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Abstract

Regular expressions (REs) are pervasive in computing. We use REs in text editors, string
search tools (like GNU-Grep) and lexical analyzers generators. Most of these tools rely
on converting REs to its corresponding finite state machine or use REs derivatives for
directly parse an input string. In this work, we investigated the suitability of another
approach: instead of using derivatives or generating a finite state machine for a given
RE, we developed a certified virtual machine-based algorithm (VM) for parsing REs, in
such a way that a RE is merely a program executed by the VM over the input string.
First, we developed a small-step operational semantics for the algorithm, implemented
it in Haskell, tested it using QuickCheck and provided proof sketches of its correctness
with respect to RE standard inductive semantics. After that, we developed a big-step
operational semantics, an evolution of the small-step one. Unlike the small-step, the big-
step semantics can deal with problematic REs. We showed that the big-step semantics
for our VM is also sound and complete with regard to a standard inductive semantics
for REs and that the evidence produced by it denotes a valid parsing result. All of our
results regarding the big-step semantics are formalized in Coq proof assistant and, from
it, we extracted a certified algorithm, which we used to build a RE parsing tool using
Haskell programming language. Experiments comparing the efficiency of our algorithm
with another Haskell tool are reported.
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1. Introduction

Correctness is clearly the prime
quality. If a system does not do what
it is supposed to do, then everything
else about it matters little.

Bertrand Meyer, Designer of Eiffel
Programming Language.

We name parsing the process of analyzing if a sequence of symbols matches a given
set of rules. Such rules are usually specified in a formal notation, like a grammar. If a
string can be obtained from those rules, we have success: we can build some evidence
that the input is in the language described by the underlying formalism. Otherwise, we
have a failure: no such evidence exists.

In this work, we focus on the parsing problem for regular expressions (REs), which are
an algebraic and compact way of defining regular languages (RLs), i.e., languages that
can be recognized by (non-)deterministic finite automata and equivalent formalisms.
REs are widely used in string search tools, lexical analyzer generators and XML schema
languages [21]. Since RE parsing is pervasive in computing, its correctness is crucial.
Nowadays, with the recent development of languages with dependent types and proof
assistants it has become possible to represent algorithmic properties as program types
which are verified by the compiler. The usage of proof assistants to verify RE parsing
/ matching algorithms were the subject of study of several recent research works (e.g
[18, 47, 35, 3]).

Approaches for RE parsing can use representations of finite state machines (e.g. [18]),
derivatives (e.g. [47, 36, 35]) or the so-called pointed RE’s or its variants [3, 19]. Another
approach for parsing is based on parsing machines, which dates back to 70’s with Knuth’s
work on top-down syntax analysis for context-free languages [31]. Recently, some works
have tried to revive the use of such machines for parsing: Cox [12] defined a VM for
which a RE can be seen as “high-level programs” that can be compiled to a sequence of
such VM instructions and Lua library LPEG [27] defines a VM whose instruction set can
be used to compile Parser Expressions Grammars (PEGs) [20]. Such renewed research
interest is motivated by the fact that is possible to include new features by just adding
and implementing new machine instructions.

Since LPEG VM is designed with PEGs in mind, it is not appropriate for RE parsing,
since the “star” operator for PEGs has a greedy semantics which differs from the conven-
tional RE semantics for this operator. Also, Cox’s work on VM-based RE parsing has
problems. First, it is poorly specified: both the VM semantics and the RE compilation
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1. Introduction

process are described only informally and no correctness guarantees are even mentioned.
Second, it does not provide an evidence for matching, which could be used to charac-
terize a disambiguation strategy, like Greedy [21] and POSIX [50]. To the best of our
knowledge, no previous work has formally defined a VM for RE parsing that produces
evidence (parse trees) for successful matches. The objective of this work is to give a first
step in filling this gap. More specifically, we are interested in formally specify and prove
the correctness of a VM based semantics for RE parsing which produces bit-codes as a
memory efficient representation of parse-trees. As pointed by [42], bit-codes are useful
because they are not only smaller than the parse tree, but also smaller than the string
being parsed and they can be combined with methods for text compression. We would
like to emphasize that, unlike Cox’s work, which develop its VM using a instruction set
like syntax and semantics, we use, as inspiration, VMs for the λ-calculus, like the SECD
and Krivine machines [32, 33].

One important issue regarding RE parsing is how to deal with the so-called problem-
atic RE1[21]. In order to avoid the well-known issues with problematic RE, we use a
transformation proposed by Medeiros et. al. [41] which turns a problematic RE into
an equivalent non-problematic one. We proved that this algorithm indeed produces
equivalent REs using Coq proof assistant.

1.1. Objectives

The main objective of this dissertation is to develop a VM-based RE parsing algorithm
and formally verify its relevant correctness properties (completeness and soundness with
standard RE semantics2.)

1.2. Contributions

Our contributions are:

• We present a small-step semantics for RE inspired by Thompson’s NFA3 construc-
tion [51]. The main novelty of this presentation is the use of data-type derivatives,
a well-known concept in functional programming community, to represent the con-
text in which the current RE being evaluated occur. We show informal proofs4

that our semantics is sound and complete with respect to RE inductive semantics.

1We say that a RE e is problematic if there is e1 s.t. e = e?1 and e1 accepts the empty string.
2We say that the VM semantics is sound with respect to standard RE semantics if, and only if, every

string accepted by the VM is also accepted by the RE semantics. In the other hand, we say that a
VM semantics is complete if, and only if, all strings accepted by the RE semantics are also accepted
by the VM.

3Non-deterministic finite automata.
4By “informal proofs” we mean proofs that are not mechanized in a proof-assistant.
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1. Introduction

• We describe a prototype implementation of our semantics in Haskell and use
QuickCheck [11] to test our semantics against a simple implementation of RE
parsing, presented in [19], which we prove correct in the Appendix A.

• We show how our proposed semantics can produce bit codes that denote parse
trees [42] and test that such generated codes correspond to valid parsing evidence
using QuickCheck. Our test cases cover both accepted and rejected strings for
randomly generated REs.

• We develop a certified implementation of an algorithm that converts a problematic
RE into a non-problematic one [41].

• We present a big-step operational semantics, that uses the above mentioned al-
gorithm to deal correctly with problematic RE (unlike our previous small-step
semantics) and also produces bit-codes as parsing evidence.

• We prove that the bit-codes produced by our semantics are valid parsing evidence.

• We extract from our formalization a certified algorithm in Haskell and used it to
build a RE parsing tool. We compare its performance against a well-known Haskell
library for RE parsing.

1.3. Published Material

This dissertation is based on two papers: one was published in a peer-reviewed conference
and the other was submitted to a journal.

• “Towards Certified Virtual Machine-based Regular Expression Parsing” is de-
scribed in our SBLP 2018 paper [14].

• “Certified Virtual Machine Based Regular Expression Parsing” is described in a
paper submitted to the Science of Computer Programming journal. This paper is
under review.

1.4. Dissertation Structure

This work is organized as follows. Chapter 2 reviews some important concepts about
formal language theory and other relevant subjects to our research. We present our
proposed semantic in Chapter 3. Related works are summarized in Chapter 4 and
Chapter 5 concludes.

All source code produced, including instructions on how to build it, are available
at [13], including the LATEX code of this document.
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2. Background

This chapter is concerned with concepts that are fundamental to this work. We start
by giving a succinct review of formal language theory in Section 2.1, as found in clas-
sic textbooks [25]. Section 2.2 approaches REs. Section 2.3 presents Thompson NFA
construction for REs, in which the proposed semantic of this work are inspired. The
relation between RE parsing and bit-coded parse trees is shown in Section 2.4. Next, we
present an introduction to formal semantics in 2.5 based in [43], and give some examples
of operational semantics. Section 2.6 brings some basic notions of Haskell programming
language, including an overview of QuickCheck in Section 2.6.1, as well as the concept
of data-type derivatives in Section 2.6.2, a very useful resource we adopted on our small-
step operational semantics. Section 2.7 concludes this chapter by presenting a succinct
introduction to Coq proof assistant.

A reader familiar with these topics can safely skip this chapter.

2.1. Formal Language Theory

The whole formal language theory is centered in the notion of an alphabet, which consists
of a non-empty finite set of symbols. Following common practice, we use the meta-
variable Σ to denote an arbitrary alphabet. A string over Σ is a finite sequence of
symbols from Σ. We let ε denote the empty string and if x is a string over some
alphabet, notation |x| denotes the length of x. We let xn denote the string formed by n
repetitions of x. When n = 0, x0 = ε. A language over an alphabet Σ is a set of strings
over Σ.

Below we present examples of such concepts.

Example 1. Consider the alphabet Σ = {0, 1}. The following are examples of strings
over Σ: ε, 0, 1, 00, 111, 0101. Note that ε is a valid string for any alphabet.

Examples of languages over Σ = {0, 1} are {0, 11, ε} and {0n1n | n > 0}.

Since languages are sets of strings, we can generate new languages by applying stan-
dard set operations, like intersection, union, complement, and so on [25]. In addition to
standard set operations, we can build new languages using some operations over strings.
Given two languages L1 and L2, we define the concatenation, L1L2, as:

L1L2 = {xy | x ∈ L1 ∧ y ∈ L2}

Using concatenation, we can define the iterated concatenation as:
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2. Background

L0 = {ε}
Ln+1 = LnL

Finally, the Kleene closure operator of a language L, L?, can be defined as:

L? =
⋃
n∈N

Ln

Given an alphabet Σ, Σ? denote the set of all possible strings formed using symbols
from Σ.

Another pervasive notion in formal language theory is the so-called Deterministic finite
state automata (DFAs).

Definition 1. A deterministic finite automata (DFA) M is a 5-tuple M = (S,Σ, δ, i, F ),
where:

• S: non-empty, finite set of states.

• Σ: input alphabet.

• δ : S × Σ→ S: transition function.

• i ∈ S: initial state.

• F ⊆ S: set of final states.

In order to define the set of strings accepted by a DFA, we need to extend its transition
function to operate on strings and not only on symbols of its input alphabet as follows:

δ̂(s, ε) = s

δ̂(s, ay) = δ̂(δ(s, a), y)

with s ∈ S, a ∈ Σ and y ∈ Σ?. Using this extended transition function we can define
the language accepted by a DFA M as:

L(M) = {w ∈ Σ? | δ̂(i, w) ∈ F}

Example 2. Consider the following language

L = {w ∈ {0, 1}? | w starts with a 0 and ends with a 1}

A DFA that accepts L is presented in Figure 2.1. From this state diagram, the state set
S and the final states F are obvious. The Table 2.1 shows the transition function for
that DFA.
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2. Background

A B C

D

0

1

0

1

1

0

0, 1

Figure 2.1.: DFA for L = {w ∈ {0, 1}? | w starts with a 0 and ends with a 1}

δ 0 1
A B D
B B C
C B C
D D D

Table 2.1.: Transition function for the previous DFA

2.2. Regular Expressions

REs are an algebraic and widely used formalism for specifying languages in computer
science. In this section we will look at the formal syntax and semantics for REs.

Definition 2 (RE syntax). Let Σ be an alphabet. The set of REs over Σ is described
by the following grammar:

e → ∅
| ε
| a
| e e
| e+ e
| e?

where ε represents an empty RE; a ∈ Σ; the meta-variable e denotes an arbitrary RE;
“ee” means the concatenation of two REs; “e+e” represents the choice operator between
two REs and “e?” is the Kleene closure of a RE e.

A RE describes a set of strings. This is captured by the following definition:

Definition 3 (RE functional semantics). Let Σ be an alphabet. We define the semantics
of a RE over Σ using the following function, J K : RE → P(Σ?), in which P(x) denotes

6



2. Background

the powerset of a set x:
J∅K = ∅
JεK = {ε}
JaK = {a}
Je e′K = JeK Je′K
Je+ e′K = JeK ∪ Je′K
Je?K = (JeK)?

After a precise characterization of RE, we can now use it to define the class of Regular
Languages (RLs).

Definition 4 (Regular language). A language L ⊆ Σ? is a RL if there is an RE e such
that L = JeK.

In order to clarify the previous definitions, we present some examples of REs and
describe their meaning.

Example 3. Consider Σ = {0, 1}.

• The RE e = 0?10? denotes the following language

L = {w ∈ {0, 1}? | w has just one occurrence of 1}

• The RE e = (1 + ε)0 denotes the language L = {10, 0}.

• The RE e = ∅? denotes the language L = {ε}.

• The RE e = 0(0 + 1)?1 denotes the language

L = {w ∈ {0, 1}? | w starts with a 0 and ends with a 1}

Meta-variable e will denote an arbitrary RE and a an arbitrary alphabet symbol. As
usual, all meta-variables can appear primed or subscripted. In our Coq formalization, we
represent alphabet symbols using type ascii and our Haskell implementation represents
alphabet symbols using Char type. We let concatenation of RE, strings and lists by
juxtaposition. Given a RE, we let its size be defined by the following function:

size(∅) = 0
size(ε) = 1
size(a) = 2
size(e1 + e2) = 1 + size(e1) + size(e2)
size(e1 e2) = 1 + size(e1) + size(e2)
size(e?) = 1 + size(e)

Given a pair (e, s), formed by a RE expression e and a string s, we define its complexity
as (size(e), |s|). Many proofs are made by well-founded induction over the complexity
of that pair.

7



2. Background

Following common practice [35, 47, 46], we adopt an inductive characterization of RE
membership semantics as shown in Figure 2.2. We let judgment s ∈ JeK denote that
string s is in the language denoted by RE e.

ε ∈ ε {Eps}
a ∈ Σ
a ∈ a {Chr}

s ∈ e
s ∈ e+ e′

{Left} s′ ∈ e′
s′ ∈ e+ e′

{Right}

ε ∈ e? {StarBase}
s ∈ e s′ ∈ e?

ss′ ∈ e?
{StarRec}

s ∈ e s′ ∈ e′
ss′ ∈ ee′

{Cat}

Figure 2.2.: RE inductive semantics.

Rule Eps states that the empty string (denoted by the ε) is in the language of RE ε.
For any single character a, the singleton string a is in the language of RE a. Given

membership proofs for REs e and e′, s ∈ JeK and s′ ∈ Je′K, rule Cat can be used to build a
proof for the concatenation of these REs. Rule Left (Right) creates a membership proof
for e + e′ from a proof for e (e′). Semantics for Kleene star is built using the following
well known equivalence of REs: e? = ε+ e e?.

Next, we present a simple example of the inductive RE semantics.

Example 4. The string aab is in the language of RE (aa+b)?, as the following derivation
shows:

a ∈ Σ
a ∈ a Chr

a ∈ Σ
a ∈ a Chr

aa ∈ aa Cat

aa ∈ aa+ b
Left

b ∈ Σ
b ∈ b Chr

b ∈ aa+ b
Right

ε ∈ (aa+ b)?
StarBase

b ∈ (aa+ b)?
StarRec

aab ∈ (aa+ b)?
StarRec

As one would expect, the inductive and functional semantic of REs are equivalent, as
shown in the next theorem.

Theorem 1. For all RE e and strings s ∈ Σ?, s ∈ JeK if, and only if, s ∈ e.

Proof. Let e and s be an arbitrary RE and string, respectively.

(→) : Suppose that s ∈ JeK. We proceed by induction on the structure of e.

8



2. Background

– Case e = ∅. We have:

s ∈ J∅K↔
s ∈ ∅ ↔
⊥

which makes the conclusion hold by contradiction.

– Case e = ε. We have

s ∈ JεK↔
s ∈ ε

Since e = ε and s ∈ JεK, we have that s = ε and the conclusion holds by rule
Eps.

– Case e = a, a ∈ Σ. We have:

s ∈ JaK↔
s ∈ a

Since e = a and s ∈ a, we have that s = a and the conclusion follows by rule
Chr.

– Case e = e1 e2. By the definition of the functional semantics, if s ∈ Je1 e2K,
then exists s1, s2 ∈ Σ?, such that s1 ∈ Je1K, s2 ∈ Je2K and s = s1 s2. By the
induction hypothesis, we have that s1 ∈ e1 and s2 ∈ e2 and the conclusion
follows by using rule Cat.

– Case e = e1+e2. By the definition of the functional semantics, if s ∈ Je1+e2K,
then s ∈ Je1K or s ∈ Je2K. Consider the cases:

∗ Case s ∈ Je1K: The conclusion follows by the induction hypothesis and
rule Left.

∗ Case s ∈ Je2K: The conclusion follows by the induction hypothesis and
rule Right.

– Case e = (e1)
?. Here we proceed by strong induction on the structure of s.

Consider the following cases:

∗ s = ε: In this case the conclusion follows by rule StarBase.

∗ s 6= ε: Since s ∈ (J(e1)K)?, by the definition of the Kleene closure, we
have that there exists s1, s2 ∈ Σ? such that s1 ∈ Je1K, s2 ∈ (Je1K)? and
s = s1 s2. The conclusion follows by the induction hypothesis and the
rule StarRec.

9



2. Background

(←) : Suppose that s ∈ e. We proceed by induction on the derivation of s ∈ e by doing
case analysis on the last rule employed to deduce s ∈ e.

– Case Eps: We have that s = ε and e = ε. The conclusion follows by the
definition of the functional semantics.

– Case Chr: We have that s = a = e. The conclusion follows by the definition
of the functional semantics.

– Case Cat: Since the last rule used to deduce s ∈ e was Cat, we have that
must exists s1, s2 ∈ Σ?, e1, e2 such that e = e1 e2, s = s1 s2, s1 ∈ e1 and
s2 ∈ e2. By the induction hypothesis, we have that s1 ∈ Je1K and s2 ∈ Je2K.
The conclusion follows by the definition of the functional semantics.

– Case Left: Since the last rule used to deduce s ∈ e was Left, we have that
must exists e1, e2 such that e = e1 + e2 and s ∈ e1. The conclusion follows by
the definition of functional semantics and the induction hypothesis.

– Case Right: Since the last rule used to deduce s ∈ e was Right, we have that
must exists e1, e2 such that e = e1 + e2 and s ∈ e2. The conclusion follows by
the definition of functional semantics and the induction hypothesis.

– Case StarBase: Since the last rule used to deduce s ∈ e was StarBase, we
have that s = ε and that exists e1 such that e = e?1. The conclusion follows
by the definition of functional semantics and the Kleene closure operator.

– Case StarRec: Since the last rule used to deduce s ∈ e was StarRec, we
have that must exists s1, s2 ∈ Σ∗, e1 such that e = e?1, s = s1 s2, s1 ∈ e1
and s2 ∈ (e1)

?. By the induction hypothesis, we have that s1 ∈ Je1K and
s2 ∈ J(e1)?K and the conclusion follows from the definition of the functional
semantics.

Using the semantics for RE, we can define formally when two REs are equivalent as
follows.

Definition 5. Let e and e′ be two REs over Σ. We say e is equivalent to e′, written
e ≈ e′, if the following holds:

∀w.w ∈ Σ? → w ∈ JeK↔ w ∈ Je′K

Definition 6 (Problematic REs). Let e be a RE. We say that e is problematic if exists
an e′, such that ε ∈ Je′K and e = e′?. Otherwise, we say that e is unproblematic.

2.3. Thompson NFA Construction

The Thompson NFA construction is a classical algorithm for building an equivalent NFA
with ε-transitions by induction over the structure of an input RE. We follow a presen-
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2. Background

tation given in [2] where N(e) denotes the NFA equivalent to RE e. The construction
proceeds as follows. If e = ε, we can build the following NFA equivalent to e.

ε

If e = a, for a ∈ Σ, we can make a NFA with a single transition consuming a:

a

When e = e1 + e2, we let N(e1) be the NFA for e1 and N(e2) the NFA for e2. The NFA
for e1 + e2 is built by adding a new initial and accepting state which can be combined
with N(e1) and N(e2) using ε-transitions as shown in the next picture.

N(e1)

N(e2)

ε

ε

ε

ε

The NFA for the concatenation e = e1e2 is built from the NFAs N(e1) and N(e2). The
accepting state of N(e1e2) will be the accepting state from N(e2) and the starting state
of N(e1) will be the initial state of N(e1).

N(e1) N(e2)

Finally, for the Kleene star operator, we built a NFA for the RE e, add a new starting
and accepting states and the necessary ε transitions, as shown below.

N(e1)
ε

ε

ε

ε
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2. Background

Example 5. In order to show a step-by-step automaton construction following Thomp-
son’s algorithm, we take as example the RE ((ab) + c)∗ over the alphabet Σ = {a, b, c}.

The first step is to construct an automaton (S1) that accepts the symbol a.

1S1 : 2
a

Then, we construct another automaton (S2) that accepts the symbol b:

3S2 : 4
b

The concatenation ab is accepted by automaton S3:

1S3 : 2 4
a b

Now we build automaton S4, which recognizes the symbol c:

5S4 : 6
c

The automaton S5 accepts the RE (ab) + c:

7S5 :

1

5

2

4

8

6

ε

ε

a b ε

c

ε

Finally, we have the NFA S6, that accepts ((ab) + c)∗:

9S6 : 7

1

5

2

4

8

6

10

ε

ε

a b ε

c
ε

ε

ε

ε ε

Originally, Thompson formulated his construction as a IBM 7094 program [51]. In our
work, we reformulate it as a small-step operational semantics using contexts, modeled
as data-type derivatives for RE, as shown in Section 3.1.
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2.4. RE Parsing and Bit-coded Parse Trees

One way to represent parsing evidence is to build a tree that denotes a RE membership
proof. Following Frisch et. al. [21] and Nielsen et. al. [42]. We let parse trees be terms
whose type is its underlying RE. The following context-free grammar defines the syntax
of parse trees. We use a Haskell-like syntax for lists, in which ts represents a list of
elements t.

t → () | a | inl t | inr t | 〈t, t〉 | [ ] | t : ts

Figure 2.3.: Parse trees for REs.

Term () denotes the parse tree for ε and a the tree for a single character RE. Con-
structor inl (inr) tags parse trees for the left (right) operand in a union RE. A parse
tree for the concatenation e e′ is a pair formed by a tree for e and another for e′. A
parse tree for e? is a list of trees for RE e. Such relationship between trees and RE is
formalized by typing judgment ` t : e, which specifies that t is a parse tree for the RE
e. The typing judgment is defined in Figure 2.4.

` () : ε ` a : a

` t : e
` inl t : e+ e′

` t : e′

` inr t : e+ e′

` t1 : e1 ` t2 : e2
` 〈t1, t2〉 : e1 e2 ` [ ] : e?

` t : e ` ts : e?

` t : ts : e?

Figure 2.4.: Parse tree typing relation.

For any parse tree t, we can produce its parsed string using function flatten, which
is defined below:

flatten () = ε
flatten a = a
flatten (inl t) = flatten t
flatten (inr t) = flatten t
flatten 〈t1, t2〉 = (flatten t1)(flatten t2)
flatten [ ] = ε
flatten (t : ts) = (flatten t)(flatten ts)

13
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Example 6. Consider the RE ((ab) + c)∗ and the string abcab, which is accepted by
that RE. Here is shown the string’s corresponding parse tree:

[ ]

inl

〈, 〉

a b

inr

c

inl

〈, 〉

a b

The next theorems relates parse trees and RE semantics. The first one can be proved
by an easy induction on the RE semantics derivation and the second by induction on
the derivation of ` t : e.

Theorem 2. For all s and e, if s ∈ JeK then exists a tree t such that flatten t = s
and ` t : e.

Proof. Induction on the derivation of s ∈ JeK.

Theorem 3. If ` t : e then (flatten t)∈ JeK.

Proof. Induction on the derivation of ` t : e.

Nielsen et. al. [42] proposed the use of bit-marks to register which branch was chosen
in a parse tree for union operator, +, and to delimit different matches done by Kleene
star expression. Evidently, not all bit sequences correspond to valid parse trees. Ribeiro
et. al. [47] showed an inductively defined relation between valid bit-codes and RE,
accordingly to the encoding proposed by [42]. We let the judgment bs B e denote that
the sequence of bits bs corresponds to a parse-tree for RE e.

[ ]B ε [ ]B a
bsB e

0b bsB e+ e′

bsB e′

1b bsB e+ e′
bsB e bs′ B e′

bs bs′ B ee′ 1b B e?

bsB e bssB e?

0b (bs bss)B e?

Figure 2.5.: Typing relation for bit-codes.
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The empty string and single character RE are both represented by empty bit lists.
Codes for RE e e′ are built by concatenating codes of e and e′. In RE union operator,
+, the bit 0b marks that the parse tree for e + e′ is built from e’s and bit 1b that it is
built from e′’s. For the Kleene star, we use bit 1b to denote the parse tree for the empty
string and bit 0b to begin matchings of e in a parse tree for e?.

The relation between a bit-code and its underlying parse tree can be defined using
functions code and decode, which generates a code for an input parse tree and builds
a tree from a bit sequence, respectively.

code(() : ε) = [ ]
code(a : a) = [ ]
code(inl t : e1 + e2) = 0b code(t : e1)
code(inr t : e1 + e2) = 1b code(t : e2)
code(〈t1, t2〉 : e1 e2) = code(t1 : e1) code(t2 : e2)
code([ ] : e?) = 1b

code((t : ts) : e?) = 0b code(t : e) code(ts : e?)

Function code has an immediate definition by recursion on the structure of a parse
tree. Note that the code generation is driven by input tree’s type (i.e. its underlying
RE). In the definition of function decode, we use an auxiliary function, decode1, which
threads the remaining bits in recursive calls.

decode1(bs : ε) = ((), bs)
decode1(bs : a) = (a, bs)
decode1(0b bs : e1 + e2) = let (t, bs1) = decode1(bs : e1)

in (inl t, bs1)
decode1(1b bs : e1 + e2) = let (t, bs2) = decode1(bs : e2)

in (inr t, bs2)
decode1(bs : e1 e2) = let (t1, bs1) = decode1(bs : e1)

(t2, bs2) = decode1(bs1 : e2)
in (〈t1, t2〉, bs2)

decode1(1b bs : e?) = ([ ], bs)
decode1(0b bs : e?) = let (t, bs1) = decode1(bs : e)

(ts, bs2) = decode1(bs1 : e?)
in ((t : ts), bs2)

decode(bs : e) = let (t, bs1) = decode1(bs : e)
in if bs1 = [ ] then t else error

For single character and empty string REs, its decoding consists in just building the
tree and leaving the input bit-coded untouched. We build a left tree (using inl) for
e+e′ if the code starts with bit 0b. A parse tree using constructor inr is built whenever
we find bit 1b for a union RE. Building a tree for concatenation is done by sequencing
the processing of codes for left component of concatenation and starting the processing
of right component with the remaining bits from the processing of the left RE. Parsing
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the code for a Kleene star e? consists in consuming a 0b, which marks the beginning of
the code for a match for e, followed for the code for a tree for e itself. We finish a list of
matchings using a bit 1b.

Example 7. We present again the same RE and string we showed in Example 6, denoted
by ((ab)+c)∗ and abcab, respectively. Note that the parse tree is also the same. However,
this time it contains its bit codes, which are 0b0b0b1b0b0b1b. The first, third and fifth
zeros in this sequence are separators and do not appear on the tree, as well as the last
one digit, which defines the end of the bit codes. Remaining three digits (two zeros and
one one) appear in each inl or inr on the tree.

[ ]

0b:inl

〈, 〉

a b

1b:inr

c

0b:inl

〈, 〉

a b

The relation between codes and its correspondent parse trees is specified in the next
theorem.

Theorem 4. Let t be a parse tree such that ` t : e, for some RE e. Then (code t e)B e
and decode (code t e) : e = t.

Proof. Induction on the derivation of ` t : e.

2.5. Formal Semantics

After defining the syntax of some formal system (e.g. a programming language), the
next step in its specification is to describe its semantics [43]. There are three basic
approaches to formalize semantics:

1. Operational semantics specifies the behavior of a programming language by defin-
ing a simple abstract machine for it. This machine is “abstract” in the sense that
it uses the terms of the language as its machine code, rather than some low-level
microprocessor instruction set. For simple languages, a state of the machine is
just a term, and the machine’s behavior is defined by a transition function that,
for each state, either gives the next state by performing a step of simplification on
the term or declares that the machine has halted. The meaning of a term t can
be taken to be the final state that the machine reaches when started with t as its
initial state. Intuitively, the operational semantics for a formal system can be seen
as the mathematical specification of its interpreter.
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2. Denotational semantics takes a more abstract view of meaning: instead of just a
sequence of machine states, the meaning of a term is taken to be some mathemat-
ical object, such as a number or a function. Giving denotational semantics for a
language consists of finding a collection of semantic domains and then defining an
interpretation function mapping terms into elements of these domains, i.e., the de-
notational semantics for a programming language is a mathematical specification
of its compiler.

3. Axiomatic semantics instead of specify how the program should behave when ex-
ecuted, the axiomatic semantics tries to answer the following question: “what can
we prove about this program?”. The axiomatic approach is concerned with log-
ics for proving properties about some formalism which is already specified using
another approach, like operational or denotational semantics.

Since our main interest is defining VM for RE parsing, we will focus on operational
semantics, which is a convenient tool for specifying abstract machines of any sort. We
finish this section with an example of semantics for a small language which consists solely
of addition and natural numbers. While such language is certainly a toy example, it is
sufficient to illustrate the main concepts used in operational semantics specifications.

2.5.1. Operational Semantics for a Simple Language

The language we will use is commonly referred in the literature as Hutton’s razor [26]
(HR) and serves as a minimal example to illustrate ideas in formal semantics and com-
pilation. The HR abstract syntax is defined as follows.

Definition 7. Let n be a arbitrary numeric literal and v a variable. The abstract syntax
of terms of HR is defined by the following context-free language.

e → n
| v
| e+ e

Following common practice, meta-variables like n, e and v can appear primed or
subscripted. Next, we present some examples of terms of the HR language.

Example 8. The following are valid terms of the HR language.

• 42, denotes an integer constant.

• v1, is a variable.

• (v1 + v2) + 42, denotes a term that sums two variables and an integer constant.

Since terms of the HR language have variables, we need to define how these should be
evaluated. A possible approach is to evaluate expressions with respect to an environment,
which will be a total function between variable names and integer values. We let the
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meta-variable σ denote an arbitrary environment and notation σ(v) denotes the integer
n such that (v, n) ∈ σ. Sometimes we write an environment as a finite mapping between
variables and its corresponding integer values like [v1 7→ 1, v2 7→ 2]. In such situation,
variables not explicitly listed are mapped to 0.

In operational semantic, we can use two styles to present the meaning of a formal
system: the small-step and big-step style. The next sections we present semantic for HR
using these styles.

Small-step Semantics for HR

Informally, a small-step operational semantics defines a method to evaluate an expression
one-step at time. When considering the HR language, its small step operational seman-
tics will be defined as a binary relation between pairs of expressions and an environment
as shown in the next definition.

Definition 8. The small-step semantics for HR is the binary relation between pairs of
environments and expressions defined by the rules below. We let the notation 〈σ, e〉 →
〈σ, e′〉 denote the pair (〈σ, e〉, 〈σ, e′〉) and symbol ⊕ denotes integer constant addition.

〈σ, e〉 → 〈σ, e′〉

〈σ, v〉 → 〈σ, σ(v)〉
{V AR}

〈σ, e1〉 → 〈σ, e′1〉
〈σ, e1 + e2〉 → 〈σ, e′1 + e2〉

{ADD1}

〈σ, e2〉 → 〈σ, e′2〉
〈σ, n+ e2〉 → 〈σ, n+ e′2〉

{ADD2}
n3 = n1 ⊕ n2

〈σ, n1 + n2〉 → 〈σ, n3〉
{ADD3}

The meaning of the previous rules are immediate. Rule {V AR} specifies that a variable
evaluates to its value in the environment σ. On the other hand, rule {ADD1} specifies
that the sum of two expressions e1 and e2 evaluates to e′1 + e2, where e1 steps to e′1 and
rule {ADD2} starts the evaluation of an expression e2 only when the first operand of a
sum is completely evaluated. Finally, rule {ADD3} specifies that an expression formed by
the addition of two integer constants should evaluate to their sum.

The result of evaluating a program using an operational semantics is usually called
a value. In the HR language, values are just integer constants. Since a small-step
semantics produces only a single pass in the program execution, we need to apply it
repeatedly until we reach a value. Following standard practice, we denote the repeated
application of the small-step semantics by its reflexive transitive closure, often named
multi-step semantics, which is formally defined next.

Definition 9. The multi-step semantics for HR is the binary relation between pairs of
environments and expressions defined as the reflexive-transitive closure of HR small-step
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semantics, as follows:

〈σ, e〉 →? 〈σ, e′〉

〈σ, e〉 →? 〈σ, e〉
{Refl}

〈σ, e〉 → 〈σ, e1〉 〈σ, e1〉 →? 〈σ, e′〉
〈σ, e〉 →? 〈σ, e′〉

{Step}

Again, the meaning of the multi-step semantics is immediate. Rule Refl states that
the relation is reflexive and rule Step ensures its transitivity. Next, we present an
example of that semantics.

Example 9. Let σ = [v1 7→ 3, v2 7→ 5] and e = (v1 + v2) + 42. Below we present part of
the evaluation of e using σ.

〈σ, v1〉 → 〈σ, 3〉
{V AR}

〈σ, v1〉 → 〈σ, 3〉
{ADD1}

〈σ, v1 + v2〉 → 〈σ, 3 + v2〉
{ADD1}

〈σ, (v1 + v2) + 42〉 → 〈σ, (3 + v2) + 42〉
{ADD1}

...
〈σ, (3 + v2) + 42〉 →? 〈σ, 50〉

{Step}

〈σ, (v1 + v2) + 42〉 →? 〈σ, 50〉
{Step}

The semantics of HR has some important properties: convergence, i.e. every ex-
pression can be evaluated until it reaches a value and determinism, i.e. the small-step
semantics for HR is a function. Below we state theorems about the semantics and
provide its proof sketches.

Theorem 5 (Determinism of HR small-step semantics). For every σ and expressions
e, e′ and e′′; if 〈σ, e〉 → 〈σ, e′〉 and 〈σ, e〉 → 〈σ, e′′〉 then e’ = e”.

Proof. By induction on the structure of the derivation of 〈σ, e〉 → 〈σ, e′〉 and case analysis
on the last rule used to conclude that 〈σ, e〉 → 〈σ, e′′〉.

Big-step Semantics for HR

Intuitively, a big-step semantics defines a method to evaluate an expression until it
reaches its final value. The big-step semantics for HR consists of a binary relation
between triples formed by an environment, an expression and an integer constant. We
let the notation 〈σ, e〉 ⇓ n denotes the triple (σ, e, n). The next definition specifies the
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rules for HR big-step semantics.

〈σ, e〉 ⇓ n

〈σ, n〉 ⇓ n
{NUM}

〈σ, v〉 ⇓ σ(v)
{V AR}

〈σ, e〉 ⇓ n 〈σ, e′〉 ⇓ n′

〈σ, e+ e′〉 ⇓ n⊕ n′
ADD

Rules NUM and V AR specifies how to evaluate numbers and variables, respectively
and rule ADD say that the result of a sum expression is the addition of its corresponding
numeric values. We illustrate the semantics using the following example.

Example 10. Let σ = [v1 7→ 3, v2 7→ 5] and e = (v1 + v2) + 42. The evaluation of e
using σ by the big-step semantics is as follows:

〈σ, v1〉 ⇓ 3
{V AR}

〈σ, v2〉 ⇓ 5
{V AR}

〈σ, v1 + v2〉 ⇓ 8
{ADD}

〈σ, 42〉 ⇓ 42
{NUM}

〈σ, (v1 + v2) + 42〉 ⇓ 50
{ADD}

But a final question needs to be answered: How the big-step semantics relates with
the small-step? The answer is given by the following theorem.

Theorem 6. For every σ, e and n, we have that 〈σ, e〉 ⇓ n if, and only if, 〈σ, e〉 →?

〈σ, n〉.

Proof.
(→) : By induction on the derivation of 〈σ, e〉 ⇓ n.
(←) : By induction on the derivation of 〈σ, e〉 →? 〈σ, n〉.

2.5.2. Operational Semantics for REs

Rathnayake and Thielecke [46] used operational semantics to formalize a VM-based
interpreter for REs. The big-step semantics for their machine is the same as shown
in Figure 2.2, differing only in notation details: instead of the symbols ∈ and s (for
instance, s ∈ e), their big-step semantics uses ↓ and w (e.g. e ↓ w).

The matching of a string w to a RE e is represented by e ↓ w, regarding it as a big-
step operation semantics for a language with non-deterministic branching e1 | e2 and a
non-deterministic loop e∗.

The big-step operational semantics for RE matching in the previous definition has no
details about how one should attempt to match a given input string w. So, the authors
defined a small-step semantics, called the EKW machine, that makes the matching
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process more explicit. The machine is named after its components: E for expression, K
for continuation and W for word to be matched.

Definition 10. A configuration of the EKWmachine is of the form 〈e ; k ; w〉 where e
is a RE, k is a list of REs, and w is a string. The transitions of the EKW machine are
given in the next example. The accepting configuration is 〈ε ; [] ; ε〉.

Here, e is the RE the machine is currently focusing on. What remains to the right of
the current expression is represented by k, the current continuation. The combination
of e and k together is attempting to match w, the current input string.

Note that many of the rules are fairly standard, specifically the pushing and popping
of the continuation stack. The machine is non-deterministic. The paired rules with the
same current expressions e∗ or (e1 | e2) give rise to branching in order to search for
matches, where it is sufficient that one of the branches succeeds.

Theorem 7 (Partial correctness). e ↓ w if and only if there is a run

〈e ; [] ; w〉 → ... → 〈 ε ; [] ; ε〉

Definition 11. The EKW machine transition steps are

〈e1 | e2 ; k ; w〉 → 〈e1 ; k ; w〉
〈e1 | e2 ; k ; w〉 → 〈e2 ; k ; w〉
〈e1e2 ; k ; w〉 → 〈e1 ; e2 :: k ; w〉
〈e∗ ; k ; w〉 → 〈e ; e∗ :: k ; w〉
〈e∗ ; k ; w〉 → 〈ε ; k ; w〉
〈a ; k ; aw〉 → 〈ε ; k ; w〉

〈ε ; e :: k ; w〉 → 〈e ; k ; w〉

The authors do not mention if their proposed semantics follows any disambiguation
policy.

While the previous theorem ensures that all matching strings are correctly accepted,
there is no guarantee that the machine accepts all strings that it should on every run.
The next example will present this situation.

Example 11. Consider the RE a∗∗ and the string a. A possible looping execution for
the EKW machine is presented below.

〈a∗∗ ; [] ; a〉 → 〈a∗ ; [a∗∗] ; a〉
→ 〈ε ; [a∗∗] ; a〉
→ 〈a∗∗ ; [] ; a〉
→ ...

To solve this problem, the authors propose the PWπ machine, refining the EKW
machine by the RE as a data structure in a heap π, which serves as the program run by
the machine. That way, the machine can distinguish between different positions in the
syntax tree, avoiding infinite loop.
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2.6. An Overview of Haskell

This section presents a brief introduction to Haskell programming language.

Haskell is a general purpose, purely functional programming language incor-
porating many recent innovations in programming language design. Haskell
provides higher-order functions, non-strict semantics, static polymorphic typ-
ing, user-defined algebraic datatypes, pattern-matching, list comprehensions,
a module system, a monadic I/O system, and a rich set of primitive datatypes,
including lists, arrays, arbitrary and fixed precision integers, and floating-
point numbers. Haskell is both the culmination and solidification of many
years of research on non-strict functional languages. (Definition of Haskell
language [29])

For an introduction to the language, consider the source fragment shown in Figure
2.6. We split this section into paragraphs, in which each paragraph approaches a feature
of the language.

Modules Haskell programs are composed by a sequence of modules. Modules provide
to the programmer a way to reuse code and control namespace in programs. Each
module is composed by a set of declarations, that may be: classes declarations, instances,
datatypes and value declarations, including functions. Figure 2.6 shows a code fragment
of a module called Table that implements operations over a table, which is represented
by a list of key-value pairs. That module defines the non-functional constant empty and
the functions insert, member, remove and update for table manipulation.

Type annotations On Table module, each definition is preceded by a corresponding
type annotation.

All the names defined on Table module are polymorphic. Por instance, the empty

constant is of type Table a, which is synonyms for type [(String,a)]. This means
that empty can be used in contexts that require values of types that are instances of type
∀a. [(String,a)], as for instance [(String,Bool)], [(String,Int)],
∀a. [(String,[a])] etc.

Functional types specify the types of the parameter and the function result (which
can also be functional types). The symbol search has the following type annotation:
String → Table a → a, which specifies that this function receives a value of type
Sring as a parameter and returns a function, which receives a list of pairs made by a
value of type String and an element of any type and returns as result an element of
that type. Generally, we informally say that search receives two parameters (one at a
“time”): a value of type String and a list of pairs.

It is worth noting that type annotations are, usually, optional in Haskell programs,
once the compiler is able to infer the type for each expression. The process of determining
the type of expressions is called type inference. If the programmer provides a type
notation for an expression, the compiler checks if the specified definition can be of the
annotated type. This verification process is called type verification.
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type Table a = [(String, a)]

empty :: Table a

empty = []

insert :: String -> a -> Table a -> Table a

insert s a t

| member s t = t

| otherwise = (s, a) : t

member :: String -> Table a -> Bool

member s t = not $ null [p | p <- t, fst p == s]

search :: String -> Table a -> a

search s t = snd (head [p | p <- t, fst p == s])

update :: String -> a -> Table a -> Table a

update s a [] = error "Item not found!"

update s a (x:xs)

| s == (fst x) = (s, a) : xs

| otherwise = x : update s a xs

remove :: String -> Table a -> (a, Table a)

remove s [] = error "Item not found!"

remove s (x:xs)

| s == (fst x) = (snd x, xs)

| otherwise = (fst (remove s xs), x : snd (remove s xs))

Figure 2.6.: A Haskell Module
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Lists syntax Lists are data structures commonly used to model many problems. There
is a special syntax in Haskell for representing that kind of data. The datatype [a] can
be inductively defined as the disjoint union of an empty list, represented by [], with the
set of values x:xs, having a first element x of type a followed by a list xs. The symbols
[] and : are values constructors of type list, whose types are respectively [a] and a →
[a] → [a]. The use of [a] (instead of List a) is a primary form of special syntax for
(types of) lists. The use of constructors [] and (:), in which the second one is used in
a infixed form, is another special notation for list construction.

Another form of special syntax for lists is shown below:

[True, False]

is an abbreviation for

True : (False : []).

On Table module, the function member uses another special syntax for lists, which is
based in a commonly used notation for set definitions. That function could be defined
by using sets notation as:

member s t = ({ p | p ∈ t ∧ (fst p) = s} 6= ∅)

The last type of syntactic sugar available for lists in Haskell is succinctly presented
next:

• [’a’..’z’]: list of all lowercase alphabet letters.

• [0, 2..]: list of natural even numbers.

• [0..]: list of all natural numbers.

Pattern matching A pattern is a syntactic construction that can involve the use of
constants and variables introduced to define the pattern matching mechanism, which is
an operation used in parameter passing. Basically, it consists simply of the fact that
a constant just matches itself and a variable matches any expression. The match of a
variable yields an association of the variable to the matched expression .

Pattern matching plays an important hole in the definition of functions in modern
functional languages. The function remove, defined in Table module, is an example of
definition that uses pattern matching over lists. This function definition is made of two
alternative equations, each one specifying the correspondent result to the pattern of the
received list as argument: the first equation uses the pattern [] and the second one uses
pattern (x:xs). Pattern x:xs is an example of a functional constant (:) applied to the
variable x and the variable xs.
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Guards The definition of function insert is an example of definitions with guards,
which allows the definition of alternatives for a same equation. The alternative to be
executed is the first, in the textual order, for which the guard evaluation (boolean
expression) specified in the definition results in a true value.

Algebraic datatypes Figures 2.7 and 2.8 show declarations of an algebraic datatype
and a function that receives values of that type as argument. The objective is to show
basic features of the definition and the use of algebraic datatypes values in Haskell.

data Maybe a = Nothing | Just a

mapMaybe :: (a -> b) -> Maybe a -> Maybe b

mapMaybe f (Just x) = Just (f x)

mapMaybe f Nothing = Nothing

Figure 2.7.: Definition of an algebraic datatype and a function that uses it.

The first line illustrates the definition of an algebraic type: the keyword data is used
on the declaration of Maybe. The declaration introduces Maybe as a type constructor that
has two data constructors : Nothing and Just. The type Maybe a is polymorphic, i.e.,
universally quantified over one or more type variables. For each instanced type t, i.e.,
replaced by the type variable a in Maybe a, there is a new datatype, Maybe t. Values
of a type Maybe t can be of two forms: Nothing or (Just x), in which x corresponds
to a value of type t. Data constructors can be used in patterns for decomposing values
of type Maybe t or in expressions to build values of that type. Both cases are shown in
the definition of mapMaybe.

Algebraic datatypes in Haskell compose a sum of products. The datatype definition
Tree a indicates that a value of that type can be a leaf (Leaf), whose type corresponds
to a trivial product of only one type, or a node built with the Node constructor, whose
type corresponds to a product of a type a with two types Tree a (that correspond to
left and right sub-trees).

data Tree a = Leaf a | Node a (Tree a) (Tree a)

Figure 2.8.: Algebraic datatype.

2.6.1. An Overview of QuickCheck

QuickCheck [11] is a library that allows the testing of properties expressed as Haskell
functions. Such verification is done by generating random values of the desired type,
instantiating the relevant property with them, and checking it directly by evaluating
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it to a boolean. This process continues until a counterexample is found or a specified
number of cases are tested with success. The library provides generators for several
standard library data types and combinators to build new generators for user-defined
types.

As an example of a custom generator, consider the task of generating a random alpha-
numeric character. To implement such generator, genChar, we use QuickCheck function
suchThat which generates a random value which satisfies a predicate passed as argument
(in example, we use isAlphaNum, which is true whenever we pass an alpha-numeric
character to it), using an random generator taken as input.

genChar :: Gen Char
genChar = suchThat (arbitrary :: Gen Char) isAlphaNum

In its simplest form, a property is a boolean function. As an example, the following
function states that reversing a list twice produces the same input list.

reverseInv : [ Int ]→ Bool
reverseInv xs = reverse (reverse xs) ≡ xs

We can understand this property as been implicitly quantified universally over the
argument xs. Using the function quickCheck we can test this property over randomly
generated lists:

quickCheck reverseInv

+++ OK, passed 100 tests.

Test execution is aborted whenever a counter example is found for the tested property.
For example, consider the following wrong property about the list reverse algorithm:

wrong :: [ Int ]→ Bool
wrong xs = reverse (reverse xs) ≡ reverse xs

When we execute such property, a counter-example is found and printed as a result of
the test.

quickCheck wrong

*** Failed! Falsifiable (6 tests and 4 shrinks).

[0,1]

2.6.2. Data-type Derivatives

The usage of evaluation contexts is standard in reduction semantics [17]. Contexts for
evaluating a RE during the parse of a string s can be defined by the following context-free
syntax:

E[ ]→ E[ ] + e | e+ E[ ] | E[ ] e | eE[ ] | ?
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The semantics of a E[ ] context is a RE with a hole that needs to be “filled” to form a
RE. We have two cases for union and concatenation denoting that the hole could be the
left or the right component of such operators. Since the Kleene star has only a recursive
occurrence, it is denoted just as a “mark” in context syntax.

Having defined our small-step semantics (Figure 3.1), we have noticed that our RE
context syntax is exactly the data type for one-hole contexts, known as derivative of an
algebraic data type. Derivatives where introduced by McBride and his coworkers [38]
as a generalization of Huet’s zippers for a large class of algebraic data types [1]. RE
contexts are implemented by the following Haskell data-type:

data Hole = InChoiceL Regex | InChoiceR Regex
| InCatL Regex | InCatR Regex | InStar

Constructor InChoiceL stores the right component of a union RE (similarly for InChoiceR).
We need to store contexts for union because such information is used to allow backtrack-
ing in case of failure. Constructors InCatL and InCatR store the right (left) component of
a concatenation and they are used to store the next subexpressions that need to be eval-
uated during input string parsing. Finally, InStar marks that we are currently processing
an expression with a Kleene star operator.

2.7. A Tour of Coq Proof Assistant

Coq is a proof assistant based on the calculus of inductive constructions (CIC) [7], a
higher-order typed λ-calculus extended with inductive definitions. Theorem proving in
Coq follows the ideas of the so-called “BHK-correspondence”1, in which types represent
logical formulas, λ-terms represent proofs, and the task of checking if a piece of text is
a proof of a given formula corresponds to type-checking (i.e. checking if the term that
represents the proof has the type corresponding to the given formula) [48].

Writing a proof term whose type is that of a logical formula can be however a hard
task, even for simple propositions. In order to make this task easier, Coq provides
tactics, which are commands that can be used to help the user on constructing proof
terms.

In this section, we provide a brief overview of Coq. We start with a small example,
that uses basic features of Coq — types, functions and proof definitions. In this example,
we use an inductive type that represents natural numbers in Peano notation. The nat

type definition includes an annotation, indicating that it belongs to the Set sort2. Type
nat is formed by two data constructors: O, that represents the number 0, and S, the
successor function.

Inductive nat : Set :=

| O : nat

1Abbreviation of Brower, Heyting, Kolmogorov, de Bruijn and Martin-Löf Correspondence. This is
also known as the Curry-Howard “isomorphism”.

2Coq’s type language classifies new inductive (and co-inductive) definitions by using sorts. Set is the
sort of computational values (programs) and Prop is the sort of logical formulas and proofs.
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| S : nat -> nat.

Fixpoint plus (n m : nat) : nat :=

match n with

| O => m

| S n' => S (plus n' m)

end.

Theorem plus0r : forall n, plus n 0 = n.

Proof.

intros n. induction n.

reflexivity.

simpl. rewrite -> IHn. reflexivity.

Qed.

Command Fixpoint allows to define functions by structural recursion. The definition
of plus, for summing two values of type nat, is straightforward. It should be noted that
all functions defined in Coq must be total.

Besides declaring inductive types and functions, Coq allows us to define and prove
theorems. In our example, we show a simple theorem about plus, which states that
plus n 0 = n, for an arbitrary value n of type nat. Command Theorem allows the
statement of a formula that we want to prove and starts the interactive proof mode, in
which tactics can be used to produce the proof term that is the proof of such formula.
In the example, various tactics are used to prove the desired result. The first tactic,
intros, is used to move premises and universally quantified variables from the goal to
the hypothesis. Tactic induction is used to start an inductive proof over an inductively
defined object (in our example, the natural number n), generating a case for each con-
structor and an induction hypothesis for each recursive branch in constructors. Tactic
reflexivity proves trivial equalities up to conversion and rewrite is used to replace
terms using some equality.

For each inductively defined data type, Coq generates automatically an induction
principle [7, Chapter 14]. For natural numbers, the following Coq term, called nat_ind,
is created:

nat_ind

: forall P : nat -> Prop,

P O -> (forall n : nat, P n -> P (S n)) ->

forall n : nat, P n

It expects a property (P) over natural numbers (a value of type nat -> Prop), a proof
that P holds for zero (a value of type P 0) and a proof that if P holds for an arbitrary
natural n, then it holds for S n (i.e. a value of type forall n:nat, P n -> P (S n)).
Besides nat_ind, generated by the use of tactic induction, the term below uses the
constructor of the equality type eq_refl, created by tactic reflexivity, and term
eq_ind_r, inserted by the use of tactic rewrite. Term eq_ind_r allows concluding P y

based on the assumptions that P x and x = y are provable.
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Definition plus_0_r_term :=

fun n : nat =>

nat_ind

(fun n0 : nat => plus n0 O = n0) (eq_refl O)

(fun (n' : nat) (IHn' : plus n' O = n') =>

eq_ind_r (fun n0 : nat => S n0 = S n')

(eq_refl (S n')) IHn') n

: forall n : nat, plus n O = n

Instead of using tactics, one could instead write CIC terms directly to prove theorems.
This can be however a complex task, even for simple theorems like plus_0_r, because
it generally requires detailed knowledge of the CIC type system.

An interesting feature of Coq is the possibility of defining inductive types that mix
computational and logical parts. Such types are usually called strong specifications, since
they allow the definition of functions that compute values together with a proof that this
value has some desired property. As an example, consider type sig below, also called
“subset type”, that is defined in Coq’s standard library as:

Inductive sig (A : Set)(P : A -> Prop) : Set :=

| exist : forall x : A, P x -> sig A P.

Type sig is usually expressed in Coq by using the following syntax: {x : A |P x}.
Constructor exist has two parameters. Parameter x : A represents the computational
part. The other parameter, of type P x, denotes the “certificate” that x has the property
specified by predicate P. As an example, consider:

forall n : nat, n <> 0 -> {m | n = S m}

This type can be used to specify a function that returns the predecessor of a natural
number n, together with a proof that the returned value really is the predecessor of n.
The definition of a function of type sig requires the specification of a logical certificate.
As occurs in the case of theorems, tactics can be used when defining such functions.
For example, a definition of a function that returns the predecessor of a given natural
number, if it is different from zero, can be given as follows:

Definition predcert : forall n : nat, n <> 0 -> {m | n = S m}.

intros n H.

destruct n.

destruct H. reflexivity.

exists n. reflexivity.

Defined.

Tactic destruct is used to start a proof by case analysis on structure of a value.
Another example of a type that can be used to provide strong specifications in Coq

is sumor, that is defined in the standard library as follows:
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Inductive sumor(A : Set) (B : Prop) : Set :=

| inleft : A -> sumor A B

| inright : B -> sumor A B.

Coq standard library also provides syntactic sugar (or, in Coq’s terminology, nota-
tions) for using this type: “sumor A B” can be written as A + {B}. This type can be
used as the type of a function that returns either a value of type A or a proof that some
property specified by B holds. As an example, we can specify the type of a function that
returns a predecessor of a natural number or a proof that the given number is equal to
zero as follows, using type sumor:

{p | n = S p} + {n = 0}

A common problem when using rich specifications for functions is the need of writing
proof terms inside its definition body. A possible solution for this is to use the refine

tactic, which allows one to specify a term with missing parts (known as “holes”) to be
filled latter using tactics.

The next code piece uses the refine tactic to build the computational part of a
certified predecessor function. We use holes to mark positions where proofs are expected.
Such proof obligations are later filled by tactic reflexivity which finishes predcert

definition.

Definition predcert : forall n : nat, {p | n = S p} + {n = 0}.

refine (fun n =>

match n with

| O => inright _

| S n' => inleft _ (exist _ n' _)

end) ; reflexivity.

Defined.

The same function can be defined in a more succinct way using notations introduced
in [10].

Definition predcert : forall n : nat, {p | n = S p} + {n = 0}.

refine (fun n =>

match n with

| O => !!

| S n' => [|| n' ||]

end) ; reflexivity.

Defined.

The utility of notations is to hide the writing of constructors and holes in function
definitions.

Another useful type for specifications is maybe, which allows a proof obligation-free
failure for some predicate [10].
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Inductive maybe (A : Set) (P : A -> Prop) : Set :=

| Unknown : maybe P

| Found : forall x : A, P x -> maybe P.

Using maybe, we can define a certified predecessor function as:

Definition predcert : forall n : nat, {{m | n = S m}}.

refine (fun n =>

match n return {{m | n = S m}} with

| O => ??

| S n' => [ n' ]

end); trivial.

Defined.

The previous definition uses some notations: first, type maybe P is denoted by {x | P}.
Constructor Unknown is represented by ?? and Found n by [ n ]. In our development,
we use these specification types to define several certified functions. More details about
these will be given in Section 3.2.3.

A detailed discussion on using Coq is out of the scope of this paper. Good introduc-
tions to Coq proof assistant are available elsewhere [7, 10].
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This chapter presents the two operational semantic we propose in this work. The first
one is the small-step operational semantics. This version does not deal with problematic
REs. Later, we propose a big-step operational semantics, which can deal correctly with
problematic REs and was our basis for the Coq formalization of our algorithm.

3.1. Small-step Operational Semantics

In this section, we present the definition of an operational semantics for RE parsing
which is equivalent to executing the Thompson’s construction NFA over the input string.
Observe that the inductive semantics for RE (Figure 2.2) can be understood as a big-step
operational semantics for RE, since it ignores many details on how should we proceed
to match an input [46].

The semantics is defined as a binary relation between configurations, which are 5-uples
〈d, e, c, b, s〉 where:

• d is a direction, which specifies if the semantics is starting (denoted by B) or
finishing (F ) the processing of the current expression e.

• e is the current expression being evaluated;

• c is a context in which e occurs. Contexts are just a list of Hole type (defined in
Section 2.6.2) in our implementation.

• b is a bit-code for the current parsing result, in reverse order.

• s is the input string currently being processed.

Notation 〈d, e, c, b, s〉 → 〈d′, e′, c′, b′, s′〉 denotes that from configuration 〈d, e, c, b, s〉 we
can give a step to 〈d′, e′, c′, b′, s′〉 using the rules specified in Figure 3.1.

The semantics rules can be divided in two groups: starting rules and finishing rules.
Starting rules deal with configurations with a begin (B) direction and denote that we
are beginning the parsing for its RE e. Finishing rules use the context to decide how
the parsing for some expression should end. Intuitively, starting rules correspond to
transitions entering a sub-automaton of Thompson NFA and finishing rules to transitions
exiting a sub-automaton.

The meaning of each starting rule is as follows. Rule {Eps} specifies that we can mark
a state as finished if it consists of a starting configuration with RE ε. We can finish any
configuration for RE Chr a if the current string starts with a leading a. Whenever we
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〈B, ε, c, b, s〉 → 〈F, ε, c, b, s〉
(Eps)

〈B, a, c, b, a : s〉 → 〈F, a, c, b, s〉
(Chr)

c′ = E[ ] + e′ : c

〈B, e+ e′, c, b, s〉 → 〈B, e, c′, b′, s〉
(LeftB)

c′ = e+ E[ ] : c

〈B, e+ e′, c, b, s〉 → 〈B, e′, c′, b′, s〉
(RightB)

c′ = E[ ]e′ : c

〈B, ee′, c, b, s〉 → 〈B, e, c′, b, s〉
(CatB)

〈B, e?, c, b, s〉 → 〈B, e, ? : c, 0b : b, s〉
(Star1)

〈B, e?, c, b, s〉 → 〈F, e?, c, 1b : b, s〉
(Star2)

c′ = eE[ ] : c

〈F, e, E[ ]e′ : c, b, s〉 → 〈B, e′, c′, b, s〉
(CatEL)

〈F, e′, eE[ ] : c, b, s〉 → 〈F, ee′, c, b, s〉
(CatER)

c = E[ ] + e′ : c′

〈F, e, c, b, s〉 → 〈F, e+ e′, c′, 0b : b, s〉
(LeftE)

c = e+ E[ ] : c′

〈F, e′, c, b, s〉 → 〈F, e+ e′, c′, 1b : b, s〉
(RightE)

〈F, e, ? : c, b, s〉 → 〈B, e, ? : c, 0b : b, s〉
(StarE1)

〈F, e, ? : c, b, s〉 → 〈F, e?, c, 1b : b, s〉
(StarE2)

Figure 3.1.: Small-step semantics for RE parsing.

have a starting configuration with a choice RE, e1 + e2, we can non-deterministically
choose if the input string s can be processed by e1 (rule LeftB) or e2 (rule RightB).
For beginning configurations with concatenation, we parse the input string using each
of its components sequentially. Finally, for starting configurations with a Kleene star
operator, e?, we can either start the processing of e or finish the processing for e?. In
all recursive cases for RE, we insert context information in the third component of the
resulting configuration in order to decide how the machine should step after finishing
the execution of the RE currently on focus.

Rule (CatEL) applies to any configuration which is finishing with a left concatenation
context (E[ ]e′). In such situation, such rule specifies that a computation should con-
tinue with e′ and push the context eE[ ]. We end the computation for a concatenation
whenever we find a context eE[ ] in the context component (rule (CatER)). Finishing
a computation for choice consists in just popping its correspondent context, as done by
rules (LeftE) and (RightE). For the Kleene star operator, we can either finish the com-
putation by popping the contexts and adding the corresponding 1b to end its matching
list or restart with RE e for another matching over the input string.

The proposed semantics is inspired by Thompson’s NFA construction (as shown in
Section 2.3). First, the rule Eps can be understood as executing the transition high-
lighted in red in the following schematic automaton.
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ε

The Chr rule corresponds to the following transition (represented in red) in the next
automaton.

a

Rule CatB corresponds to start processing the input string in the automaton N(e1);
while rule CatEL deals with exiting the automaton N(e1) followed by processing the re-
maining string in N(e2). Rule CatER deals with ending the processing in the automaton
below.

N(e1) N(e2)

If we consider a RE e = e1 + e2 and let N(e1) and N(e2) be two NFAs for e1 and e2,
respectively, we have the following correspondence between transitions and semantics
rules in the next NFA:

• Red transition for rule LeftB;

• Green for RightB;

• Blue for LeftE; and

• Black for RightE.

N(e1)

N(e2)

ε

ε

ε

ε

Finally, we present Kleene star rules in next automaton according to Thompson’s NFA
construction. The colors are red for Star1 rule, green for Star2, blue for StarE1 and
black for StarE2.
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N(e1)
ε

ε

ε

ε

The starting state of the semantics is given by the configuration 〈B, e, [], [], s〉 and
the accepting configurations are 〈F, e′, [], bs, []〉, for some RE e′ and code bs. Follow-
ing common practice, we let →? denote the reflexive, transitive closure of the small-
step semantics defined in Figure 3.1. We say that a string s is accepted by RE e if
〈B, e, [], [], s〉 →? 〈F, e, [], bs, []〉. The next theorem asserts that our semantics is sound
and complete with respect to RE inductive semantics (Figure 2.2).

Theorem 8. For all strings s and non-problematic REs e, s ∈ JeK if, and only if,
〈B, e, [], [], s〉 →? 〈F, e, [], b, []〉 and 〈F, e, [], b, []〉 is an accepting configuration.

Proof. (→): We proceed by induction on the derivation of s ∈ JeK.

1. Case rule Eps: Then, e = ε, s = ε and the conclusion is immediate.

2. Case rule Chr: Then, e = a, s = a and the conclusion follows.

3. Case rule Left: Then, e = e1 + e2 and s ∈ Je1K. By the induction hypothesis, we
have 〈B, e1, ctx, b, s〉 →? 〈F, e, ctx′, b′, []〉 and the conclusion follows.

4. Case rule Right: Then, e = e1 + e2 and s ∈ Je2K. By the induction hypothesis, we
have 〈B, e2, ctx, b, s〉 →? 〈F, e, ctx′, b′, []〉 and the conclusion follows.

5. Case rule Cat: Then, e = e1e2, s1 ∈ Je1K, s2 ∈ Je2K and s = s1 s2. By the induction
hypothesis on s1 ∈ Je1K we have that 〈B, e1, ctx, b, s〉 →? 〈F, e, E[ ] e2 : ctx, b′, []〉
and by induction hypothesis on s2 ∈ Je2K, we have 〈B, e2, e1E[ ] : ctx, b, s〉 →?

〈F, e, ctx, b′, []〉 and the conclusion follows.

6. Case rule StarBase: Then, e = e?1 and s = ε. The conclusion is immediate.

7. Case rule StarRec: Then, e = e?1, s = s1s2, s1 ∈ Je1K and s2 ∈ Je?1K. By the
induction hypothesis on s1 ∈ Je1K, we have 〈B, e1, ? : ctx, b, s1〉 →? 〈F, e, ? :
ctx, b′, []〉, the induction hypothesis on s2 ∈ Je?1K give us 〈B, e?1, ? : ctx, b, s2〉 →?

〈F, e, ? : ctx, b′, []〉 and conclusion follows.

(←): We proceed by induction on e.

1. Case e = ε. Then, we have 〈B, ε, ctx, b, s〉 →? 〈F, e, ctx′, b′, []〉 and s = ε. Conclu-
sion follows by rule Eps.
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2. Case e = a. Then 〈B, a, ctx, b, s〉 →? 〈F, e, ctx′, b′, []〉 and s = a. Conclusion
follows by rule Chr.

3. Case e = e1 + e2. Now, we consider the following cases.

a) s is accepted by e1. Then, we have the following derivation:

〈B, e1 + e2, ctx, b, s〉 → 〈B, e1, E[ ] + e2 : ctx, b, s〉 →? 〈F, e, ctx′, b′, []〉

By induction hypothesis on e1 and the derivation 〈B, e1, E[ ]+e2 : ctx, b, s〉 →?

〈F, e, ctx′, b′, []〉 we have s ∈ Je1K and the conclusion follows by rule Left.

b) s is accepted by e2. Then, we have the following derivation:

〈B, e2, ctx, b, s〉 → 〈B, e1, e1 + E[ ] : ctx, b, s〉 →? 〈F, e, ctx′, b′, []〉

By induction hypothesis on e2 and the derivation 〈B, e1, e1+E[ ] : ctx, b, s〉 →?

〈F, e, ctx′, b′, []〉, we have s ∈ Je2K and conclusion follows by rule Right.

3.1.1. Implementation Details

We chose Haskell to implement the first version of our VM-based algorithm due to
Haskell’s easiness on quickly prototyping an interpreter for our small-step semantics.
Thus, it could be easier and faster to discover errors in our semantics formulation,
mainly because of QuickCheck (Section 2.6.1).

In order to implement the small-step semantics of Figure 3.1, we need to represent
configurations. We use type Conf to denote configurations and directions are represented
by type Dir, where Begin denote the starting and End the finishing direction.

data Dir = Begin | End
type Conf = (Dir,Regex, [Hole ],Code, String)

Function finish tests if a configuration is an accepting one.

finish :: Conf → Bool
finish (End, , [ ], , [ ]) = True
finish = False

The small-step semantics is implemented by function next, which returns a list of
configurations that can be reached from a given input configuration. We will begin by
explaining the equations that code the set of starting rules from the small-step semantics.
The first alternative

next :: Conf → [Conf ]
next (Begin, ε, ctx, bs, s) = [(End, ε, ctx, bs, s)]
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implements rule (Eps), which finishes a starting Conf with an ε. Rule (Chr) is imple-
mented by the following equation

next (Begin,Chr c, ctx, bs, a : s)
| a ≡ c = [(End,Chr c, ctx, bs, s)]
| otherwise = [ ]

which consumes an input character a if it matches RE Chr c; otherwise it fails by
returning an empty list. For a choice expression, we can use two distinct rules: one for
parsing the input using its left component and another rule for the right one. Since both
union and Kleene star introduce non-determinism in RE parsing, we can easily model
this using the list monad, by return a list of possible resulting configurations.

next (Begin, e + e′, ctx, bs, s)
= [(Begin, e, InChoiceL e′ : ctx, 0b : bs, s)
, (Begin, e′, InChoiceR e : ctx, 1b : bs, s)]

Concatenation just sequences the computation of each side of its composing RE.

next (Begin, e • e′, ctx, bs, s)
= [(Begin, e, InCatL e′ : ctx, bs, s)]

For a starting configuration with Kleene star operator, Star e, we can proceed in two
ways: by beginning the parsing of RE e or by finishing the computation for Star e over
the input.

next (Begin, Star e, ctx, bs, s)
= [(Begin, e, InStar : ctx, 0b : bs, s)
, (End, (Star e), ctx, 1b : bs, s)]

The remaining equations of next deal with operational semantics finishing rules. The
equation below implements rule (CatEL) which specifies that an ended computation for
the left component of a concatenation should continue with its right component.

next (End, e, InCatL e′ : ctx, bs, s)
= [(Begin, e′, InCatR e : ctx, bs, s)]

Whenever we are in a finishing configuration with a right concatenation context, (InCatR e),
we end the parsing of the input for the whole concatenation RE.

next (End, e′, InCatR e : ctx, bs, s)
= [(End, e • e′, ctx, bs, s)]

Next equations implement the rules that finish configurations for the union, by commit-
ting to its first successful branch.

next (End, e, InChoiceL e′ : ctx, bs, s)
= [(End, e + e′, ctx, 0b : bs, s)]
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next (End, e′, InChoiceR e : ctx, bs, s)
= [(End, e + e′, ctx, 1b : bs, s)]

Equations for Kleene star implement rules (StarE1) and (StarE2) which allows ending
or add one more match for an RE e.

next (End, e, InStar : ctx, bs, s)
= [(Begin, e, InStar : ctx, 0b : bs, s)
, (End, (Star e), ctx, 1b : bs, s)]

Finally, stuck states on the semantics are properly handled by the following equation
which turns them all into a failure (empty list).

next = [ ]

The reflexive-transitive closure of the semantics is implemented by function steps, which
computes the trace of all states needed to determine if a string can be parsed by the RE
e.

steps :: [Conf ]→ [Conf ]
steps [ ] = [ ]
steps cs = steps [c′ | c← cs, c′ ← next c ] ++ cs

Finally, the function for parsing a string using an input RE is implemented as follow s:

vmAccept :: String→ Regex→ (Bool,Code)
vmAccept s e = let r = [c | c← steps initcfg, finish c ]

in if null r then (False, [ ]) else (True, bitcode (head r))
where

initcfg = [(Begin, e, [ ], [ ], s)]
bitcode ( , , , bs, ) = reverse bs

Function vmAccept returns a pair formed by a boolean and the bit-code produced during
the parsing of an input string and RE. Observe that we need to reverse the bit-codes,
since they are built in reverse order.

3.1.2. Experiments

Test case generators. In order to test the correctness of our semantics, we needed
to build generators for REs and strings. We used the QuickCheck library to develop
functions to randomly generate strings accepted and rejected for a RE.

Generation of random REs is done by function sizedRegex, which takes a depth limit
to restrict the size of the generated RE. Whenever the input depth limit is less or equal
to 1, we can only build a ε or a single character RE. The definition of sizedRegex uses
QuickCheck function frequency, which receives a list of pairs formed by a weight and a
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random generator and produces, as result, a generator which uses such frequency dis-
tribution. In sizedRegex implementation we gave a higher weight to generate characters
and equal distributions to build concatenation, union or star.

sizedRegex :: Int→ Gen Regex
sizedRegex n
| n 6 1 = frequency [(10, return ε), (90,Chr 〈$〉 genChar)]
| otherwise = frequency [(10, return ε), (30,Chr 〈$〉 genChar)
, (20, ( • ) 〈$〉 sizedRegex n2 〈?〉 sizedRegex n2)
, (20, ( + ) 〈$〉 sizedRegex n2 〈?〉 sizedRegex n2)
, (20, Star 〈$〉 suchThat (sizedRegex n2) (not ◦ nullable))]
where n2 = div n 2

For simplicity and brevity, we only generated REs that do not contain sub-REs of the
form e?, where e is nullable1. All results can be extended to problematic2 REs in the
style of Frisch et. al [21].

Given an RE e, we can generate a random string s such that s ∈ JeK using next
definition. We generate strings by choosing randomly between branches of a union or
by repeating n times a string s which is accepted by e, whenever we have e? (function
randomMatches).

randomMatch :: Regex→ Gen String
randomMatch ε = return ""

randomMatch (Chr c) = return [c ]
randomMatch (e • e′) = liftM2 (++) (randomMatch e)

(randomMatch e′)
randomMatch (e + e′) = oneof [randomMatch e, randomMatch e′ ]
randomMatch (Star e) = do

n← choose (0, 3) :: Gen Int
randomMatches n e

randomMatches :: Int→ Regex→ Gen String
randomMatches m e′

| m 6 0 = return [ ]
| otherwise = liftM2 (++) (randomMatch e′)

(randomMatches (m− 1) e′)

The algorithm for generating random strings that aren’t accepted by a RE is similarly
defined.

Properties considered. In order to verify if the defined semantics is correct, we need
to check the following properties:

1A RE e is nullable if ε ∈ JeK.
2We say that a RE e is problematic if there’s e′ such that e = e′? and ε ∈ Je′K.
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1. Our semantics accepts only and all the strings in the language described by the
input RE: we test this property by generating random strings that should be
accepted and strings that must be rejected by a random RE.

2. Our semantics generates valid parsing evidence: the bit-codes produced as result
have the following properties: 1) the bit-codes can be parsed into a valid parse
tree t for the random produced RE e, i.e. ` t : e holds ; 2) flat t = s and 3)
code e t = bs.

Note that we need a correct implementation of RE parsing to verify the first property.
For this, we used the accept function from [19] and compared its result with vmAccept’s.
The second property demands that the bit-codes produced can be decoded into valid
parsing evidence. The verification of produced bit-codes is done by function validCode
shown below.

validCode :: String→ Code→ Regex→ Bool
validCode [ ] = True
validCode s bs e = case decode e bs of

Just t→ and [tc t e, flat t ≡ s, code t e ≡ bs ]
→ False

Finally, function vmCorrect combines both properties mentioned above into a function
that is called to test the semantics implementation.

vmCorrect :: Regex→ String→ Property
vmCorrect e s

= let (r, bs) = vmAccept s e
in (accept e s≡ r)∧ validCode s bs e

In addition to coding / decoding of parse trees, we need a function which checks if
a tree is indeed a parsing evidence for some RE e. Function tc takes, as arguments, a
parse tree t and a RE e and verifies if t is an evidence for e.

tc :: Tree→ Regex→ Bool
tc () ε = True
tc (Chr c) (Chr c′) = c ≡ c′

tc (t • t′) (e • e′) = tc t e ∧ tc t′ e′

tc (InL t) (e + ) = tc t e
tc (InR t′) ( + e′) = tc t′ e′

tc (List ts) (Star e) = all (flip tc e) ts

Function tc is a implementation of parsing tree typing relation, as specified by the
following result.

Theorem 9. For all tree t and RE e, ` t : e if, and only if, tc t e = True.

Proof. (→): We proceed by induction on the derivation of ` t : e.
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1. Case rule T1: Then, e = ε and t = () and conclusion follows.

2. Case rule T2: Then, e = a and t = Chr a and conclusion follows.

3. Case rule T3: Then, e = e1 + e2 and t = InL tl, where ` tl : e1. By induction
hypothesis, we have that tc tl e1 = True and conclusion follows.

4. Case rule T4: Then, e = e1 + e2 and t = InR tr, where ` tr : e2. By induction
hypothesis, we have that tc tr e2 = True and conclusion follows.

5. Case rule T5: Then, e = e1 e2 and t = tl • tr. Conclusion is immediate from the
induction hypothesis.

6. Case rule T6: Then, e = e?1 and t = List ts and conclusion follows from the
induction hypothesis on each element of ts.

(←): We proceed by induction on e.

1. Case e = ε: Then, t = () and the conclusions follows by rule T1.

2. Case e = a: Then, t = Chr a and the conclusions follows by rule T2.

3. Case e = e1 + e2: Now, we consider the following subcases:

a) Case t = InL tl: By induction hypothesis, we have that tc tl e1 = True and
conclusion follows.

b) Case t = InR tr: By induction hypothesis, we have that tc tr e2 = True and
conclusion follows.

4. Case e = e1 e2: Then, t = tl • tr and conclusion follows by the induction hypothesis
and the rule T5.

5. Case e = e?1: Then, t = List ts and conclusion follows by induction hypothesis on
each element of ts and rule T6.

Code coverage results. After running thousands of well-succeeded tests, we gain a
high degree of confidence in the correctness of our semantics. However, it is important
to measure how much of our code is covered by the test suite. We use the Haskell
Program Coverage tool (HPC) [23] to generate statistics about the execution of our
tests. Code coverage results are presented in Figure 3.2.

Our test suite gave us almost 100% of code coverage, which provides a strong evidence
that our small-step semantics is indeed correct. All top level definitions and function
alternatives are actually executed by the test cases and just two expressions are marked
as non-executed by HPC.
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Figure 3.2.: Code coverage results

3.2. Big-step Operational Semantics

The small-step semantics presented in Section 3.1 was our first attempt to develop a
VM-based algorithm for the RE parsing problem. Despite its high coverage results when
submitted to QuickCheck, that semantics has some issues. As we stated previously, it
does not work with problematic REs.

To solve the first problem, we adopted a function which converts a problematic RE
into an equivalent non-problematic one, as proposed by Medeiros et al. [41]. In order to
formalize our small-step operational semantics in Coq, we now propose a big-step one
for it, which is easier to understand and formalize in Coq and behaves the same way as
the small-step one. In fact, we consider the small-step version as an intermediate step
to achieve the big-step one presented in this section.

3.2.1. Dealing With Problematic REs

A known problem in RE parsing is how to deal with the so-called problematic REs. A
naive approach for parsing problematic REs can make the algorithm loop [21]. Medeiros
et al. [41] present a function which converts a problematic RE into a equivalent non-
problematic one.

The conversion function relies on two auxiliary definitions: one for testing if a RE
accepts the empty string and another to test if a RE is equivalent to ε. We name such
functions as nullable and empty, respectively.
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nullable(∅) = ⊥
nullable(ε) = >
nullable(a) = ⊥
nullable(e1 + e2) = nullable(e1) ∨ nullable(e2)
nullable(e1 e2) = nullable(e1) ∧ nullable(e2)
nullable(e?) = >

empty(∅) = ⊥
empty(ε) = >
empty(a) = ⊥
empty(e1 + e2) = empty(e1) ∧ empty(e2)
empty(e1 e2) = empty(e1) ∧ empty(e2)
empty(e?) = empty(e)

Functions nullable and empty obey the following correctness properties.

Lemma 1. nullable(e) = > if, and only if, ε ∈ JeK.

Proof.
(→) Induction over the structure of e.
(←) Induction over the derivation of ε ∈ JeK.

Lemma 2. If empty(e) = > then e ≈ ε.

Proof. Induction over the structure of e.

Given these two predicates, Medeiros et.al. [41] define two mutually recursive func-
tions, named fin and fout. The function fout recurses over the structure of an input RE
searching for a problematic subexpression and fin rewrites the Kleene star subexpres-
sion so that it becomes non-problematic and preserves the original RE language. The
definition of functions fin and fout are presented next.

fout(e) = e, if e = ε, e = ∅ or e = a
fout(e1 + e2) = fout(e1) + fout(e2)
fout(e1 e2) = fout(e1) fout(e2)

fout(e
?) =


fout(e)

? if ¬ nullable(e)
ε if empty(e)
fin(e)

? otherwise
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fin(e1 e2) = fin(e1 + e2)

fin(e1 + e2) =



fin(e2) if empty(e1) ∧ nullable(e2)
fout(e2) if empty(e1) ∧ ¬nullable(e2)
fin(e1) if nullable(e1) ∧ empty(e2)
fout(e1) if ¬nullable(e1) ∧ empty(e2)
fout(e1) + fin(e2) if ¬nullable(e1) ∧ ¬empty(e2)
fin(e1) + fout(e2) if ¬empty(e1) ∧ ¬nullable(e2)
fin(e1) + fin(e2) otherwise

fin(e
?) =

{
fin(e) if nullable(e)
fout(e) otherwise

The result of applying fout on a RE is producing an equivalent non-problematic one.
This fact is expressed by the following theorem.

Theorem 10. If fout(e) = e′ then e ≈ e′ and e′ is a non-problematic RE.

Proof. Well-founded induction on the complexity of (e, s), where s is an arbitrary string,
using several lemmas about RE equivalence and lemmas 1 and 2.

This result is proved (informally3) by Medeiros et. al. [41]. In order to formalize this
result in Coq, we needed to prove several theorems about RE equivalence. We postpone
the discussion on some details of our formalization to Section 3.2.3.

3.2.2. Big-step Operational Semantics

We now present the definition of a big step operational semantics for a RE parsing VM.
The state of our VM is a pair formed by the current RE and the string under parsing.
Each machine transition may produce, as a side effect, a bit-coded parse tree and the
remaining string to be parsed. We denote our semantics by a judgment of the form
〈e, s〉  (bs, sp, sr), where e is current RE, s is the input string, bs is the produced
bit-coded tree, sp is the parsed prefix of the input string and sr is the yet to be parsed
string. We let notation 〈e, s〉 6 denote the fact that string s cannot be parsed by RE e.

The meaning of each semantics rules is as follows. Rule EpsVM specifies that parsing
s using RE ε produces an empty list of bits and does not consume any symbol from s.
Rule ChrVM consumes the first symbol of the input string if it matches the input RE.
Rules LeftVM and RightVM specifies how the semantics executes an RE e + e′, by
trying to parse the input using either the left or right subexpression. Note that, as a
result, we append a bit 0b when we successfully parse the input using the left choice
operand and the bit 1b for a parsing using the right operand. Rule CatVM defines how
a concatenation e1 e2 is executed by the semantics: first, the input is parsed using the
RE e1 and the remaining string is used as input to execute e2. The bit-coded tree for the
e1 e2 is just the concatenation of the produced codes for e1 and e2. Rules NilV M and

3By “informally”, we mean that the result is not mechanized in a proof assistant.
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〈ε, s〉 ([ ], ε, s)
{EpsVM}

〈a, as〉 ([ ], a, s)
{ChrVM}

〈e1, s〉 (b, sp, sr)

〈e1 + e2, s〉 (0b b, sp, sr)
{LeftV M}

〈e2, s〉 (b, sp, sr)

〈e1 + e2, s〉 (1b b, sp, sr)
{RightV M}

〈e1, s〉 (b1, sp1, s1)
〈e2, s1〉 (b2, sp2, sr)

〈e1 e2, s〉 (b1 b2, sp1 sp2, sr)
{CatVM}

〈e, s〉 6 
〈e?, s〉 (1b, ε, s)

{NilV M}

〈e, s〉 (b1, sp1, s1) sp1 6= ε 〈e?, s1〉 (b2, sp2, sr)

〈e?, s〉 (0b b1 b2, sp1 sp2, sr)
{ConsVM}

Figure 3.3.: Big-step operational semantics for RE parsing.

ConsVM deal with unproblematic Kleene star REs. The rule NilV M is only applicable
when it is not possible to parse the input using the RE e in e?. Rule ConsVM can be
used whenever we can parse the input using e and the parsed prefix is not an empty
string. The remaining string (s1) of e’s parsing is used as input for the next iteration of
RE e? parsing.

Evidently, the proposed semantics is sound and complete w.r.t. standard RE semantics
and only produces valid parsing evidence.

Theorem 11 (Soundness). If 〈e, s〉 (bs, sp, sr) then s = sp sr and sp ∈ JeK.

Proof. Well-founded induction on the complexity of (e, s).

Theorem 12 (Completeness). If sp ∈ JeK then for all sr we have that exists bs, s.t.
〈e, sp sr〉 (bs, sp, sr).

Proof. Well-founded induction on the complexity of (e, s).

Theorem 13 (Parsing result soundness). If 〈e, s〉  (bs, sp, sr) then: 1) bs B e; 2)
flatten(decode(bs : e)) = sp; and 3) code(decode(bs : e) : e) = bs.

Proof. Well-founded induction on the complexity of (e, s) using Theorem 3.

3.2.3. Coq Formalization

In this subsection, we describe the main design decisions in our formalization. At the
end of this subsection, we discuss how we extract a Haskell implementation from our
Coq development.
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RE syntax and semantics Our representation of RE syntax and semantics is as usual
in type theory-based proof assistants. We use an inductive type to represent RE syntax
and an inductive predicate to denote its semantics.

Inductive regex : Set :=

| Empty : regex | Eps : regex | Chr : ascii -> regex

| Cat : regex -> regex -> regex

| Choice : regex -> regex -> regex

| Star : regex -> regex.

Type regex represents RE syntax and its definition is straightforward. We use some
notations to write regex values. We let #0 denote Empty, #1 represents Eps, while infix
operators :+: and @ denote Choice and Cat. Finally, Star e is written (e ^*).

RE semantics is represented by type in_regex which has a constructor for each rule
of the semantics presented in Figure 2.2.

Inductive in_regex : string -> regex -> Prop :=

| InEps : "" <<- #1

| InChr : forall c, String c "" <<- ($ c)

| InLeft

: forall s e e'

, s <<- e

-> s <<- (e :+: e')

| InStarRight

: forall s s' e s1

, s <> ""

-> s <<- e

-> s' <<- (e ^*)

-> s1 = s ++ s'

-> s1 <<- (e ^*)

... (** some constructors omitted. *)

where "s '<<-' e" := (in_regex s e).

We use notation s <<- e to denote in_regex s e.

RE equivalence Using the previous presented semantics, we can define RE equivalence
by coding its standard definition in Coq as:

Definition regex_equiv (e e' : regex) : Prop :=

forall s, s <<- e <-> s <<- e'.

We use notation e1 === e2 to denote regex_equiv e1 e2. In our formalization, we
proved that regex_equiv is an equivalence relation, which is necessary to allow the
rewriting of such equalities by Coq tactics.
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In order to complete our formalization, we needed several results about RE equiv-
alence. Most of them are proved by well-founded induction on the complexity of a
pair formed by a RE and a string (defined in Section 2.2). In order to formalize the
needed ordering relation, we take advantage of Coq’s standard library, which provides
several combinators to assemble well-founded relations. As an example, consider the
following fact used by Medeiros et. al [41] to prove the correctness of its fout func-
tion: (e1 + e2)

? ≈ (e1 e2)
?, which holds if both e1 and e2 accepts the empty string. In

our formalization, such equivalence is proved by the following theorem by well-founded
induction.

Lemma choice_star_cat_star

: forall e1 e2, "" <<- e1 -> "" <<- e2 ->

((e1 @ e2) ^*) === ((e1 :+: e2) ^*).

Several other lemmas about RE equivalence were proved in order to complete the for-
malization of the problematic RE conversion function. We omit them for brevity.

Converting problematic REs The first step to certify the algorithm for converting
problematic REs into non-problematic ones is to define the predicates for testing whether
an input RE is nullable or equivalent to ε. We define such functions using dependently
typed programming, i.e. its types provide certificates that the result has its desired
correctness property.

The nullability test is represented by function null:

Definition null : forall e, {"" <<- e} + {~ "" <<- e}.

refine (fix null e : {"" <<- e} + {~ "" <<- e} :=

match e as e' return e = e' ->

{"" <<- e'} + {~ "" <<- e'} with

| #1 => fun Heq => Yes

| e1 @ e2 => fun Heq =>

match null e1 , null e2 with

| Yes , Yes => Yes

| _ , _ => No

end

| e1 :+: e2 => fun Heq => ...

| e1 ^* => fun Heq => Yes

end (eq_refl e)) ...

(** some cases and tactics omitted *)

Its type specifies that, for any RE e, either e accepts the empty string (i.e. "" <<- e

holds) or not (~ "" <<- e). Since such function contains proofs terms, we use tactic
refine to define its computation content leaving the logical subterms to be filled by
tactics. The definition of null employs the convoy-pattern [10], which consists in intro-
ducing an equality to allow the refinement of each equation type in dependently typed
pattern-matching.
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In order to specify the emptiness test predicate, we use an inductive type which
characterizes when a RE is equivalent to ε.

Inductive empty_regex : regex -> Prop :=

| Emp_Eps : empty_regex #1

| Emp_Cat : forall e e', empty_regex e ->

empty_regex e' ->

empty_regex (e @ e')

| Emp_Choice : forall e e', empty_regex e ->

empty_regex e' ->

empty_regex (e :+: e')

| Emp_Star : forall e, empty_regex e ->

empty_regex (e ^*).

The meaning of each constructor of empty_regex is as follows: Emp_Eps specifies that
the empty RE is equivalent to itself. For concatenation, choice and Kleene star, we can
only say that they are equivalent to ε if all of its subterms are also equivalent to the
empty RE.

Using the empty_regex predicate we can easily prove the following theorems. The first
specifies that if empty_regex e holds then e accepts the empty string and the second
says that if empty_regex e is provable then e is equivalent to the empty string RE.

Lemma empty_regex_sem : forall e, empty_regex e -> "" <<- e.

Theorem empty_regex_spec : forall e, empty_regex e -> e === #1.

The emptiness test function follows the same definition pattern as null using the
refine tactic. We specify its type using empty_regex predicate and we omit its defini-
tion for brevity.

Having defined these two predicates, we can implement the function to convert prob-
lematic REs into non-problematic ones. The specification of when a RE is not problem-
atic is given by the following inductive predicate.

Inductive unproblematic : regex -> Prop :=

| UEmpty : unproblematic #0

| UEps : unproblematic #1

| UChr : forall c, unproblematic ($ c)

| UCat : forall e e', unproblematic e ->

unproblematic e' ->

unproblematic (e @ e')

| UChoice : forall e e', unproblematic e ->

unproblematic e' ->

unproblematic (e :+: e')

| UStar : forall e, ~ ("" <<- e) ->

unproblematic e ->

unproblematic (Star e).
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Type unproblematic says that empty set, empty string and single characters REs are
unproblematic. Concatenation and choice REs are unproblematic if both its subexpres-
sion are unproblematic. Finally, a Kleene star is unproblematic if its subexpression is
unproblematic and does not accept the empty string. Finally, we specify the problematic
RE conversion function with the following type:

Definition unprob

: forall (e : regex), {e' | e === e' /\ unproblematic e'}.

Function unprob type says that from a input RE e it returns another RE e' which is
unproblematic and equivalent to e. Again, we define unprob using refine tactic and
its definition is just the Coq coding of fout. As pointed by Medeiros et. al. [41], most
of the work to produce a unproblematic RE is done by function fin, which is applied
when the inner RE of a Kleene star accepts the empty string and is not equivalent to
the empty RE. Function unprob_rec implements fin function and we specify it with
the following type:

Definition unprob_rec : forall e, "" <<- e -> ~ empty_regex e ->

{e' | (e ^*) === (e' ^*) /\ ~ "" <<- e' /\ unproblematic e'}

unprob_rec’s type establishes that the return RE e' is unproblematic, does not ac-
cept the empty string and its Kleene star is equivalent to input REs Kleene star, i.e.
(e ^*) === (e' ^*).

Parse trees and bit-code representation In our formalization, we use the following
inductive type to represent parse trees:

Inductive tree : Set :=

| TUnit : tree | TChr : ascii -> tree

| TCat : tree -> tree -> tree

| TLeft : tree -> tree | TRight : tree -> tree

| TNil : tree | TCons : tree -> tree -> tree.

Constructor TUnit denotes a parse tree for the empty string RE, TChr the tree for
a single symbol RE and TCat the tree for the concatenation of two REs. TLeft and
TRight denote trees for the choice operator. Constructors TCons and TNil can be used
to form a list of trees for a Kleene star RE.

The parse tree typing judgment is coded as the following inductive predicate, in which
each constructor has a correspondent rule in Figure 2.4.

Inductive is_tree_of : tree -> regex -> Prop :=

| ITUnit : TUnit :> #1

| ITChr : forall c, (TChr c) :> ($ c)

| ITCat : forall e t e' t',

t :> e ->
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t' :> e' ->

(TCat t t') :> (e @ e')

| ITLeft : forall e t e',

t :> e ->

(TLeft t) :> (e :+: e')

| ITRight : forall e e' t',

t' :> e' ->

(TRight t') :> (e :+: e')

| ITNil : forall e, TNil :> (Star e)

| ITCons : forall e t ts,

t :> e ->

ts :> (Star e) ->

(TCons t ts) :> (Star e)

where "t ':>' e" := (is_tree_of t e).

Function flatten has a direct encoding as a Coq recursive definition and we omit it for
brevity. From flatten and tree typing relation definitions, theorems 2 and 3 are easily
proved.

Bit coding of parse trees is represented by a list of bits, as follows:

Inductive bit : Set := O : bit | I : bit.

Definition code := list bit.

The typing relation for bit-coded parse trees (Figure 2.5) has an immediate definition
as an inductively defined Coq relation.

Inductive is_code_of : code -> regex -> Prop :=

| ICEpsilon : [] :# #1

| ICChar : forall c, [] :# ($ c)

| ICLeft : forall bs e e'

, bs :# e ->

(O :: bs) :# (e :+: e')

| ICRight : forall bs e e'

, bs :# e' ->

(I :: bs) :# (e :+: e')

| ICCat : forall bs bs' e e'

, bs :# e ->

bs' :# e' ->

(bs ++ bs') :# (e @ e')

| ICNil : forall e, (I :: []) :# (e ^*)

| ICCons : forall e bs bss,

bs :# e ->

bss :# (e ^*) ->

(O :: bs ++ bss) :# (e ^*)

where "bs ':#' e" := (is_code_of bs e).
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As with flatten, function code has an immediate Coq definition. The next results
about code are proved by a routine inductive proof.

Lemma encode_sound

: forall bs e, bs :# e -> exists t, t :> e /\ encode t = bs.

Lemma encode_complete

: forall t e, t :> e -> (encode t) :# e.

Unlike code, function decode has a more elaborated recursive definition, as shown in
Section 2.4, since it recurses over the input RE while threading the remaining bits to be
parsed into a tree. Since it has a more complicated definition, we use dependent types
to combine its definition with its correctness proof. First, we define type nocode_for

which denotes proofs that some bit list is not a valid bit-coded tree for some RE.

Inductive nocode_for : code -> regex -> Prop :=

| NCEmpty : forall bs, nocode_for bs #0

| NCChoicenil : forall e e', nocode_for [] (e :+: e')

| NCLBase : forall bs e e',

nocode_for bs e ->

nocode_for (O :: bs) (e :+: e')

| NCRBase : forall bs e e',

nocode_for bs e' ->

nocode_for (I :: bs) (e :+: e')

| NCStarnil : forall e, nocode_for [] (e ^*)

| NCStar : forall bs bs1 bs2 e,

is_code_of bs1 e ->

nocode_for bs2 (e ^*) ->

bs = O :: bs1 ++ bs2 ->

nocode_for bs (e ^*)

| NCStar1 : forall bs e,

nocode_for bs e ->

nocode_for (O :: bs) (e ^*).

(** some code omitted *)

Constructor NCEmpty specifies that there is no code for the empty set RE, ##0. For
choice REs, we have several cases to cover. Constructor NCChoicenil specifies that
the empty list is not a valid code for any choice RE. Constructor NCLBase (NCRBase)
specifies that if a list isn’t a valid code for a RE e (e') it cannot be used to form
a valid code for e :+: e'. In order to build a proof that some bit list isn’t a valid
code for a concatenation RE, we just need to prove that it is not a code for some of
its subexpressions. Finally, for the Kleene star, we have some cases to cover: first,
constructor NCStarnil shows that the empty list cannot be a code for any star RE. For
non-empty bit-lists, it is just necessary to show that some part of the bit list isn’t a code
either for e or e ^*.

Using predicate nocode_for we can define a type for invalid bit-codes:
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Definition invalid_code bs e :=

nocode_for bs e \/ exists t b1 bs1, bs = (code t) ++ (b1 :: bs1).

which basically says that a bit list is an invalid code for a RE e when either we can
construct a proof of nocode_for or we can parse a prefix of it into a valid tree but it
leaves a non-empty bit list as a remaining suffix. Using this infrastructure, we can define
the decode function with the following type:

Definition decode e bs :

{t | bs = code t /\ is_tree_of t e} + {invalid_code bs e}.

Note that the previous type denotes the correctness property of a decode function: either
it returns a valid tree for the input RE that can be converted into the input bit list or
a proof that such bit list isn’t a valid code for the input RE.

Formalizing the proposed semantics and its interpreter Our big-step semantics defi-
nition consists of the Coq representation of the judgment in Figure 3.3, which is presented
below.

Inductive in_regex_p : string -> regex ->

string -> string -> Prop :=

| InEpsP

: forall s, s <$- #1 ; "" ; s

| InChrP

: forall a s,

(String a s) <$- ($ a) ; (String a "") ; s

| InLeftP

: forall s s' e e',

(s ++ s') <$- e ; s ; s' ->

(s ++ s') <$- (e :+: e') ; s ; s'

| InCatP : forall s s' s'' e e',

(s ++ s' ++ s'') <$- e ; s ; (s' ++ s'') ->

(s' ++ s'') <$- e' ; s' ; s'' ->

(s ++ s' ++ s'') <$- (e @ e') ; (s ++ s') ; s''

| InStarRightP : forall s1 s2 s3 e,

s1 <> "" ->

(s1 ++ s2 ++ s3) <$- e ; s1 ; (s2 ++ s3) ->

(s2 ++ s3) <$- (Star e) ; s2 ; s3 ->

(s1 ++ s2 ++ s3) <$- (Star e) ; (s1 ++ s2) ; s3

where "s '<$-' e ';' s1 ';' s2" := (in_regex_p s e s1 s2).

(** some code omitted *)

In order to ease the task of writing types involving in_regex_p, we define the fol-
lowing notation s <$- e ; s1 ; s2$ for in_regex_p s e s1 s2. The meaning of
in_regex_p is the same as the rules of our semantics in Figure 3.3 and we omit re-
dundant explanations for brevity.
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The soundness and completeness theorems of the big-step semantics are stated below.
Both are proved by induction on the complexity of the pair (e, s).

Theorem in_regex_p_complete :

forall e s, s <<- e -> forall s', (s ++ s') <$- e ; s ; s'.

Theorem in_regex_p_sound :

forall e s s1 s', s <$- e ; s1 ; s' ->

s = s1 ++ s' /\ s1 <<- e.

The completeness express that if an string s is in the language of RE e, i.e. s <<- e,
then our semantics can parse the string s ++ s', for any string s'. Soundness theorem
says that whenever we have a derivation s <$- e ; s1 ; s', then we have that the
input string s should be equal to the concatenation of the parsed prefix (s1) and the
remainder (s'), i.e. s = s1 ++ s', and the parsed prefix should be in e’s language
(s1 <<- e).

After a proper definition of our semantics, we developed a formalized interpreter for
it. First, we need to define a type to store the intermediate results of the VM. We call
this type result and its definition is shown below.

Record result : Set

:= Result {

bitcode : code

; consumed : string

; remaining : string

}.

Type result has an obvious meaning: it stores the computed bit-coded parse tree,
the consumed prefix of the input string and its remaining suffix. Using type result, we
can define the specification of our interpreter as:

Definition interp : forall e s,

{{r | exists e', unproblematic e' /\ e === e' /\

s = consumed r ++ remaining r /\

(consumed r ++ remaining r) <$- e' ;consumed r ; remaining r /\

(bitcode r) :# e'}}.

Function interp is defined as follows: first it converts the input RE into an equivalent
unproblematic one and then proceed to parse the input string by well-founded recur-
sion on the complexity of the pair (e, s). In its definition, we follow the same pattern
used before: the computational content is specified using tactic refine to mark proof
positions using holes that are filled later by tactics.

Extracting a certified implementation In order to obtain a certified Haskell imple-
mentation from our VM-based algorithm, we use Coq support for extraction, which has
several pre-defined settings for using data-types and functions of Haskell’s Prelude4.

4Prelude is the name of the Haskell library automatically loaded in any Haskell module [29].
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The extracted Haskell code for our VM interpreter has 259 lines. In order to use the
algorithm, we build a grep-like command line tool, which is available at project’s online
repository [13].

3.2.4. Experimental Results

We use the formalized algorithm to build a Haskell tool for RE parsing and compare its
performance against the library regex-applicative [9], a RE matching/parsing optimized
library for Haskell. We chose it is because it allows us to build bit-coded parse trees
using its applicative interface [39], enabling a more fair comparison with our algorithm.
We ran our experiments on a machine with a Intel Core I7 1.7 GHz, 8GB RAM running
Mac OS X 10.14.2; the results were collected and the average of several test runs were
computed. In order to allow reproducibility, the on-line repository contains a Haskell
program that automates the task of running the experiments to produce the graphs
presented next.

Also, we would like to emphasize that the intent of these experiments is not to con-
clude that the proposed algorithm is more (less) efficient than the chosen library for
RE parsing. Our main objective is to show that a fully verified algorithm can have a
performance comparable to an optimized library to the same task.

The first experiment consists in parsing strings formed by a’s by RE (a + b + ab)?

and the second with strings formed by ab’s (examples taken from [50]). The results are
presented in Figures 3.4 and 3.5.

Figure 3.4.: Results of experiment 1. Figure 3.5.: Results of experiment 2.

When compared with regex-applicative, our tool exhibits a bad performance in this
test (around 2 to 3 times slower than regex-applicative). The main reason for such
behavior can be explained by the implementation details of regex-applicative, which
internally compiles a RE to a NFA to parse the input string. Since the RE used in this
test is short, converting it into a NFA does not influence in the library execution time.

Another experiment considered was to parse strings an by the RE (a+ ε)nan, in which
an denotes n > 0 copies of a. Such RE pose a chalenge to RE parsing algorithms
since they need to simulate the traversal of 2n paths, by backtracking, before finding
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a match [42]. The results of executing this experiments on increasing values of n is
presented below.

Figure 3.6.: Results of experiment 3.
Figure 3.7.: Results of experiment 3

considering only the VM.

In this example, our approach has a much better performance than regex-applicative,
which exhibits an exponential behavior (also known as catastrophic backtracking [30]).
Such bad behavior on large REs can be explained by the NFA-based parsing algorithm
used by regex-applicative library. Notice that our VM-based algorithm shows a linear
performance on such problematic inputs, as presented in Figure 3.7.

The last experiment considered is to test how both approaches perform on random
generated REs and random accepted strings for them. In order to perform such test,
we use Haskell library QuickCheck [11]. The experiment consists in collecting the result
of running both semantic on thousands of input pairs formed by a RE and strings.
The average of such executions is presented in the Figure 3.8, which shows that both
algorithms exhibit a linear behavior on random inputs.

A few words should be written about how we generate random inputs 5. Generation
of random RE is done by function sizedRegex with takes a depth limit to restrict the
size of the generated RE. Whenever the input depth limit is less or equal to 1, we can
only build a ε or a single character RE. The definition of sizedRegex uses QuickCheck
function frequency, which receives a list of pairs formed by a weight and a random
generator and produces, as result, a generator which uses such frequency distribution.
In sizedRegex implementation we give a higher weight to generate characters and equal
distributions to build concatenation, union or star.

sizedRegex :: Int -> Gen Regex

sizedRegex n

| n <= 1 = frequency [ (10, return Eps), (90, Chr <$> genChar) ]

| otherwise = frequency [ (10, return Epsilon), (30, Chr <$> genChar)

, (20, Cat <$> sizedRegex n2 <*> sizedRegex n2)

5We assume that the reader has some acquaintance with Haskell programming language and its library
for property based testing, QuickCheck. Good introductions to Haskell are available elsewhere [34].
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Figure 3.8.: Results of experiment 4.

, (20, Choice <$> sizedRegex n2 <*> sizedRegex n2)

, (20, Star <$> sizedRegex n2)]

where n2 = div n 2

Given an RE e, we can generate a random string s such that s ∈ JeK using the next
definition. We generate strings by choosing randomly between branches of a union or
by repeating n times a string s which is accepted by e, whenever we have e? (function
randomMatches).

randomMatch :: Regex -> Gen String

randomMatch Eps = return ""

randomMatch (Chr c) = return [c]

randomMatch (Cat e e') = liftM2 (++) (randomMatch e)

(randomMatch e')

randomMatch (Choice e e') = oneof [ randomMatch e, randomMatch e' ]

randomMatch (Star e) = do

n <- choose (0,3) :: Gen Int

randomMatches n e

randomMatches :: Int -> Regex -> Gen String

randomMatches m e'

| m <= 0 = return []

| otherwise = liftM2 (++) (randomMatch e')

(randomMatches (m - 1) e')
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A new technique for constructing a finite deterministic automaton from a RE was pre-
sented by Asperti et al. in [3]. It’s based on the idea of marking a suitable set of
positions inside the RE, intuitively representing the possible points reached after the
processing of an initial prefix of the input string. In other words, the points mark po-
sitions inside the RE which have been reached after reading some prefix of the input
string, or better positions where the processing of remaining string has to be started.
Each pointed expression for a RE e represents a state of the deterministic automaton
associated with e; since there is obviously only a finite number of possible labellings,
the number of states of the automaton is finite. The authors argued that Pointed REs
join the elegance and the symbolic appealingness of Brzozowski’s derivatives with the
effectiveness of McNaughton and Yamada’s labelling technique, essentially combining
the best of both approaches, allowing a direct, intuitive and easily verifiable construc-
tion of the deterministic automaton for e. The authors said that pointed expressions
can provide a more compact description for RLs than traditional REs. However, the
authors do not discuss the usage of pointed REs for parsing or matching.

Brüggemann-Klein [8] showed that the Glushkov automaton can be constructed in
a quadratic time in the size of a RE, and that this is worst-case optimal and output
sensitive. For deterministic REs, her algorithm has even linear run time. This improves
on the cubic methods suggested in the literature. Although her paper was focused on
time complexity, the author stated - based on one of her references - that strong unam-
biguity of REs can be reduced in linear time to unambiguity of ε-NFA’s via Thompson’s
construction, which is the one we based to do this work.

The concept of prioritized transducers to formalize capturing groups in RE match-
ing was introduced by Berglund and Merwe [5]. Their main goal was to provide an
automaton-based theoretical foundation for the basic functionality of modern RE match-
ers (with focus on the Java RE standard library). Many RE matching libraries perform
matching as a way of parsing by using capturing groups, and thus output what subex-
pression matched which sub-string. Their approach permits an analysis of matching
semantic of a subset of REs supported in Java. According to the authors, converting
REs to what they called as prioritized transducers is a natural generalization of the
Thompson construction for REs to NFA.

A method of obtaining a ε-free automaton from RE is presented by Garćıa et al. [22].
In their proposal, the number of states of the obtained automaton is bounded above by
the size of both the partial derivatives (Antimirov) and the follow automata (Illie an
Yu [28]). Their algorithm also runs with the same time complexity of those methods.
Although they mentioned Thompson’s automaton as one of the first methods to do
the task of representing REs as automata, their work did not present any formal proof
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about the correctness of their proposed algorithm. Their main concern seemed to be the
efficiency of their algorithm, not its correctness.

Berry and Sethi [6] presented a study about two well-known algorithms for construct-
ing a finite automaton from a RE. Their main idea is to allow an elegant algorithm to
be refined into an efficient one. The elegant algorithm is based on ‘derivatives’ of REs;
the efficient one is based on ‘marking of’ REs. They showed proofs that it is possible
to move from the derivative approach to the marking one without losing the benefits of
both approaches. However, intersection and complement (which are additional opera-
tors for REs) cannot be handled because the marking and unmarking processes do not
preserve the languages generated by REs with these operators.

A formal constructive theory of RLs was presented by Doczkal et al. in [15]. They
formalized some fundamental results about RLs. For their formalization, they used
the SSReflect extension to Coq, which features an extensive library with support for
reasoning about finite structures such as finite types and finite graphs. They established
all of their results in about 1400 lines of Coq, half of which are specifications. Most
of their formalization deals with translations between different representations of RLs,
including REs, DFAs, minimal DFAs and NFAs. They formalized all these (and other)
representations and constructed computable conversions between them. Besides other
interesting aspects of their work, they proved the decidability of language equivalence
for all representations. Unlike our work, Doczkal et al.’s only concerns about formalizing
classical results of RL theory in Coq, without using the formalized automata in practical
applications, like matching or parsing.

Groz and Maneth [24] approached the efficiency of testing and matching of determinis-
tic REs. They presented a linear time algorithm for testing whether a RE is deterministic
and an efficient algorithm for matching words against deterministic REs. It was shown
that an input word of length n can be matched against a deterministic RE of length m
in time O(m + n log logm). If the deterministic RE has bounded depth of alternating
union and concatenation operators, then matching can be performed in time O(m+ n).
According to the authors, these results extend to REs containing numerical occurrence
indicators. The authors presented the concept of deterministic REs and the differences
between weak and strong determinism. Their paper contains some proofs, many of them
related to algorithmic running time. However, their approach was focused on perfor-
mance over deterministic REs, leaving aside the non-deterministic ones. We intend to
investigate time complexity of algorithm in future works.

Radanne and Thiemann [45] pointed that some of the algorithms for RE matching
are rather intricate and the natural question that arises is how to test these algorithms.
It is not too hard to come up with generators for strings that match a given RE, but
on the other hand, the algorithms should reject strings that do not match that RE. So
it is equally important to come up with strings that do not match. In other words,
a satisfactory solution for testing such matchers would require generating positive as
well as negative examples for some language. Thus, the authors presented an algorithm
to generate the language of a generalized RE with union, intersection and complement
operators. Using this technique, they could generate both positive and negative instances
of a RE. They provided two implementations: one in Haskell, which explores different

58



4. Related Works

algorithmic improvements, and one in OCaml, which evaluates choices in data structures.
Their algorithm lacks of correctness proofs.

Ilie and Yu [28] presented two algorithms for constructing non-deterministic finite
automata (NFA) from REs. The first one constructs NFAs with ε-transitions (ε-NFA),
which are smaller than all other ε-NFAs obtained by similar constructions. The sec-
ond one constructs NFAs by removing ε-elimination in ε-NFAs and builds a quotient of
the well-known position automaton with respect to the equivalence given by the follow
relation, named by the authors as follow automaton, which uses optimally the infor-
mation from positions of a RE. The authors compared follow automaton with the best
existing constructions in their time (position, partial derivative, and common follow sets
automata) and concluded that their follow automaton has interesting properties: it is
always a quotient of the position automaton, it is very easy to compute and it is at
least as small as all the other similarly constructed automata in most cases. Among the
several problems pointed by the authors that should be investigated further, it should
be done a more rigorous comparison between the follow automaton and common follow
sets or partial derivative automaton. According to the authors, “probably the only way
to decide which one is better is by testing all of them in real-life applications”.

Spivey approached the theme of parser combinators in [49]. The main idea is that
a parser of phrases of a type α is a function that takes an input string and produces
results (x, rest) in which x is a value of type α and rest is the remainder of the input
after the phrase with value x has been consumed. The results are often arranged into
a list, because this allows a parser to signal failure with the empty list of results, an
unambiguous success with one result, or multiple possibilities with a longer ‘list of suc-
cesses’ 1. Producing a list of results naturally leads to backtracking parsers that can be
exponentially slow, so it is preferable when possible to replace the type List by a differ-
ent parser type, known in Haskell as type Maybe. The use of this parser type reduces
the amount of fruitless searching and permits the record of choices made in recognizing
a phrase to be discarded as soon as one of the choices succeeds. In an unambiguous
grammar, an input string will either fail to be in the language or will have exactly one
derivation tree. The author says that a parser works correctly if it has type List and it
returns [ ] and [(x, “ ”)] or if it has type Maybe and returns Nothing and Just(x, “ ”) in
both cases. According to the author, both List and Maybe types work correctly for any
grammar that has no left recursion. On the other hand, grammars that are LL(1) can be
parsed with no backtracking at all and both types of parsers work correctly. The result
reported in Spivey’s paper is that it is not decidable whether a Maybe-based parser will
continue to work correctly for cases in which the grammars ‘are not quite LL(1)’.

The main goal of Medeiros et al. [37] is to present a new formalization of REs via
transformation to PEGs and to show that their formalization accommodates some of
regex 2 extensions. They present formalizations of both REs and PEGs in the framework
of natural semantics and use these to show the similarities and differences between REs

1We will call this approach as type List
2Regexes add several ad-hoc extensions to REs. They may look like REs, but can have syntactical

and semantical extensions that are difficult - or impossible - to express through pure REs.
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and PEGs. Then, they define a transformation that converts a RE to a PEG and
prove its correctness. Finally, they show how this transformation can be adapted to
accommodate some regex extensions. One of many interesting points of their work is
that they also show how to obtain a well-formed 3 RE that recognizes the same language
as non-well-formed REs (details in Subsection 3.2.1).

Ierusalimschy [27] proposed the use of Parsing Expression Grammars (PEGs) as a
basis for pattern matching. He argued that pure REs have proven to be a too weak
formalism for that task: many interesting patterns either are difficult to describe or
cannot be described by REs. He also said that the inherent non-determinism of REs
does not fit the need to capture specific parts of a match. Following this proposal, he
presented LPEG, a pattern-matching tool based on PEGs for the Lua scripting language.
He argued that LPEG unifies the ease of use of pattern-matching tools with the full
expressive power of PEGs. He also presented a parsing machine (PM) that allows an
implementation of PEGs for pattern matching. The author presented no proofs of the
PM’s correctness. Besides, there is no guarantee that his LPEG implementation follows
his specification.

However, Medeiros and Ierusalimschy [40] presented a new approach for implementing
PEGs, based on a virtual parsing machine (VM). Each PEG has a corresponding program
that is executed by the parsing machine, and new programs are dynamically created
and composed. They gave an operational semantics of PEGs used for pattern matching,
then described their parsing machine and its semantics. They showed how to transform
PEGs to parsing machine programs, and gave a correctness proof of their compiler
transformation. This work is more similar to ours, once that we also intend to develop
a VM for parsing and prove its correctness. However, the proofs presented by those
authors were not verified by a proof assistant. They said that the execution model
of their machine cannot handle infinite loops. Furthermore, the “star” operator for
PEGs has a greedy semantics which differs from the conventional RE semantics for this
operator.

Rathnayake and Thielecke [46] formalized a VM implementation for RE matching
using operational semantics. Specifically, they derived a series of abstract machines,
moving from the abstract definition of matching to realistic machines. First, a contin-
uation is added to the operational semantics to describe what remains to be matched
after the current expression. Next, they represented the expression as a data structure
using pointers, which enables redundant searches to be eliminated via testing for pointer
equality. Although their work has some similarities with ours (a VM-based RE parsing
algorithm), they did not present any evidence or proofs that their VM is correct.

Fischer, Huch and Wilke [19] developed a Haskell program for matching REs. The
program is purely functional and it is overloaded over arbitrary semirings, which solves
the matching problem and supports other applications like computing leftmost longest
matchings or the number of matchings. Their program can also be used for parsing
every context-free language by taking advantage of laziness. Their developed program
is based on an old technique to turn REs into finite automata, which makes it efficient

3A RE e that has a subexpression e∗i where ei can match the empty string is not well-formed.
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compared to other similar approaches. One advantage of their implementation over our
proposal is that their approach works with context-free languages, not only with REs
purely. However, they did not present any correctness proof of their Haskell code.

Cox [12] said that viewing RE matching as executing a special machine makes it possi-
ble to add new features just by the inclusion of new machine instructions. He presented
two different ways to implement a VM that executes a RE that has been compiled into
byte-codes: a recursive and a non-recursive backtracking implementation, both in C
programming language. Cox’s work on VM-based RE parsing is poorly specified: both
the VM semantics and the RE compilation process are described only informally and no
correctness guarantees are even mentioned.

Frisch and Cardelli [21] studied the theoretical problem of matching a flat sequence
against a type (RE): the result of the process is a structured value of a given type.
Their contributions were in noticing that: (1) A disambiguated result of parsing can
be presented as a data structure that does not contain ambiguities. (2) There are
problematic cases in parsing values of star types that need to be disambiguated. (3)
The disambiguation strategy used in XDuce and CDuce (two XML-oriented functional
languages) pattern matching can be characterized mathematically by what they call
greedy RE matching. (4) There is a linear time algorithm for the greedy matching. Their
approach is different since they want to axiomatize abstractly the disambiguation policy,
without providing an explicit matching algorithm. They identified three notions of
problematic words, REs, and values (which represent the ways to match words), related
these three notions, and proposed matching algorithms to deal with the problematic
case.

Ribeiro and Du Bois [47] described the formalization of a RE parsing algorithm that
produces a bit representation of its parse tree in the dependently typed language Agda.
The algorithm computes bit-codes using Brzozowski derivatives and they proved that
the produced codes are equivalent to parse trees ensuring soundness and completeness
with respect to an inductive RE semantics. They included the certified algorithm in a
tool developed by themselves, named verigrep, for RE-based search in the style of GNU
Grep. While the authors provided formal proofs, their tool showed a poor performance
when compared with other approaches to RE parsing.

Nielsen and Henglein [42] showed how to generate a compact bit-coded representa-
tion of a parse tree for a given RE efficiently, without explicitly constructing the parse
tree first, by simplifying the DFA-based parsing algorithm of Dubé and Feeley [16] to
emit a bit representation without explicitly materializing the parse tree itself. They also
showed that Frisch and Cardelli’s greedy RE parsing algorithm [21] can be straightfor-
wardly modified to produce bit codings directly. They implemented both solutions as
well as a backtracking parser and performed benchmark experiments to measure their
performance. They argued that bit codings are interesting in their own right since they
are typically not only smaller than the parse tree, but also smaller than the string being
parsed and can be combined with other techniques for improved text compression. As
others related works, the authors did not present a formal verification of their imple-
mentations.

A recent application of REs was presented by Radanne [44]. In many cases, the goal
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of a RE is not only to match a given text, but also to extract information from it. With
that in mind, the author presented a technique to provide type-safe extraction based
on the typed interpretation of REs. That technique relies on two-layer REs in which
the upper layer allows to compose and transform data in a well-typed way, while the
lower one is composed by untyped REs that can leverage features from a preexisting RE
matching engine. Results showed that this technique is faster than other two libraries
that perform the same task, despite its lack of efficiency when compared with some full
RE parsing algorithms. No formalization was provided in that work.

Sulzmann et al. [50] proposed an algorithm for POSIX RE parsing with uses RE
derivatives to construct parse trees incrementally to solve both matching and submatch-
ing for REs. In order to improve the efficiency of the proposed algorithm, Sulzmann
et al. used a bit encoded representation of RE parse trees. Ausaf et. al. [4] present a
Isabelle/HOL formalization of Sulzmann et. al POSIX parsing algorithm. They gave
their inductive definition of what a POSIX value is and showed that such a value is
unique for a given RE and a string being matched. We intend, as future work, to use a
similar inductive definition to characterize the disambiguation strategy followed by our
VM semantics.
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In this work, we developed a semantic characterization of a VM based algorithm for
RE parsing. For it, we proposed two operational semantics. The small-step operational
semantics contains more details about how a RE should be evaluated and produces bit-
codes as parsing evidence. A prototype for it was developed in Haskell and then we
submitted it to a property-based testing with QuickCheck. The results gave us a strong
evidences of the semantics’ correctness, although it could not deal with problematic REs.
Later, we presented an evolution of the small-step semantics - a big-step operational
semantics for the proposed algorithm, which also produces bit-codes. In order to avoid
the well-known problems with problematic REs, this time we used an algorithm that
converts a problematic RE into an equivalent non-problematic one. All theoretical results
reported for the big step semantics are integrally verified using Coq proof assistant. From
our formalization, we extract a Haskell implementation of our algorithm and used it to
build a tool for RE parsing, which has performance comparable to an optimized Haskell
library for RE parsing. The complete development is available at [13].

As future work, we intend to extend our semantics with some real-world regex features
like capture groups and quantifiers, while keeping an easy to follow formalization and
an efficient algorithmic interpreter for it. Another line of research we intend to pursue
is to formalize that the proposed semantics follows a disambiguation strategy and to
investigate the time complexity of our algorithm.
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expressions to smaller NFAs. Theoretical Computer Science, 412(41):5802–5807,
2011.

65



Bibliography

[23] Andy Gill and Colin Runciman. Haskell program coverage. In Proceedings of the
ACM SIGPLAN Workshop on Haskell Workshop, Haskell ’07, pages 1–12, New
York, NY, USA, 2007. ACM.

[24] B. Groz and S. Maneth. Efficient testing and matching of deterministic regular
expressions. Journal of Computer and System Sciences, 89:372–399, 2017.

[25] John E. Hopcroft, Rajeev Motwani, Rotwani, and Jeffrey D. Ullman. Introduc-
tion to Automata Theory, Languages and Computability. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2nd edition, 2000.

[26] Graham Hutton. Fold and Unfold for Program Semantics. In Proceedings of the 3rd
ACM SIGPLAN International Conference on Functional Programming, Baltimore,
Maryland, September 1998.

[27] Roberto Ierusalimschy. A Text Pattern-Matching Tool based on Parsing Expression
Grammars. Software - Practice and Experience, 2009.

[28] Lucian Ilie and Sheng Yu. Follow automata. Information and Computation,
186(1):140–162, 2003.

[29] Simon Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised Re-
port. http://haskell.org/, September 2002.

[30] James Kirrage, Asiri Rathnayake, and Hayo Thielecke. Static analysis for regu-
lar expression denial-of-service attacks. In Javier Lopez, Xinyi Huang, and Ravi
Sandhu, editors, Network and System Security, pages 135–148, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

[31] Donald E. Knuth. Top-down syntax analysis. Acta Inf., 1(2):79–110, June 1971.

[32] Jean-Louis Krivine. A call-by-name lambda-calculus machine. Higher Order Sym-
bol. Comput., 20(3):199–207, September 2007.

[33] P. J. Landin. The mechanical evaluation of expressions. The Computer Journal,
6(4):308–320, 1964.

[34] Miran Lipovaca. Learn You a Haskell for Great Good!: A Beginner’s Guide. No
Starch Press, San Francisco, CA, USA, 1st edition, 2011.

[35] Raul Lopes, Rodrigo Ribeiro, and Carlos Camarão. Certified derivative-based pars-
ing of regular expressions. In Programming Languages — Lecture Notes in Computer
Science 9889, pages 95–109. Springer, 2016.

[36] Raul Felipe Pimenta Lopes. Certified derivative-based parsing of regular expres-
sions. Master’s thesis, Federal University of Ouro Preto, Ouro Preto, MG, 2018.

[37] Fabio Mascarenhas and Roberto Ierusalimschy. From Regular Expressions to Pars-
ing Expression Grammars. Brazilian Symposium on Programming Languages, 2011.

66



Bibliography

[38] Conor McBride. Clowns to the left of me, jokers to the right (pearl): dissecting
data structures. In Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2008, San Francisco, California,
USA, January 7-12, 2008, pages 287–295, 2008.

[39] Conor Mcbride and Ross Paterson. Applicative programming with effects. J. Funct.
Program., 18(1):1–13, January 2008.

[40] Sérgio Medeiros and Roberto Ierusalimschy. A parsing machine for PEGs. Proceed-
ings of the 2008 symposium on Dynamic languages - DLS ’08, pages 1–12, 2008.

[41] Sérgio Medeiros, Fabio Mascarenhas, and Roberto Ierusalimschy. From regexes to
parsing expression grammars. Sci. Comput. Program., 93:3–18, November 2014.

[42] Lasse Nielsen and Fritz Henglein. Bit-coded regular expression parsing. In Adrian-
Horia Dediu, Shunsuke Inenaga, and Carlos Mart́ın-Vide, editors, Language and Au-
tomata Theory and Applications, pages 402–413, Berlin, Heidelberg, 2011. Springer
Berlin Heidelberg.

[43] Benjamin Pierce. Types and Programming Languages, volume 35. 2000.

[44] Gabriel Radanne. Typed parsing and unparsing for untyped regular expression en-
gines. In Proceedings of the 2019 ACM SIGPLAN Workshop on Partial Evaluation
and Program Manipulation, PEPM 2019, pages 35–46, New York, NY, USA, 2019.
ACM.

[45] Gabriel Radanne and Peter Thiemann. Regenerate: A Language Generator for
Extended Regular Expressions. working paper or preprint, May 2018.

[46] Asiri Rathnayake and Hayo Thielecke. Regular Expression Matching and Op-
erational Semantics. Electronic Proceedings in Theoretical Computer Science,
62(Sos):31–45, 2011.
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A. Correctness of the accept Function

Fisher et. al. [19] presents a simple and elegant function for parsing a string using a RE.
It relies on two auxiliary functions that break an input string into its parts. The first is
function split which decompose the input string in a prefix and a suffix.

split::[a ]→ [([a ], [a ])]
split [ ] = [([ ], [ ])]
split (c : cs) = ([ ], c : cs) : [(c : s1, s2) | (s1, s2)← split cs ]

Function split has the following correctness property.

Lemma 3. Let xs be an arbitrary list. For all ys, zs such that (ys, zs) ∈ split xs, we have
that xs ≡ ys ++ zs.

Proof. By induction on the structure of xs.

Function parts decomposes a string into a list of its parts. Such property is expressed
by the following lemma.

Lemma 4. Let xs be an arbitrary list. For all yss such that yss ∈ parts xs, we have that
concat yss ≡ xs.

Proof. By induction on the structure of xs.

Finally, function accept is defined by recursion on the input RE using functions parts
and split in the Kleene star and concatenation cases. The correctness of accept states
that it returns true only when the input string is in input RE’s language, as stated in
the next theorem.

Theorem 14. For all s and e, accept e s ≡ True if, and only if, s ∈ JeK.

Proof.

(→) : By induction on the structure of e using lemmas about parts and split.

(←) : By induction on the derivation of s ∈ JeK.
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