a single designer who
had a throughout knowledge of the design. In other words,
the decision trade-offs were simplified to a stand-alone de-
veloper who did not have to consider individual skills, con-
current development for portions of the design, risk analysis
for time-to-market development, nor team load and assign-
ment.

In this paper, we propose a design management approach
associated with a partitioning methodology to deal with the
concurrent design problems of system-level specifications.
This methodology allows one to incorporate the uncertain-
ties related to development at the very early stages of the
design, and to follow up during the development of a final
product.

1 Introduction

System-level design refers to a design methodology targeted
to complex systems implemented as a mixture of Hardwa-
re/Software (HW/SW) components. In such systems, di-
vide and conquer techniques are usually used to create a
conceptual model of the system at very early stages of the
design. This conceptual model does not have any informa-
tion on the actual implementation, but rather estimates on
how the behavior will be implemented on its possible tech-
nologies (by technology, we do not limit ourselves to single
HW or SW modules or components, but on different special-
ities required to accomplish a design). The ever increasing
complexity of such systems and the variety of implementa-
tion choices available to the developer required a common
methodology where HW and SW tasks were combined at
the very early stages of the design in order to accelerate the
design process [1].

Large system-level designs are usually implemented by
separate teams (maybe accross country boundaries) in or-
der to reduce its time-to-market. Team work adds new com-
plexity, since no single designer has a complete knowledge of

the system, and task/team management must be performed
before the system is implemented.

In this paper, we propose an approach to analyze and es-
timate the performance and design time of system-level de-
signs. This approach works before synthesis and performs
team analysis during system-level partitioning. The pro-
posed approach is present in Figure 1 and it addresses the
following problems:

Risk analysis and evaluation. Traditional HW/SW co-
design approaches [4, 10, 12] were focused on a single
designer, i.e. the decision trade-offs were simplified to
a stand-alone developer who did not have to consider
individual skills, concurrent development for portions
of the design, risk analysis for time-to-market develop-
ment, nor team load and management. Furthermore,
they were not able to use the capability of a devel-
opment team to estimate and execute a specific task.
Traditional approaches presented in the literature do
not treat the uncertainties involved in human activ-
ity. In other words, most of these models ignore issues
such as the accuracy of human estimates and time-to-

market.
Conceptual Design
Analysis + Partitioning
Task Assignment Task Implementation

Team == Technology - = Technology+ |Implementation

(Team Assignment) (HW/SW Codesign)

Figure 1: Design views

System partitioning in presence of uncertainty. The
treatment of uncertainties in design projects are be-
coming common in system-level design. [11, 5] present
partitioning approaches to treat the uncertainties in
HW /SW codesign and [8] presents an iterative parti-
tioner using uncertainty. However, they are targeted
to a stand-alone developer and not focused on process
but rather on implementation uncertainties.

Task and team management. Team strategies are com-
mon in Software Engineering [13]. In system-level de-



sign we observe that the models that have been pre-
sented work on a two axes model, either on Production
“Cost x HW /SW Performance”, found in codesign sys-
tems, where performance is measured by system delay,
throughput or power consumption; or on Development
“Team x Development Cost”, where Team stands for
the manpower requirements. These models do not con-
sider the team management for development and task
partitioning problems as co-dependent problems, when
in fact every team is associated with a specific technol-
ogy (such as HW or SW) and each technology is asso-
ciated with an implementation, as presented in Figure
1. As a result, a bad partitioning based solely on per-
formance metrics may produce a design which cannot
be implemented with the current resources, and team
management based on development metrics may pro-
duce infeasible implementations from performance or
production cost metrics.

This paper is outlined as follows. Section 2 presents the
approach principles, its probabilistic treatment and limita-
tions. Section 3 presents the abstract approach description
and how it works. Section 4 provides the mathematical for-
malism to solve the hardware/software partitioning problem
considering the problems mentioned. Section 5 presents the
results and section 6 presents the conclusions.

2 Probabilistic Characterization of Estimates

The reader should note that our model works at the very
early stages of the design, after the system has been par-
titioned into tasks and given development and implemen-
tation estimates. We assume that each team detains the
knowledge of only one technology, and that estimates are
given based on the team’s historical data. We also assume
that in zero time no job can be done, and if sufficient time
is given, any team can implement the entire system.

Two types of estimates must be treated probabilistically
in our work: development estimates and implementation es-
timates. Development estimates are usually related to the
team’s ability to execute or implement a specific task. They
are usually measured in terms of development time, team
load and implementation risks. Implementation estimates
are related to production metrics such as execution time or
power consumption.

A team estimate for a task can be captured by the 3-
tuple (m, M,c), where m is the minimum value, M is the
maximum value and ¢ is a confidence degree, for example:
(“very high”, “high”, or “low”). These confidence degrees
can be changed according to the project and they are based
on historical data; if a team has a precise historical data
of its tasks then its degree is “very high” and if it has not
a historical data its degree is “low”, and this confidence
degree degrades in absence of historical data or if the team
historically has imprecise estimation methods. Historical
data can be collected by tracking time, effort and design
estimates used in past design activities. Thus we can obtain
a complete profile about the teams. [9, 16] have a thorough
explanation on how to obtain historical data and how precise
they can be (confidence degree).

We treat the estimates in a probabilistic way, since the
actual values can only be obtained after a task is imple-
mented. We base our probabilistic treatment on Normal
(or Gaussian) Distribution, given by the following probabil-
ity density function [7], which is

f(iL';/Jz,O') = U\}Z_ﬂ'exp |:_ %]7

~00 <7< 00,~00 < < 00,0 <0

where p represents the estimates average and o repre-
sents the standard deviation defined by the confidence de-
grees.

mu =0 &sigma = 2/3 —
mu=0&sigma= 1 -
e z

Figure 2: Normal distributions with different values of o
(sigma) for a single p (mu).

A normal form is chosen to model constraints in system-
level design with teams because it is the best known statisti-
cal model for general-purpose cases in engineering [7], and it
is a good representation for human estimates [17]. Although
[18] showed that Rayleigh and Gamma distributions repre-
sent the manpower curve of a project development better
than any other curve, they also showed limitations for these
distributions as representative manpower model. The choice
of the normal curve was also motivated by the approxima-
tion strategy presented in the literature and also used in this
work, that is approzimation by ezpected value [14].

Gaussian Distribution is associated with the estimation
3-tuple (m, M, c), where p = ™M and o = 2= Table 1
presents confidence degrees for integer valus of ¢, i.e. ¢ =3
(“Very High”), ¢ = 2 (“High”) and ¢ = 1 (“Low”). The
confidence degree represents the possibility of an estimate
to fall inside the interval [m, M]. In Figure 2, let us assume
m = —2 e M = 2, we can compare the different degrees
associated with these minimum and maximum values: Very
High for the inner curve (¢ = 2/3), High for the middle
curve (o = 1) and Low for the outter curve (o = 2).

Confidence Standard Devia- | Statistical Semantic
Degree tion (o)

Very High [3c=M —p 99.7% of the values are
(VH) in the estimated range.
High (H) 20 =M —p 95.56% of the values are

in the estimated range.
68.3% of the values are
in the estimated range.

co=M—pu

Table 1. Definition of the ¢ parameter.

With this approach, we can represent the uncertainties
and estimate the capability of development teams.

3 A Design Management Approach for System-Level De-
signs

The basic assumption lies in the fact that for large systems
no single designer has the complete knowledge of the sys-
tem. As a result, team assignment and partitioning must be



performed before implementation. In addition, task/team
management affects task implementation, since it may be
better to use underutilized teams (technology) to implement
tasks to reach time-to-market at the expense of decreasing
system performance.

Design at the early stages is assumed to be a refinement
on the range of risks for each portion of the design. Initially,
the estimates are in the ranges of low accuracy for the un-
defined portions of the design. These estimates translates
into system-level constraints. As each design is refined, the
constraint ranges are modified accordingly.

3.1 Design Views

Our approach is based on a task graph containing two differ-
ent views: task development view and task implementation
view. The model is briefly described here due to the lack of
space.

Because of the co-dependency problem of task assign-
ment and task implementation, the model for design man-
agement must consider a conceptual view of the system and
a task development view of the system. Since task assign-
ment is associated to task implementation through tech-
nology (Figure 1), implementation estimates are given by
teams.

The system-level specification can be represented as a
task hierarchy graph, which reflects the hierarchy of the
project in the developing and structural dependency views.
Figure 3 illustrates an Network Controller task graph, for
more details refer to Section 5.

CONTROLLER

RCVD_BIT RCVD_FRAME

RVCD_BUFFER DMA_RCVD

Figure 3: MicroController Task Graph

Each task (node in the task graph) stores probabilistic in-
formation which are used by the methodology to determine
in which technology option it should be place. The working
set of a project, marked in Figure 3, is the most well refined
tasks of the hierarchical graph. They are the tasks that will
be used by the model to start the partitioning algorithm.

3.2 System-Level Constraints

We consider the following constraints usually found in the
literature [4].

Production constraints:

e (C), Monetary cost. It is the total budget available to
the project and its inference degree;

e (D;), Delay time. This is the total delay constraint
imposed by the functional restrictions and its inference
degree;

e Communication cost. Our approach does not work
on actual implementation but rather the conceptual
view of the system. As a result, it is difficult to make
an accurate estimate on the communication cost. [6]
has suggested that 30% overhead (of delay) is a good

estimate at this level. We consider that team estimates
already consider this overhead.

Development constraints:

e (Dg), Development time. This is the time needed to
put the product in the market and its inference degree;

e (Teams,I'), Team load. This is the set of develop-
ment teams allocated for the project and their load,
repectively;

o Integration cost. The integration cost of the partitions
that were developed in parallel can also be estimates
as an overhead, 20% of developed time [18].

4 A Stochastic Linear Programming Formulation for Man-
agement and Partitioning in System-Level Design

As presented before, we model the uncertainties of the team
estimates as probabilistic curves. Thus, each curve repre-
sents the team experience and historical data about a spe-
cific parameter in previous system design. These curves are
used in a stochastic linear approach to improve the parti-
tioning problem solutions.

Stochastic Integer Linear Programming investigates lin-
ear programming problems in which the variables are ran-
domly distributed: we are interested on the specific problem
min{}>"_ c;jz; st. Prob(3]7_ aijz; < bi) > 1— o w;
integer, a;; random variables, i = 1..m, 0 < oz < 1} [3].

Computationally, a more quantifiable approach is to solve
the original Integer Linear Programming where all the prob-
abilistic data have been replaced with their ezpected values.
In this way, the problem can be written as a large deter-
ministic problem (Expected Value Formulation [14]). The
resulting deterministic equivalent problem can be solved us-
ing any general purpose optimization package. This is the
approximation used to solve our model for system-level par-
titioning when the variables are randomly distributed.

4.1 System-Level Partitioning Formulation

In this section we present the notation and how constraints
and team estimates are modeled in a mathematical ILP to
solve the partitioning problem. We can observe that the
formulation is a general one, i.e. the cost function and con-
straints can be customized to the specific partitioning prob-
lem. Here, we are interested to show that the stochastic
approach can be solved by a general purpose optimization
package, and so, computationally feasible [15].

4.1.1 Notation

The general symbols are presented in Table 2 and all decision
variables are presented in Table 3.

[ Symbol | Descripton |
Tasks set of the tasks
Cy —Tasks | set of tasks developed concurrently
C; — Tasks | set of tasks executed concurrently
Teams set of development teams available
Weeks set of weeks (or any other time metric)
Pathsyg development dependencies
Paths; execution dependencies
C monetary cost desired for the project
D; delay time desired for the project
Dy time-to-market desired for the project

Table 2. Symbols Used in the ILP Formulation.



[ Variable [ Descripton |

Cij monetary cost for the task ¢ by team j

di; estimated execution of task ¢ when imple-
mented by team j

tij time taken by team j to implement task

T45 binary variable which assumes value 1 if task
1 is implemented by team j

Vijk binary variable meaning that at week k, team
j implementing task 4

4.1.2
We d

of 3

Table 3. Decision Variables Used in the ILP
Formulation.
Formulation

enote the summations over all tasks as ZZ (instead
?:o) to preserve the simplicity. Following the nota-

tion presented, we write the constraints inequalities and the
objective cost function:

1.

The probabilistic parameters of each node z;; are a 3-
tuple (cij, dij, ts;) with non-negative numbers for each
possible technology option (HW or SW). Each param-
eter is represented as the 3-tuple (m, M, c).

. Every task 7 must be implemented by only one j team

VieTasks D jcreams Tid = 1

. Path execution time (minimum and maximum)

PrOb{ZiePathsi dijiL‘ij S Dz} Z 1-— ap
PrOb{ZiePathsi dijiL‘ij Z Dz} Z 1-— ap

. Tasks developed sequentially are implemented in that

order
Min(3 2, , kviajk) — Maz (Y, | kYinjk) 2 D2 tiajTin

for each edge (i1,42) (e;; — €4, is a development de-
pendency in task graph), ¢ € Tasks, j € Teams and
k € Weeks.

. Maximum load for team j

VkEWeekstETeams Zietasks Yijk S 1

. Task assignment

ViETaskS,jETeams ZkEWeeks Yijk = tij$ij

. Cost of project

ZiETasks ZjETeams Cij Tij S C

. Risk of development in time (i € T'asks)

PrOb{ZjETeams ZkEWeeks tij’)’ijk S Dd} Z l—ap
The objective function can be defined as

f(x) =3, zeconstraint.

where the z.’s are customized constants representing
the priorities for the cost optimization and constraint.’s
are the constraint inequalities listed early.

In this way, e.g. if the z3 is zero, then the “Path Ex-
ecution Time” must not be considered in the cost of
the system design.

9. The hardware/software partitioning is the problem of
finding a mapping map : Tasks — (HW,SW)xTeams
in such a way that all performance and constraints are
fulfilled and the design costs (objective function) are
minimized.

5 Solution and Results

We modeled a Network Controller [2] using our approach
and we solve the resulting problem using AMPL package
with a C_PLEX ILP solver. This is a small example to illus-
trate the model use, but complex systems can be modeled
in a similar way.

‘We solve the probabilistic equations by its expected val-
ues E() [7, 14], i.e. the probability of a sum is approximated
by the sum of probabilities. Then, the equation

PT‘Ob(Z ai;Tj S bi) Z 1-— (873

=1

can be written in its approximatted form as

Z PT‘Ob(ai]’ Z 1-— Oéi):L‘j S bi

=1

where, the uncertainty (1—q;) is pushed into the stochas-
tic coeficients (aq;). This approximation is used in order to
be able to solve the set of inequalities by a commercial solver.

The Network Controller specification generates eleven
tasks (nodes in task graph): nine system tasks (RCVD_BIT,
RCVD_BUFFER, RCVD FRAME, DMA RCVD, ENQUEUE,
EXEC_UNIT, DMA XMIT, XMIT FRAME, XMIT BIT) and
one milestone (CONTROLLER DONE), as illustrated in
Figure 4.

CONTROLLER

RCVD_BIT
RVCD_BUFFER

Figure 4: MicroController Task Graph

In our example, we simulated some situations as team
losses, bad estimates and strict constraints varying the con-
fidence degrees. Solving this example for different confidence
degrees (u, pto, p+20, p+30) and for the same probability
(1 — a), we obtain the following results. The development
times for different degrees (in weeks with 2 development
teams) are listed in Figure 5.



Bt \l
5%(/ N Degrees
4= E0sigma
Dav_Time 3 Wsigma
(Weeks) O2sigma
2 D 3sigma
1
0 I 3sigma

Osigma

revd bil
revd_buffer
revd frame

endueus

dma_rcvd

exec_unit
dma_xmit
xmit_frame
xmit_bi

—
o
=
n

Figure 5: Development Times using Different Confidence
Degrees.

The Network Controller development time for the cases
presented in Figure 5 (risk probabilities of 0.68,0.95 and
0.99 are 11, 7 and 5 weeks, respectively.

The development times presented several implementa-
tion scenarios that can be used to estimate the team’s work
in order to reach the market with low risk. Since most of
the tasks are implemented in hardware, as the confidence de-
gree lowers, more tasks need to be implemented in software
in order to reduce implementation risks.

6 Conclusions

This paper presented a stochastic approach for managing
and partitioning system-level design. Partitioning was treat-
ed as an interactive process that considers system constraints,
human depended factors, development teams, and uncer-
tainty to find out the objectives of the project.

The increased time for calculating the ILP solution, in
contrast to other approaches, is compensated by an im-
proved quality of the estimations. Other methods for solving
probabilistic linear programming problems has appeared in
the literature [3], which can improve this work.

The results offered a set of early design scenarios to guide
the system manager in order to improve time-to-market and
team assignment and codesign tasks.

We used the expected value approximation to solve the
set of probabilistic inequalities equations. We are currently
investigating other solution methods.

Acknowledgements

This work has been support by a scholarship from CAPES
and by grants from the agencies FAPEMIG, CNPq and
PRONEX Finep/CNPq/MCT 76/97/1016/00.

References

[1] J. Adams and D. Thomas. The design of mixed hard-
ware /software systems. In ACM 33t% DAC, Las Vegas, 1996.

[2] J. Albuquerque, C. C. Jr., C. Cavalcanti, and A. Fernandes.
A system-level design model for hardware /software codesign.
Technical Report DCC 012/98, UFMG, nov 1998.

[3] M. Biswal, N. Biswal, and D. Li. Probabilistic linear pro-
gramming problems with exponential random variables: A
technical note. European Journal of Operational Research,
(111):589-597, 1998.

[4] R. Camposano and J. Wilberg. Embedded system design.
Design Automation for Embedded Systems An International
Journal, 1(1-2):5-50, January 1996.

[5] V. Catania, M. Malgeri, and M. Russo. Applying fuzzy
logic to codesign partitioning. IEEE Micro, pages 62-70,
May/June 1997.

[6] J. A. Debardelaben, V. K. Madisetti, and A. J. Gadient.
Incorporating cost modeling in embedded-system design. In
IEEE Design & Test of Computers. IEEE, july-september
1997.

[7] G. Hahn and S. Shapino. Statistical Models in Engineering.
John Wiley & Sons, 1994.

[8] D. Herrmann, J. Henkel, and R. Ernst. An approach to
the adaptation of estimated cost parameters in the cosyma
system. In CODES’94, 1994.

[9] W. Humphrey. A Discipline For Software Engineering. Ad-
dison Wesley, 1995.

[10] A. Kalavade. System-level Codesign of Mized Hardware-
Software Systems. PhD thesis, University of California, CA,
September 1995.

[11] I. Karkowski and R. Otten. Uncertainties in hardware-
software co-synthesis of embedded systems. In Workshop on
High Level Synthesis Algoritms, Tools and Design (HILES),
Stanford University, January 1996.

[12] J. Karlsson and K. Ryan. A cost-value approach for priori-
tizing requirements. IEEE Software, 1997.

[13] T. Khoshgoftaar, E. B. Allen, and etc. Using process history
to predict sofware quality. IEEE Computer, 1998.

[14] G. Nemhauser, A. H. G. R. Kan, and M. J. Todd, editors.
Handbooks in Operations Research and Management Sci-
ence: Optimization, volume 1. North-Holland, 1989. Chap-
ter 8.

[15] R. Niemann and P. Marwedel. Hardware/software partition-
ing using integer programming, 1996. IEEE ED&TC’96.

[16] M. Paulk, B. Curtis, and etc. Capability maturity model for
software, version 1.1. Technical Report CMU/SEI-93-TR24,
Software Engineering Institute, 1993.

[17] J. Pearl. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann Pub-
lishers, 1988.

[18] K. Pillai and V. S. Nair. A model for software development
effort and cost estimation. IEEE Transactions on Software
Engineering, 23(8):485-497, August 1997.



	Main Page
	CODES'99
	Front Matter
	Table of Contents
	Session Index
	Author Index


