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The conventional chemical methods to produce graphene using strong oxidizing agents produce toxic gases during synthesis;
therefore, these methods do not meet the principles of green chemistry. In this work, an alternative top-down method for the
synthesis of a few layers of graphene sheets has been produced by a Fenton reaction- (a mixture of Fe2+/H2O2) assisted
exfoliation process in water using graphite flakes as a starting material. Based on X-ray diffraction data and Fourier transform
infrared (FTIR), Raman spectroscopy, and transmission electron microscopy measurements, it is proposed that the oxidation of
graphite by Fenton chemistry facilitates the exfoliation of graphene sheets under mild sonication. Subsequent chemical
reduction with ascorbic acid produced a few layers of reduced graphene oxide. Compared to Hummers’ method, the Fenton
reagent has similar exfoliation efficiency, but due to the Fenton reagent’s preference to react with the edges of graphite, the
chemical reduction can lead to the formation of less defective reduced graphene oxides. Moreover, since Fe and H2O2 are cheap
and environmentally innocuous, their use in large-scale graphene production is environmentally friendlier than conventional
methods that use toxic oxidizing agents.

1. Introduction

Graphene is a two-dimensional (2D) graphitic structure
which is the basic unit for making graphitic materials of other
dimensionalities such as 0D fullerene, 1D carbon nanotube,
or 3D graphite [1]. Because of its exceptional electronic, ther-
mal, and mechanical properties [2–4], graphene has been
investigated in several fields of science including catalysis

[5–7], adsorption [8–10], electrocatalysis [11, 12], energy
storage [13–15], and sensors [16, 17].

Graphene is commonly synthesized by top-downmethods
using graphite as a precursor [18–26]. By this method, graph-
ite is first converted into graphite oxide (GO) by strong oxi-
dizing agents. This is generally exemplified by Hummers’
method (a mixture of KMnO4, NaNO3, and H2SO4) [27] or
modified Hummers’ methods [28–31]. Dichromate and
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potassium chlorate in fuming nitric acid have also been used
as oxidizing agents to produce GO [32, 33]. Then, GO can be
converted into graphene oxide sheets by exfoliation and
subsequently into graphene by reduction treatment using
different methods such as thermal, chemical, or photocat-
alytic reduction [34–36].

The disadvantages of using conventional oxidizing agents
for chemical exfoliation of graphite by Hummers’method or
potassium chlorate is the generation of toxic gases such as
NO2, N2O4, and ClO2, which are profoundly harmful to the
environment; therefore, they are unsuitable for large-scale
green production of graphene. Recently, Agarwal et al. [37]
reported a promising approach to produce a few layers of
graphene by chemical exfoliation with Fenton chemistry.
However, the use of organic solvent in the exfoliation process
by sonication makes the process less green according to the
principles of green chemistry [38].

In this work, we report an alternative aqueous route to
prepare reduced graphene oxide (RGO) from graphite flakes
using the Fenton reaction (Fe2+/H2O2) as an oxidizing agent.
By this method, graphite is first oxidized by the Fenton
reagent to produce graphite oxide. Then, graphite oxide is
exfoliated by sonication and reduced by ascorbic acid to form
RGO. Although the liquid waste from this synthesis contains
H2SO4, the use of the Fenton reaction is attractive because
Fe and H2O2 are environmentally innocuous, H2O2 activa-
tion takes place at room temperature and under atmospheric
pressure, and the chemical reactions do not generate toxic
gases. Moreover, the standard reduction potential of the
•OH radicals (Eɵ = 2 80V) is higher than those of perman-
ganate (Eɵ = 1 51V) and dichromate (Eɵ = 1 33V), which
are the most commonly used oxidizing agents for this pur-
pose. Therefore, from a chemistry viewpoint, the graphene

sheets and their derivatives should also react with the
hydroxyl radicals generated by the Fenton reaction.

2. Materials and Methods

2.1. Material Synthesis. Graphite oxide was prepared from
expandable graphite (G), with an average flake size smaller
than 300μm, using a mixture of Fe2+/H2O2 as an oxidant.
In short, 0.2500 g of graphite was mixed with 10mL of
0.1M FeSO4⋅7H2O aqueous solution. Then, 1mL of 98%
H2SO4 was added to the Fe2+/graphite suspension, which
was kept in an ice bath under constant stirring for 12 h. Then,
1mL of 30% H2O2 aqueous solution was added over about
5 h with constant stirring at room temperature. The solid
was separated from the reaction mixture by filtration, washed
several times with deionized water and hot HCl/H2O2 to
remove residual ions, and dried at room temperature. This
sample was named GO(F). The resultant GO(F) was then
readily resuspended in deionized water and sonicated at
40°C for 2 h. Then, the obtained suspension was centrifuged
at 4000 rpm and the solid discarded to obtain a supernatant
with a few layers of graphene oxide. The well-dispersed
graphene oxide was finally reduced by ascorbic acid to form
a few layers of reduced graphene oxide (RGO(F)). Subse-
quently, the mixture was centrifuged at 4000 rpm for 30min
to obtain a stable dispersion of RGO(F). The low-density
material suspended at the top layer of the centrifuged solution
was collected for further characterization. By this method,
0.3822g of RGO(F) was produced from 0.2500g of graph-
ite. The steps for the RGO(F) preparation are shown in
Figure 1. For comparison, the same procedure was repeated
using Hummers’ method to obtain reduced graphene oxide.
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Figure 1: Steps for the preparation of a few layers of reduced graphene oxide from graphite flakes.
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Hummers’ method produced 0.3321 g of RGO(H) from
0.2500 g of graphite.

2.2. Materials Characterization. Powder X-ray diffraction
(XRD) measurements were carried out at room tempera-
ture using a Rigaku Geigerflex diffractometer equipped with
a graphite diffracted-beam monochromator. The data were
collected in a 2θ range of 10° to 70° using Cu-Kα radia-
tion (λ = 1 5418Å), with an acceleration voltage of 40 kV,
acceleration current of 20mA, and scan speed of 1°/min.
Fourier transform infrared (FTIR) spectra were obtained
with a Nicolet 360 FTIR spectrometer equipped with a
Smart OMNI sampler with a germanium crystal. Transmis-
sion electron microscopy (TEM) was performed on a JEOL
JEM-2100F field emission transmission electron micro-
scope with an accelerating voltage of 200 kV. The Raman
spectra were obtained with a Senterra Raman microscope

spectrometer (Bruker, HR800 Labram I, Horiba Jobin Yvon)
with an excitation wavelength of 633nm. The samples were
focused with a 100x lens, and the spectra were obtained using
a 20 s integration time, five coadditions, and 3.5 cm−1 resolu-
tion. To prevent heat-induced phase changes via the excita-
tion source while the Raman spectra were being collected, a
line focus was utilized producing a line shape for the excita-
tion source at the sample surface with a dimension of
25× 1000μm and using a laser power of 1mW. Thermogra-
vimetric analysis (TGA) was performed on a TG/DTA ther-
mogravimetric analyzer (PerkinElmer Thermal Analysis).

3. Results and Discussion

The powder X-ray diffraction patterns of G, GO, and RGO
synthesized by Fenton’s and Hummers’ methods are pre-
sented in Figure 2. The XRD data confirm the hexagonal
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Figure 2: Powder XRD patterns and expanded XRD region for the (002) crystallographic plane of G, GO, and RGO samples obtained by (a, b)
the Fenton method and (c, d) Hummers’ method.

3Journal of Nanomaterials



graphitic structure of the carbon materials according to the
JCPDS # 8-415 (Figures 2(a) and 2(c)). It is worth noting
that the XRD pattern of expandable graphite (G) exhibits a
(002) basal plane with d002 spacing at 0.335 and 0.340 nm
(Figure 2(b)), suggesting that the precursor had not
expanded efficiently. The XRD pattern of sample GO(F)
(Figures 2(a) and 2(b)) shows the 002 basal plane of graphite
similar to that of sample G, except for the higher relative
intensity ratio of d0 340/d0 335 for sample GO(F) (1.7) com-
pared to that of sample G (1.3), suggesting that the Fenton
oxidation caused some structural defects in the graphene
sheets of graphite [39–41]. Also, the oxidation of graphene
sheets led to the disappearance of the (100), (101), and
(110) planes in sample GO(F) due to the loss of sp2 carbon
rings caused by the functionalization of the graphene sheets
with oxygenated groups. The XRD pattern of sample RGO(F)
shows that the (002) basal plane of graphite has shifted to the
d-spacing value of 0.343 nm, while the (002) plane at d =
0 335 nm utterly disappeared, suggesting a loss of the
long-range order in graphene sheets due to the exfoliation
process [39–41]. Notoriously, the (100), (101), and (110)
planes were restored after the reduction of the oxidized gra-
phene sheets by ascorbic acid, suggesting that the sp2 carbon
rings have been restored. The XRD patterns of GO(H) and
RGO(H) obtained by Hummers’ method (Figures 2(c) and
2(d)) were quite similar to those obtained by the Fenton
method. The (002) basal plane of graphite had shifted to
a d spacing of 0.342 nm, which is close to the expansion
of the graphene sheets obtained with the Fenton method.

The functional groups generated by Fenton oxidation
of graphene sheets were evaluated by FTIR (Figure 3).
The broad bands in the range of 3600–3400 cm−1 are due to
the vibrations of water molecules. The bands at around

2995 cm−1 correspond to symmetric stretching vibrations
of -CH2. In the GO(F) and GO(H) sample, the band at
2870 cm−1 is due to antisymmetric stretching vibrations of
-CH2. Intense bands at 1660 and 1330 cm−1 are due to C=O
and C-O stretching vibrations of the -COOH groups. These
bands were more intense in the spectra of GO(F) and
GO(H) samples, suggesting that graphite oxide is highly oxi-
dized and consists mainly of -OH and other oxygenated
functional groups. The intensities of the C=O, C-O, and
-OH functional groups were greater in the GO(F) than in
the GO(H) sample, indicating that the Fenton reaction was
more effective in generating COOH and -OH in the graphene
sheets of graphite than Hummers’ reagent. Interestingly, the
intensities of the C=O and -OH bands decreased after chem-
ical reduction with ascorbic acid, indicating a partial removal
of those functional groups to restore the sp2 carbon rings.
Indeed, the reappearance of -CH2 groups at 2995 cm−1 in
the spectra of RGO(F) and RGO(H) confirms the restoration
of sp2 carbon in the graphene sheets. Based on that, it is sug-
gested that the C-O groups mainly occupy the basal planes
while the -COOH and -OH groups are mostly found at the
edges. Therefore, the C=O and -OH groups can be more eas-
ily reduced by ascorbic acid than the C-O groups.

The successful oxidation and exfoliation of graphite
oxide were further verified by Raman spectroscopy. The
Raman spectrum of carbon materials presents two main fea-
tures, theD band at approximately 1350 cm−1 and theG band
at around 1580 cm−1. The D band is due to defect-mediated
zone-edge phonons near the k point in the Brillouin zone,
and the G band is due to the first-order scattering of the
E2g phonon of sp2 C atoms. Thus, the intensity ratio of
the D and G bands (ID/IG ratio) can be used to estimate
the number of defects in carbon materials. For an increasing
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Figure 3: FTIR spectra of G, GO, and RGO samples obtained by (a) the Fenton method and (b) Hummers’ method.
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number of defects, sp2 domains (G band) become smaller,
and the intensity of the D band increases. Therefore, high
ID/IG ratio values indicate the high functionalization degree
of graphene sheets in carbon materials [42]. The Raman
spectra of samples G, GO(F), and RGO(F) are shown in
Figure 4(a). The spectra of all samples indicated two remark-
able bands at around 1336 and 1581 cm−1, which correspond
to theD andG bands, respectively. The ID/IG ratio for sample
G (Figure 4(a)) was 0.42, indicating that this graphite precur-
sor is highly defective. After the oxidation of graphite by
the Fenton reaction, the ID/IG ratio in sample GO increased
significantly to 0.64, suggesting the oxidation of graphene
sheets in the graphitic structure, as also verified by FTIR.
Hence, the Fenton chemistry can efficiently be used to
weaken the van der Waals interactions of graphene layers,
enabling the delamination of graphite by sonication. Indeed,
the exfoliation/reduction of graphite oxide restores the sp2

network of graphene sheets and decreases the ID/IG ratio to
0.21, suggesting that sample RGO(F) has less structural
defects than its precursors. Furthermore, the D′ band
(1623 cm−1), usually reported for disordered graphitic lattices
such as those introduced by heteroatoms, increases with the
oxidation treatment and decreases upon the exfoliation/re-
duction procedure, confirming that RGO(F) has less struc-
tural defects than the G and GO samples. The error for the
calculated ID/IG ratio is 0.05.

For comparison, the graphite flakes were previously
oxidized by Hummers’ method followed by ultrasonication
and reduction with ascorbic acid to produce reduced gra-
phene oxide. The Raman spectra (Figure 4(b)) showed
that the ID/IG intensity ratio of graphite oxidized (GO(H))
by Hummers’ reagent was 0.47 while that obtained after

Fenton oxidation was 0.64, suggesting that under the stud-
ied conditions the Fenton method was more efficient in
oxidizing graphite than Hummers’ method. After reduc-
tion, the ID/IG intensity ratio of RGO(H) decreased to
0.28, while the reduction of RGO obtained by the Fenton
method was 0.21. It has been demonstrated that the Fen-
ton reagent oxidizes the edges of graphite preferentially
[37], and therefore, the reduction of graphite obtained from
the Fenton route is more readily reduced than that obtained
by Hummers’ method.

Figures 5(a)–5(c) show the TEM images of samples G,
GO(F), and RGO(F). Figures 5(a)–5(c) show that all the
samples have the morphology of platelets. Figure 5(c) con-
firms that the Fenton oxidation favors the delamination of
graphene layers from graphite by mild ultrasound. The
EDX data for the RGO(F) (Figure 5(d)) present only signals
of C, O, S, and Cu. S is due to the ferrous sulfate, and Cu is
the support for the RGO. No signal of Fe was identified by
EDX, suggesting that HCl/H2O2 was efficient in completely
removing iron from the graphene sheets. HRTEM analysis
(Figure 5(e)) displays a close-to-ideal crystalline-reduced
graphene oxide that consists of 6 layers with a d 002 spacing
of 0.33 nm. It was noted from Figure 5(f) that the previ-
ous Fenton oxidation of a graphite precursor is essential
for obtaining a few layers of reduced graphene oxide. If the
Fenton oxidation of graphite is not previously performed,
an RGO with multiple layers is obtained. Figure 5(g) shows
the morphology of the RGO(H) obtained by Hummers’
method, which resulted in approximately 8 layers of
reduced graphene oxide (Figure 5(h)), suggesting that the
exfoliation by the Fenton method is comparable to that of
Hummers’ method.
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Figure 4: Raman spectra of samples G, GO, and RGO obtained by (a) the Fenton method and (b) Hummers’ method.
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The thermal stability of RGO obtained by Fenton’s
and Hummers’ method using thermogravimetric analysis
(TGA) is shown in Figure 6. For both samples, the small mass
loss around 100°C is due to the loss of adsorbed water.
RGO(F) shows a gradual mass loss from 400 to 800°C due
to the oxidation of carbon. For RGO(H), the mass loss takes
place from 700 to 800°C, indicating that RGO(H) is thermally
more stable than RGO(F) probably due to its higher number
of graphene layers. Also, at 800°C the mass loss achieved
100%, confirming that iron was removed entirely from the
graphene sheets in the RGO(F) sample.

4. Conclusions

A convenient method for producing a few layers of reduced
graphene oxide by the previous oxidation of graphite with a
Fenton reagent was demonstrated. The Fenton chemistry
takes advantage of the high oxidizing power of hydroxyl
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radicals, which can attack the graphene sheets of graphite,
thus favoring its exfoliation with ultrasound to obtain a few
layers of reduced graphene oxide. The efficiency of graphite
delamination was similar to that obtained with Hummers’
method, but because the Fenton chemistry oxidizes the
edges of graphite preferentially, further chemical reduction
with ascorbic acid leads to a synthesis of less defective
reduced graphene oxide. Also, the Fenton reagent is envi-
ronmentally friendlier than other conventional oxidizing
agents for this purpose, which makes this method more ade-
quate for large-scale use.
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