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Hierarchical image segmentation provides a region-oriented scale-space, i.e. a set of image

segmentations at di®erent detail levels in which the segmentations at ¯ner levels are nested with

respect to those at coarser levels. However, most image segmentation algorithms, among which

a graph-based image segmentation method relying on a region merging criterion was proposed
by Felzenszwalb–Huttenlocher in 2004, do not lead to a hierarchy. In order to cope with a

demand for hierarchical segmentation, Guimarães et al. proposed in 2012 a method for hier-

archizing the popular Felzenszwalb–Huttenlocher method, without providing an algorithm to

compute the proposed hierarchy. This paper is devoted to providing a series of algorithms to
compute the result of this hierarchical graph-based image segmentation method e±ciently,
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based mainly on two ideas: optimal dissimilarity measuring and incremental update of the

hierarchical structure. Experiments show that, for an image of size 321 � 481 pixels, the most

e±cient algorithm produces the result in half a second whereas the most naive one requires more

than 4 h.

Keywords : Image segmentation; hierarchical analysis; quasi-°at zone; incremental algorithm.

1. Introduction

A hierarchical image segmentation is a series of image segmentations at di®erent

detail levels where the segmentations at higher detail levels are produced by merging

regions from segmentations at ¯ner detail levels. Consequently, the regions at ¯ner

detail levels are nested in regions at coarser levels. The level of a segmentation in

a hierarchy is also called an observation scale. An example of hierarchical image

segmentation is illustrated in Fig. 1.

(a) (b)

(c)

Fig. 1. Illustration of a hierarchical image segmentation. (a) Original image; (b) Hierarchical segmen-

tation depicted as a saliency map; and (c) Some levels of this hierarchical segmentation.
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Hierarchical image segmentation provides a multi-scale approach to image

analysis. Hierarchical image analysis was pioneered by Ref. 23 and has received a lot

of attention since then, as attested by the popularity of Ref. 1. In Ref. 39, the global

information is used to create the initial regions and then the region merging process is

treated as a series of optimization problems. Mathematical morphology is also used

in hierarchical image analysis with, e.g. hierarchical watersheds in Refs. 2, 5, 18, 21

and 25, binary partition trees in Refs. 35 and 36, regular and irregular pyramids in

Ref. 17, scale-set theory in Ref. 10, quasi-°at zones hierarchies in Ref. 19, tree-based

shape spaces in Ref. 41. Other methods for hierarchical image segmentation consider

multiscale combinatorial grouping and region merging procedures in Ref. 29 and in

Refs. 26, 34 and 43, respectively. Hierarchical image analysis has been used in

computer vision to solve practical problems such as occlusion boundary detection

in Ref. 16, image simpli¯cation in Refs. 10, 26 and 38, object proposal in Ref. 29,

visual saliency estimation in Ref. 42, attribute pro¯le for image classi¯cation

in Ref. 28.

According to Guigues et al., a hierarchy should satisfy two important principles.

First, the causality principle which states that a contour present at an observation

scale k1 should also be present at any scale k2, such that k2 < k1. Second, the location

principle which states that contours should neither move nor deform from one

observation scale to another.10 Any hierarchy should comply with these principles for

multi-scale analysis.

In Ref. 13 (see Ref. 11 for its preliminary version), the quasi-°at zone hierarchy is

used to perform a hierarchical image segmentation. This work relies on the graph-

based (GB) image segmentation algorithm proposed in Ref. 8. The GB algorithm

uses a merging predicate to decide if, at a certain scale parameter, two adjacent

regions of an image should be merged into a single one, and thus produces a seg-

mented image. In its original form, the algorithm does not directly lead to a hier-

archical image segmentation. This is con¯rmed in Ref. 13, the original GB algorithm

does not comply with the causality and location principles;8 ¯rst, when increasing the

scale parameter it produces a larger number of regions and thus violates the causality

principle; second, it was also observed that the contours may deform as the scale

parameter varies and thus violate the location principle. This motivated Guimarães
et al. to formulate a dissimilarity measure based on the GB region merging predi-

cate.13 Based on this dissimilarity criterion and on the notion of a quasi-°at zones

hierarchy, Guimarães et al. have provided a hierarchical graph-based (HGB) image

segmentation method in Ref. 13.

Assessing the quality of the results of hierarchical segmentation methods is a

di±cult task (see Refs. 25, 27, 30, 31, 32 and 33) and it is assessed in Ref. 13 that the

HGB method produces satisfactory results. Nonetheless, a practical algorithm to

compute e±ciently results of the HGB method is not provided in Ref. 13. The core of

the HGB method is based on solving a minimization problem whose solution is the

minimum observation scale at which adjacent regions in the image have to be
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merged. To solve this minimization, the naive method consists of considering all

positive real values to ¯nd such minimum observation scale.

In this paper, we study the HGB method focusing on two problems that make

di±cult its implementation. A ¯rst di±culty is related to solving the minimization

problem involved in the HGB method for which no e±cient algorithmic solution is

given in Ref. 13. We analyze this minimization process and propose three algorithms

that solve it. The ¯rst one solves the minimization by searching the result in a

su±ciently large space of possible values. We then reduce this search space to avoid

redundant computations, leading to two e±cient algorithms. The second problem is

related to the quasi-°at zone computation. One approach can be to use an e±cient

algorithm, as the one proposed in Ref. 20, to compute it at every iteration of the HGB

method. However, e±ciency can be improved by only updating at each iteration the

existing quasi-°at zone hierarchy instead of recomputing it from scratch. This is done

with a procedure similar to the one proposed in Refs. 15 and 40. Overall, the most

e±cient proposed algorithm computes the result of HGB method for an image of size

321 � 481 pixels in about half a second whereas it takes over 4 h with the most naive

algorithm.

This article is an extension of the conference article presented in Ref. 4 that

proposes a series of algorithms to compute the HGB method. The new contributions

of this article are: introducing a general framework for solving the minimization

involved in the HGB method, giving the proofs of all the properties that were used in

Ref. 4, analysing the algorithm complexity for each of the algorithms and showing

more experimental results concerning the execution time on a full dataset.

The remainder of this paper is organized as follows. Section 2 gives us the basic

notions for hierarchical graph-based image segmentation and, based on these

notions, also introduces the HGB method. Section 3 discusses the implementation of

the HGB method and presents the algorithms to solve the minimization problem

involved in the HGB method and the quasi-°at zone computation. Section 4 assesses

the e±ciency comparison of all the algorithms presented in Sec. 3 measuring their

execution times. Section 5 concludes the paper and also gives ideas about future

research directions.

2. Hierarchical Graph-Based Image Segmentation

This section aims at explaining the method of HGB image segmentation presented in

Ref. 11. The hierarchy is constructed from an image via a graph representation,

based on the notion of a quasi-°at zone hierarchy.19 We ¯rst give a series of necessary

notions, quasi-°at zones hierarchies, and then explain the HGB method.

2.1. Basic notions

2.1.1. Hierarchies

Given a ¯nite set V , a partition of V is a set P of nonempty disjoint subsets of

V whose union is V . Any element of P is called a region of P. Given two partitions

E. C. Cahuina et al.
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P and P 0 of V , P 0 is said to be a re¯nement of P, denoted by P 0 ¹P, if any region of

P 0 is included in a region of P. A hierarchy on V is a sequence H ¼ ðP0; . . . ;P‘Þ of
partitions of V , such that Pi�1 ¹Pi, for any i 2 f1; . . . ; ‘g.

2.1.2. Graph and connected-component partition

A graph is a pair G ¼ ðV ;EÞ where V is a ¯nite set and E is a subset of

ffx; yg � V jx 6¼ yg. Each element of V is called a vertex of G, and each element of E

is called an edge of G. A subgraph of G is a graph ðV 0;E 0Þ such that V 0 � V and

E 0 � E. If X is a graph, its vertex and edge sets are denoted by V ðXÞ and EðXÞ,
respectively.

Let x and y be two vertices of a graph G. A path from x to y in G is a sequence

ðx0; . . . ;xmÞ of vertices of G such that x0 ¼ x, xm ¼ y and fxi�1;xig is an edge of G

for any i in f1; . . . ;mg. The graph G is connected if, for any vertices x and y of G,

there exists a path from x to y. Let A be a subset of V ðGÞ. The graph induced by A

in G is the graph whose vertex set is A and whose edge set contains any edge of G

made of two elements in A. If the graph induced by A is connected, then we say that

A is connected. The subset A of V ðGÞ is a connected component ofG if it is connected

for G and maximal for this property. Y of V ðGÞ, if Y is a connected superset of X,

then Y ¼ X. We denote byCðGÞ the set of all connected components ofG. Note that

CðGÞ is a partition of V ðGÞ, which is called the connected-component partition

induced by G.

2.1.3. Quasi-°at zone hierarchies

Given a graph G ¼ ðV ;EÞ, let w be a map from E into the set R of real numbers. For

any edge u ofG, the value wðuÞ is called the weight of u (for w), and the pair ðG;wÞ is
called an edge-weighted graph. We now explain how to make from an edge-weighted

graph a series of connected-component partitions, which constitutes a hierarchy.

Such a hierarchy is called a quasi-°at zone hierarchy of ðG;wÞ and the quasi-°at zone

hierachy transform is a bijection beetween the hierarchies and a subset of the edge

weighted graphs (called the saliency maps). Hence, any edge-weighted graph induces

a quasi-°at zone hierarchy and any hierarchy H can be represented by an edge-

weighted graph whose quasi-°at zone hierarchy is precisely H (see Ref. 6 for more

details). This bijection indeed allows us to handle quasi-zone hierarchies through

edge-weighted graphs. In other words, when an edge-weighted graph is created from

an input image, the bijection signi¯es that this initial graph already possesses a

quasi-°at zone hierarchy and that the procedure of hierarchical image segmentation

can be interpreted as a modi¯cation of the initial hierarchical structure by changing

edge weights on the graph.

Given an edge-weighted graph ðG;wÞ, let X be a subgraph of G and let � be a

value of R. The �-level edge set of X for w is de¯ned by

w�ðXÞ ¼ fu 2 EðXÞjwðuÞ < �g; ð1Þ

E±cient Algorithms for Hierarchical Graph-Based Segmentation
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and the �-level graph of X for w is de¯ned as the subgraph wV
� ðXÞ of X, such that

wV
� ðXÞ ¼ ðV ðXÞ;w�ðXÞÞ: ð2Þ

Then, the connected-component partitionCðwV
� ðXÞÞ induced by wV

� ðXÞ is called the

�-level partition of X for w.

As we consider only ¯nite graphs and hierarchies, the set of considered level values

is reduced to a ¯nite subset of R that is denoted by E in the remaining parts of this

article. In order to browse the values of this set and to round real values to values

of E, we de¯ne, for any � 2 R:

pEð�Þ ¼ maxf� 2 E [ f�1gj� < �g;
nEð�Þ ¼ minf� 2 E [ f1gj� > �g and

n̂Eð�Þ ¼ minf� 2 E [ f1gj� � �g:

Let ðG;wÞ be an edge-weighted graph and let X be a subgraph of G. The se-

quence, denoted by QFZðX;wÞ, of all �-level partitions of X for w ordered by

increasing value of �, namely,

QFZðX;wÞ ¼ ðCðwV
� ðXÞÞj� 2 E [ f1gÞ; ð3Þ

is a hierarchy, called the quasi-°at zone hierarchy of X for w. Let H be the quasi-°at

zone hierarchy of G for w. Given a vertex x of G and a value � in E, the region that

contains x in the �-level partition of the graph G is denoted by H�
x.

Important notations and remarks. In the remaining parts of this paper, the

symbol G denotes a connected graph, the symbol w denotes a map from E into R,

and the symbol T denotes a minimum spanning tree of ðG;wÞ. It has been shown in

Ref. 6 that the quasi-°at zone hierarchy QFZðT ;wÞ of T for w is the same as the

quasi-°at zone hierarchy QFZðG;wÞ of G for w. This indicates that the quasi-°at

zone hierarchy for G can be handled by its minimum spanning tree.

2.2. Hierarchical graph-based segmentation method

In this paper, we consider that the input is the edge-weighted graph ðG;wÞ repre-
senting an image, where the pixels correspond to the vertices of G and the edges link

adjacent pixels. The weight of each edge is given by a dissimilarity measure between

the linked pixels such as the absolute di®erence of intensity between them.

Before explaining HGB method, we ¯rst describe the following observation scale

dissimilarity de¯ned in Ref. 13, which is required by the method and whose idea

originates from the region merging criterion proposed in Ref. 8.

2.2.1. Observation scale dissimilarity

As mentioned above, the graph-based hierarchical image segmentation method is

based on the idea of renewing graph-edge weights, and this renewal is made

E. C. Cahuina et al.
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depending on the following region dissimilarity. Indeed, with the Felzenszwalb–

Huttenlocher image segmentation algorithm de¯ned in Ref. 8, two regions of an

image are merged based on a region merging predicate. This predicate was later

reformulated as an observation scale dissimilarity measure to produce the hierar-

chical segmentation of an image as follows.

Let R1 and R2 be two adjacent regions, the dissimilarity measure compares the so-

called inter-component and within-component di®erences.8 The inter-component

di®erence between R1 and R2 is de¯ned by

�interðR1;R2Þ ¼ minfwðfx; ygÞjx 2 R1; y 2 R2; fx; yg 2 EðT Þg;

while the within-component di®erence of a region R is de¯ned by

�intraðRÞ ¼ maxfwðfx; ygÞjx; y 2 R; fx; yg 2 EðT Þg:

It leads to the observation scale of R1 relative to R2, de¯ned by

SR2
ðR1Þ ¼ ð�interðR1;R2Þ ��intraðR1ÞÞjR1j;

where jR1j is the cardinality of R1. Then, a symmetric metric between R1 and R2,

called the observation scale dissimilarity between R1 and R2, is de¯ned by

DðR1;R2Þ ¼ maxfSR2
ðR1Þ;SR1

ðR2Þg: ð4Þ

This dissimilarity is used to determine if two regions should be merged or not at a

certain observation scale in the following.

2.2.2. HGB method

The HGB method is presented in Method 1. The input is an image represented by a

graph G with its associated weight function w, where the minimum spanning tree T

of G is taken indeed. From ðT ;wÞ, HGB method computes a new weight function f

which leads to a new hierarchy H ¼ QFZðT ; fÞ. The resulting hierarchy H is con-

sidered as the hierarchical image segmentations of the initial image. Thus, the core of

the method is the generation of the weight function f for T .

Method 1. HGB method
Input : A minimum spanning tree T of an edge-weighted graph (G, w)
Output: A hierarchy H = QFZ(T, f)

1 for each u ∈ E(T ) do f(u) := max{λ ∈ E} ;
2 for each u ∈ E(T ) in non-decreasing order for w do
3 H := QFZ(T, f) ;
4 f(u) := p

E
(λH(u)) ;

5 end
6 H := QFZ(T, f) ;

E±cient Algorithms for Hierarchical Graph-Based Segmentation
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To compute the new map f, the HGB method ¯rst initializes all values of f to

in¯nity (see Line 1). Then, an observation scale value fðuÞ is computed for each edge

u 2 EðT Þ in nondecreasing order with respect to the original weight w (see Line 2).

Note that, each iteration in the loop requires computing the hierarchy H ¼
QFZðT ; fÞ (see Line 2). Once H is obtained, the value �H

H of a ¯nite subset E of R is

obtained by the minimization:

�H
Hðfx; ygÞ ¼ min � 2 EjD H�

x;H�
y

� �
� �

� �
: ð5Þ

We ¯rst consider the regionsH�
x andH�

y at a level �. Using the dissimilarity measure

D, we check if DðH�
x;H�

yÞ � �. Equation (5) states that �H
Hðfx; ygÞ is the minimum

value � for which this assertion holds true. Observe that the minimization involved in

Eq. (5) has a solution only if the maximum of E is greater than the maximum possible

dissimilarity value. In the following, we assume that this assumption always holds

true. Figure 2 illustrates an example of application of Method 1.

It should be probably mentioned that the nonhierarchical method proposed by

Felzenswalb et al. guarantees to obtain partitions that are neither too ¯ne nor too

coarse for a given scale.8 On the other hand, the hierarchical method cannot provide

simultaneously both of similar properties that are extended to hierarchies.13 How-

ever, the later method allows us to ¯nd maximal not-too-coarse hierarchies (see

Ref. 13 for more details).

As mentioned above, Guimarães et al. did not provide a practically e±cient al-

gorithm to compute Method 1. In order to ¯ll this gap, the problem is twofold.

Indeed, it is necessary to propose e±cient (i.e. exact and fast) algorithms for (i)

solving the minimization involved in Eq. (5); and (ii) computing the quasi-°at zone

hierarchy QFZðT ; fÞ at each iteration of Method 1 (Lines 3 and 6).

(a) Input graph

(b) Initialization (c) Iteration 1

(d) Iteration 2 (e) Iteration 3

(f) Iteration 4 (g) Iteration 5

Fig. 2. Illustration of Method 1 with E ¼ f0; 1; . . . ; 9g: (a) the input graph ðT ;wÞ, (b–g) the graph ðT ; fÞ
at each iteration of Method 1 and (g) the resulting quasi-°at zone hierarchy corresponding to graph ðT ; fÞ.

E. C. Cahuina et al.
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3. Algorithms for HGB Method

In this section, we investigate algorithms to compute the results of HGB method.

After giving a naive algorithm in Sec. 3.1, we ¯rst introduce the common notions for

solving e±ciently the minimization involved at Line 4 of Method 1 in Sec. 3.2, and we

present two di®erent ideas to improve the naive algorithm in Secs. 3.3 and 3.4 using

the notions of Sec. 3.2. In Sec. 3.5, we present nonincremental and incremental

algorithms to obtain the quasi-°at zone hierarchy of a weight map as requested at

Lines 3 and 6 of Method 1.

3.1. Naive minimization algorithm

We ¯rst present a naive algorithm, namely Algorithm 1, to compute the

value �H
Hðfx; ygÞ given a hierarchy H and an edge fx; yg. According to Eq. (5), it

simply consists of considering the values of E in increasing order until ¯nding a

value � 2 E such that DðH�
x;H�

yÞ � �. We remark that, when E is a set of conse-

cutive integers, for any � in E, the result of nEð�Þ and pEð�Þ can be obtained with the

simple integer instruction �þ 1 and �� 1, respectively.

As said in Ref. 3, the size and the maximal edge-value of each region of H can be

computed on the °y at Line 3 of Method 1. Thus, once the regions H�
x and H�

y are

identi¯ed the dissimilarity between them can be computed in constant time. Fur-

thermore, if the hierarchy H is represented by its dendrogram, the regions H�
x

andH�
y can be obtained at each iteration of the main loop of Algorithm 1 in constant

time (more details about the implementation of such operation are provided in the

following Sec. 3.4). Therefore, the time complexity of Algorithm 1 is OðjEjÞ.

3.2. Stable intervals and stable partitions

In this section, we propose a general framework to solve e±ciently the minimization

problem presented in Eq. (5). To this end, we establish (Property 3) that on certain

subdomains, called stable intervals, the solution depends only on the bounds of the

subdomain instead of all of its elements, reducing the computation of the solution in

such subdomain to a constant number of operations instead of a number of opera-

tions which depends linearly on the size of the subdomain. Then, we state

Algorithm 1. HGB naive minimization of Eq. (5)
Input : A hierarchy H, an edge {x, y}
Output: The value λ such that λ = λH({x, y})

1 λ := min{λ ∈ E} ;
2 while D Hλ

x, Hλ
y > λ do

3 λ := nE (λ ) ;
4 end

E±cient Algorithms for Hierarchical Graph-Based Segmentation
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(Theorem 5) that the problem on the whole domain can be solved by considering any

partition of the domain into stable intervals and by solving the problem in each of

these stable intervals. This theorem is the fundamental result which allows us for

proposing e±cient minimization algorithms in Secs. 3.3 and 3.4. More precisely, in

these following sections, partitions of the domain in stable intervals that can be

handled e±ciently in a computerized procedure are presented.

Let �1 and �2 be any two real numbers in E [ f�1g such that �1 < �2. We

denote by ]�1; �2]E the subset of E that contains every element of E that is both

greater than �1 and not greater than �2:

]�1; �2]E ¼ f� 2 E j �1 < � � �2g: ð6Þ

We say that a subset I of E is an open-closed interval of E, or simply an interval, if

there exists two real values �1 and �2 such that I is equal to ]�1; �2]E.

De¯nition 1 (stable interval). Let f be any map from EðT Þ in E, let u ¼ fx; yg
be any edge in EðT Þ, and let I ¼ ]�1; �2]E be any interval. We say that I is a stable

interval for ðf;uÞ if, for any two values � and � 0 in I, the two following statements

hold true:

(1) the regions containing x in the �-level partition of ðT ; fÞ and in the � 0-level

partition of ðT ; fÞ are equal; and

(2) the regions containing y in the �-level partition of ðT ; fÞ and in the � 0-level

partition of ðT ; fÞ are equal.

In other words, the interval I ¼ ]�1; �2]E is a stable interval for ðf;uÞ if, for any
two values � and � 0 in I, we haveH�

x ¼ H� 0
x andH�

y ¼ H� 0
y , whereH is the quasi-°at

zone hierarchy of T for f. Hence, the following lemma can be straightforwardly

deduced from the de¯nition of the dissimilarity measure D.

Lemma 2. Let f be any map from EðT Þ in E and let H be the quasi-°at zone

hierarchy of T for f; let u ¼ fx; yg be any edge in EðT Þ; and let I ¼ ]�1; �2]E be a

stable interval for ðf;uÞ. Then; for any � in I; we have: DðH�
x;H�

yÞ ¼ DðH�2
x ;H�2

y Þ.

The following property ¯rst shows a necessary and su±cient condition on which

the minimization problem presented in Eq. (5) admits a solution when its domain of

de¯nition is restricted to a stable interval. Moreover, when the problem admits a

solution over a certain stable interval, the following property provides an expression

of this solution that depends only on the bounds of the considered stable interval.

Property 3. Let f be any map from EðT Þ in E, let H be the quasi-°at zone

hierarchy of T for f, let u ¼ fx; yg be any edge in EðT Þ, and let I ¼ ]�1; �2]E be a

stable interval for ðf;uÞ. Then, the two following statements hold true:

(1) The set f� 2 I j DðH�
x;H�

yÞ � �g is nonempty if and only if DðH�2
x ;H�2

y Þ is not
greater than �2 (i.e. DðH�2

x ;H�2
y Þ � �2Þ and

E. C. Cahuina et al.
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(2) if DðH�2
x ;H�2

y Þ � �2, then

minf� 2 I j DðH�
x;H�

yÞ � �g ¼ maxfnEð�1Þ; n̂EðDðH�2
x ;H�2

y ÞÞg: ð7Þ

Proof. In order to prove Property 3, we consider three distinct cases. For each of

these cases, we prove that f� 2 I j DðH�
x;H�

yÞ � �g is either empty or nonempty and

in the cases, where it is nonempty, we establish that Eq. (7) holds true. For each of

these three cases, the associated proofs are graphically illustrated in Fig. 3.

Fig. 3. Graphical illustrations for the proof of Property 3. The elements of E are represented by dots on
the horizontal axis of real values. The subdomain of E which contains every element � of I ¼ ]�1; �2]E
such that DðH�

x;H�
y Þ � � is represented by the gray zones and, when this subdomain is not empty, the

unique solution to minf� 2 I j DðH�
x;H�

y Þ � �g is indicated by the circled dot.

E±cient Algorithms for Hierarchical Graph-Based Segmentation

1940008-11

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
D

A
D

E
 F

E
D

E
R

A
L

 D
E

 O
U

R
O

 P
R

E
T

O
 o

n 
05

/1
7/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



(1) Let us ¯rst assume that DðH�2
x ;H�2

y Þ � �1. By Lemma 2, we deduce that, for

any � 2 ]�1; �2]E, we have DðH�
x;H�

yÞ � �1. Hence, for any � in I ¼ ]�1; �2]E,
we have DðH�

x;H�
yÞ � �. Since �2 belongs to I, in this case, the set

f� 2 I j DðH�
x;H�

yÞ � �g is nonempty and we deduce that minf� 2 I j DðH�
x;

H�
yÞ � �g is the minimum of I, which is precisely nEð�1Þ. Thus, we have

minf� 2 I j DðH�
x;H�

yÞ � �g ¼ nEð�1Þ. Furthermore, since DðH�2
x ;H�2

y Þ � �1,

we have n̂EðDðH�2
x ;H�2

y ÞÞ � n̂Eð�1Þ. Therefore, since � belongs to E, we deduce

that n̂EðDðH�2
x ;H�2

y ÞÞ < nEð�1Þ. Hence, in the considered case, we have

minf� 2 I j DðH�
x;H�

yÞ � �g ¼ maxfnEð�1Þ; n̂EðDðH�2
x ;H�2

y ÞÞg.
(2) Let us now assume that �1 < DðH�2

x ;H�2
y Þ � �2. Since �2 belongs

to I ¼ ]�1; �2]E, we deduce that, in this case, the set f� 2 I j DðH�
x;H�

yÞ � �g
is nonempty. By Lemma 2, for any � 2 I, we have DðH�

x;H�
yÞ ¼ DðH�2

x ;H�2
y Þ.

Then, for any � in I such that � � DðH�2
x ;H�2

y Þ, we have DðH�
x;H�

yÞ � � and,

for any � in I such that � < DðH�2
x ;H�2

y Þ, we have DðH�
x;H�

yÞ > �. Hence, in

this case, we deduce that minf� 2 I j DðH�
x;H�

yÞ � �g is the minimum value of

E which is not less than DðH�2
x ;H�2

y Þ. Thus, in this case, we have

minf� 2 I j DðH�
x;H�

yÞ � �g ¼ n̂EðDðH�2
x ;H�2

y ÞÞ. Furthermore, since �1 <

DðH�2
x ;H�2

y Þ, we deduce that nEð�1Þ � n̂EðDðH�2
x ;H�2

y ÞÞ. Thus, in this case, we

also have minf� 2 I j DðH�
x;H�

yÞg ¼ maxfnEð�1Þ; n̂EðDðH�2
x ;H�2

y ÞÞg.
(3) Let us ¯nally assume that �2 < DðH�2

x ;H�2
y Þ. By Lemma 2, for any � 2 I, we

have DðH�
x;H�

yÞ ¼ DðH�2
x ;H�2

y Þ. Hence, for any � in I, we have

DðH�
x;H�

yÞ > �. Hence, in this case the set f� 2 I j DðH�
x;H�

yÞ � �g is empty.

From the statements given in cases (1), (2), and (3) above, we can a±rm

that f� 2 I j DðH�
x;H�

yÞ � �g is nonempty if and only if DðH�2
x ;H�2

y Þ � �2, which

completes the proof of Property 3.1. Furthermore, from the statements given in

cases (1) and (2), we deduce that, if DðH�2
x ;H�2

y Þ � �2, then we have

minf� 2 I j DðH�
x;H�

yÞ � �g ¼ maxfnEð�1Þ; n̂EðDðH�2
x ;H�2

y ÞÞg, which completes

the proof of Property 3.2.

De¯nition 4 (stable partition). Let f be any map from EðT Þ in E, let u ¼ fx; yg
be any edge in EðT Þ. Let I ¼ ð�0; . . . ; �‘Þ be a series of real values in E [ f�1g such

that �0 ¼ �1, �‘ ¼ maxf� 2 Eg, and, for any i in f1; . . . ; ‘g, we have �i > �i�1.

Let PI ¼ f]�0; �1]E; . . . ; ]�‘�1; �‘]Eg. The series I (respectively the set PI) is called a

stable bound series (respectively a stable partition) of E for ðf;uÞ if any element of PI
is a stable interval for ðf;uÞ.

Given a stable bound series I ¼ ð�0; . . . ; �‘Þ, it can be easily seen that the stable

partition PI is a partition of E. Moreover, given the stable bound series

I ¼ ð�0; . . . ; �‘Þ, we denote by indðIÞ the set of indices f1; . . . ; ‘g.
The following theorem, which is the main result of this section, shows that given a

stable bound series, the minimization problem de¯ned by Eq. (5) can be solved by

considering only the elements of this series rather than all elements of the domain E.

E. C. Cahuina et al.
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Hence, this result is a keystone to provide an e±cient algorithm for comput-

ing �H
Hðfx; ygÞ with a reduced complexity compared to the naive algorithm

(Algorithm 1).

Theorem 5. Let f be any map from E in E; let H be the quasi-°at zone hierarchy

of G for f; let u ¼ fx; yg be any edge in E; and let I ¼ ð�0; . . . ; �‘Þ be a stable bound

series of E for ðf;uÞ. Then; the following statement holds true:

�H
Hðfx; ygÞ ¼ minfmaxfnEð�i�1Þ; n̂EðDðH�i

x ;H�i
y ÞÞg j i 2 indðIÞ;DðH�i

x ;H�i
y Þ � �ig:

ð8Þ

Proof. Let Ii ¼ ]�i�1; �i]E, for any i in indðIÞ ¼ f1; . . . ; ‘g. It can be easily seen

that PI ¼ fI1; . . . ; I‘g. Since PI is a partition of E, we may a±rm that:

minf� 2 E j DðH�
x;H�

yÞ � �g
¼ minfminf� 2 Ii j DðH�

x;H�
yÞ � �g j i 2 indðIÞ; f� 2 Ii j DðH�

x;H�
yÞ � �g 6¼ ;g:

Since, for any i 2 f1; . . . ; ‘g the interval Ii ¼ ]�i�1; �i]E is a stable interval, by

Property 3, we deduce that:

minf� 2 E j DðH�
x;H�

yÞ � �g
¼ minfmaxfnEð�i�1Þ; n̂EðDðH�i

x ;H�i
y ÞÞg j i 2 indðIÞ;DðH�i

x ;H�i
y Þ � �ig:

3.3. Minimization by range

Let f be any map from E to E, the range of f, denoted by rangeðfÞ, is the set

of values that f can take as its argument varies over E: rangeðfÞ ¼ ffðuÞ j u 2 Eg.
We denote by Rf the series ð�0; . . . ; �‘Þ of ordered values in rangeðfÞ [
f�1;maxf� 2 Egg:

(1) �0 ¼ �1, and �‘ ¼ maxf� 2 Eg,
(2) f�i j i 2 f1; . . . ; ‘� 1gg ¼ rangeðfÞnfmaxf� 2 Egg and

(3) for any i in f1; . . . ‘g, we have �i > �i�1.

Property 6. Let f be any map from EðT Þ in E and let u ¼ fx; yg be any edge

in EðT Þ. Then, the series Rf is a stable bound series for ðf;uÞ.

Proof. Since �0 ¼ �1, since �‘ ¼ maxf� 2 Eg, and since, for any i 2 f1; . . . ‘g we

have �i < �i�1, in order to establish Property 6, it is su±cient to prove that, for any i

in f1; . . . ; ‘g, the interval ]�i�1; �i]E is a stable interval for ðf;uÞ. Let i be any

element in f1; . . . ; ‘g. Let � be any element in ]�i�1; �i]E. Let v be any edge of T

which belongs to f�i
ðT Þ. By Eq. (1), we have fðvÞ < �i. By de¯nition of Rf , there

exists j 2 f1; . . . ; i� 1g such that fðvÞ ¼ �j. Thus, we have fðvÞ < �, which implies,

by Eq. (1), that v also belongs to f�iðT Þ. Furthermore, since � � �i, for any edge e

such that fðeÞ � �i we also have fðeÞ � �. Hence, by Eq. (1), any edge which does

E±cient Algorithms for Hierarchical Graph-Based Segmentation
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not belong to f�iðT Þ does not belong to f�ðT Þ either. Therefore, we deduce

that w�ðT Þ ¼ w�i
ðT Þ. Thus, since H is the quasi-°at zone hierarchy of f, we also

have H�
x ¼ H�i

x and H�
y ¼ H�i

y , by de¯nition of a quasi-°at zone hierarchy. Hence,

the interval ]�i�1; �i]E is a stable interval for ðf;uÞ.

Corollary 7. Let f be any map from EðT Þ in E; let H be the quasi-°at zone

hierarchy of T for f; let u ¼ fx; yg be any edge in EðT Þ; and let Rf ¼ ð�0; . . . ; �‘Þ.
Then; the following statement holds true:

�H
Hðfx; ygÞ

¼ minfmaxfnEð�i�1Þ; n̂EðDðH�i
x ;H�i

y ÞÞg j i 2 indðRfÞ;DðH�i
x ;H�i

y Þ � �ig:
ð9Þ

According to Corollary 7, we can compute �H
Hðfx; ygÞ by browsing the values

of Rf in increasing order until a value �i such that DðH�i
x ;H�i

y Þ � �i is found and by

setting the value of �H
Hðfx; ygÞ to the maximum between nEð�i�1Þ and

n̂EðDðH�i
x ;H�i

y ÞÞ. In order to make such process computable, it is necessary to

browse the range of f in increasing order. To this end, we propose to store the values

of f in a sorted linked list. Algorithm 2 provides a precise description of this process.

It can be observed that when the value pEð�H
Hðfx; ygÞÞ is not yet present in the range

of f, the linked list representing this range is updated so that it is ready for the next

iteration of the main loop in Method 1. It has to be also noted that in Method 1, the

weight of every edge is initialized to the maximal value of E. In other words, the

linked list must be initialized in Method 1 with the singleton fmaxf� 2 Egg.
As said at the end of Sec. 3.1, at each iteration of the while loop in Algorithm 2,

the dissimilarity between H�
x and H�

y can be obtained in constant time. The

instructions and tests of the while loop in Algorithm 2 are executed at most

jrangeðfÞj þ 1 times and each of these instructions can be made in constant time.

Thus, Algorithm 2 runs in OðjrangeðfÞjÞ time complexity. It has to be noted

that jrangeðfÞj is always less than the number of edges of T , which is equal to the

Algorithm 2. HGB minimization by range
Input : A hierarchy H, a weight map f such that H = QFZ(T, f), an edge

{x, y} of T , a linked list L of the values of f in increasing order
Output: The value λ such that λ = λH({x, y}), the updated linked list L

of the values of f ∪ {p
E

(λ )} in increasing order

1 l := L.head; λ := l.value; λprev := −∞ ;
2 while D Hλ

x, Hλ
y > λ do

3 λprev := λ; l := l.next;λ := l.value;
4 end
5 λ := max(nE (λprev) , ˆ nE D(Hλ

x , Hλ
y ) ;

6 if p
E

(λ ) = λprev then L.insert(p
E

(λ ));

E. C. Cahuina et al.
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number of vertices of T minus one, since T is a tree. This number is, in general, much

less than the number of elements of E. Indeed, for reaching a good precision, E can be

chosen as the set of all possible values of the dissimilarity measure D. In such case,

the number of elements in E is in the order of jrangeðwÞj � jV j. Hence, in this case,

the time-complexity is reduced from OðjrangeðwÞj � jV jÞ with Algorithm 1 to OðjV jÞ
with Algorithm 2.

3.4. Minimization by branch

In the previous section, we reduce the size of the search space of the minimization

de¯ned in Eq. (5) by considering the range Rf of the function f (i.e. a characteristic

function of the considered hierarchy H) instead of the set E of all possible scales of

the hierarchy H (see Corollary 7). In this section, we show that this search space can

be further reduced, leading to a third algorithm for computing the value �H
Hðfx; ygÞ,

given any hierarchy H and any edge fx; yg.
In order to obtain this second reduction, we observe in Eq. (5) that the only

regions of the hierarchy involved in the minimization are those containing x and y.

Therefore, while searching for the value �H
Hðfx; ygÞ, it is unnecessary to consider a

scale of H (i.e. a value of Rf) at which the regions containing x and y are the same as

those at the preceding scale. In other words, rather than considering the scales of Rf

for which there is a global change in the hierarchy, one can focus on the scales for

which the change of the hierarchy is local to x and y, i.e. when the change involves a

region containing either x or y.

Let f be a any map from E to E and let H be the quasi-°at zone hierarchy of f.

Let x be any vertex of V and let us denote by BHðxÞ the set which contains every

region R of the hierarchy H such that x belongs to R. The set BHðxÞ is called the

branch of x in H. The level of a region R in H, denoted by levelHðRÞ, is the highest
index of a partition that contains R in H. The (branch) range of H for x, denoted

by brangeðf;xÞ, is de¯ned as the set that contains the level of every region of the

branch of x in H: brangeðf;xÞ ¼ flevelHðRÞ j R 2 BHðxÞg. Let u ¼ fx; yg be any

edge of T . We denote by R
u
f the series ð�0; . . . ; �‘Þ of ordered values

in brangeðf;xÞ [ brangeðf; yÞ [ f�1;maxf� 2 Egg:

(1) �0 ¼ �1, and �‘ ¼ maxf� 2 Eg,
(2) f�i j i 2 f1; . . . ; ‘� 1gg ¼ brangeðf;xÞ [ brangeðf; yÞnfmaxf� 2 Egg and

(3) for any i in f1; . . . ; ‘g, we have �i > �i�1.

Property 8. Let f be any map from EðT Þ in E and let u ¼ fx; yg be any edge

in EðT Þ. Then, the series Ru
f is a stable bound series for ðf;uÞ.

Proof. Since �0 ¼ �1, since �‘ ¼ maxf� 2 Eg, and since, for any i 2 f1; . . . ‘g we

have �i < �i�1, in order to establish Property 8, it is su±cient to prove that, for any i

in f1; . . . ; ‘g, the interval ]�i�1; �i]E is a stable interval for ðf;uÞ. Let i be any

element in f1; . . . ; ‘g. Let � be any element in ]�i�1; �i]E. By de¯nition of Ru
f , there

E±cient Algorithms for Hierarchical Graph-Based Segmentation
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exists j in f1; . . . ; ‘g such that �j ¼ levelðH�
xÞ (resp. �j ¼ levelðH�

yÞ). By de¯nition

of the level of a region, we deduce that �j � �. Hence, we have j � i which implies

that �j � �i. Since H is a hierarchy, we have H�
x � H�i

x � H�j
x (respectively,

H�
y � H�i

y � H�j
y ). By de¯nition of �j, we have H�

x ¼ H�j
x (resp. H�

y ¼ H�j
y ).

Therefore, we also have H�
x ¼ H�i

x (resp. H�
y ¼ H�i

y ). Thus, ]�i�1; �i]E is a stable

interval for ðf;uÞ.

As a direct consequence of Property 8 and Theorem 5, we can state the following

corollary which is the basis of a third algorithm for solving e±ciently the minimi-

zation problem given in Eq. (5). The di®erence with Corollary 7 is that the range of f

(f being such that H ¼ QFZðT ; fÞ) is replaced by the union of the branch ranges

of H for x and for y.

Corollary 9. Let f be any map from E in E; let H be the quasi-°at zone hierarchy

of G for f; let u ¼ fx; yg be any edge in E; and let R
u
f ¼ ð�0; . . . ; �‘Þ. Then; the

following statement holds true:

�H
Hðfx; ygÞ

¼ minfmaxfnEð�i�1Þ; n̂EðDðH�i
x ;H�i

y ÞÞg j i 2 indðRu
fÞ;DðH�i

x ;H�i
y Þ � �ig:

ð10Þ

Due to Corollary 9, to compute �H
Hðfx; ygÞ, it is su±cient to browse in increasing

order the levels of the regions in the branches of x and of y until a value �i, such

that DðH�i
x ;H�i

y Þ � �i, is found. Finally, the value �H
Hðfx; ygÞ is determined as the

maximum of n̂EðDðH�i
x ;H�i

y ÞÞ and nEð�i�1Þ, where f�0; . . .�‘g is equal to R
fx;yg
f . In

order to propose such an algorithm, we need to browse in increasing order the levels

of the regions in the branches of x and of y. This can be done with a tree data

structure, called a component tree, which represents the hierarchy. The component

tree is used for various image processing tasks and is well studied in the ¯eld of

mathematical morphology (see, e.g. Ref. 37 for its de¯nition on vertex weighted

graphs, Ref. 7 for the case of edge-weighted graphs and quasi-°at zone, and Ref. 26

for their generalization to directed graphs). In classi¯cation, this tree is often called

the dendrogram of the hierarchy.

As any tree, the component tree of H can be de¯ned as a pair made of a set of

nodes and of a binary (parent) relation on the set of nodes. More precisely, the

component tree ofH is the pair TH ¼ ðN ; parentÞ such that N is the set of all regions

of H and such that a region R1 in N is a parent of a region R2 in N whenever R1 is a

minimal (for inclusion relation) proper superset of R2. Note that every region in N
has exactly one parent except the region V which has no parent and is called the root

of the component tree of H. Any region which is not the parent of another one is

called a leaf of the tree. It can be observed that any singleton of V is a leaf of TH and

that conversely any leaf of TH is a singleton of V .

In order to browse the branch of x in H from its component tree, it is enough to

follow the next steps: (1) start with the node C that is the leaf fxg, (2) consider the

E. C. Cahuina et al.
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parent of C, and (3) repeat step (2) until the root is found. Furthermore, it can be

observed that the levelH attribute is increasing in the branch of x: for any nonroot

node C in N , the level of the parent of C is never less than the level of C. Hence, the

branch browsing process also allows browsing the branch range of H for x in in-

creasing order. According to Corollary 9, in order to ¯nd the value �H
Hðfx; ygÞ, for

any edge fx; yg of T and any hierarchy H, we have to consider the union of the

ranges of H for x and for y, sorted in increasing order. This can be done by simul-

taneously browsing in the component tree TH the branches of x and of y. Algorithm 3

provides a precise description of a complete algorithm to ¯nd �H
Hðfx; ygÞ using such a

simultaneous branch browsing.

Individually, every instruction performed in Algorithm 3 has a constant

time complexity. Therefore, in order to establish the overall time complexity of

Algorithm 3, it is su±cient to bound the number of iterations of the main loop of

Algorithm 3 (Line 2). It can be seen that the instructions and tests of this loop are

executed at most jbrangeðf;xÞj þ jbrangeðf; yÞj times. In the worst case, at every

level of the hierarchy the region containing x is merged with a singleton region.

Hence, as there are jV j vertices inG, in this case, the branch of x contains jV j regions.
Thus, the worst-case time complexity of Algorithm 3 is OðjV jÞ. It can be observed

that the worst-case time complexity of Algorithm 3 is the same as the one of Algo-

rithm 2. However, in many practical cases, the component tree of H is well balanced

and each region of H results from the merging of two regions of (approximately) the

same size. Then, if the tree is balanced, the branch of x contains Oðlog2ðjV jÞÞ nodes
and the time-complexity of Algorithm 3 reduces to Oðlog2ðjV jÞÞ which is a signi¯cant

improvement compared to Algorithm 2. Such improvement is veri¯ed in terms of

execution times in Sec. 4.

Algorithm 3. HGB minimization by branch
Input : The component tree T = (N , parent) of a hierarchy H, an edge

u = {x, y} of T , an array level that stores the level of every region
of H

Output: The value λ such that λ = λH({x, y})

1 Cx := {x}; Cy := {y}; λ := min(level[Cx], level[Cy]); λprev := −∞;
2 while D (Cx, Cy) > λ do
3 λprev := λ ;
4 λ := min(level[parent[Cx]], level[parent[Cy]])

if level[parent[Cx]] = λ then Cx := parent[Cx];
5 if level[parent[Cy ]] = λ then Cy := parent[Cy];
6 end
7 λ := max(nE (λprev) , n̂E D(Hλ

x , Hλ
y ) ;

E±cient Algorithms for Hierarchical Graph-Based Segmentation
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3.5. Quasi-°at zone hierarchy algorithms

In this section, we focus on Lines 3 and 6 of Method 1, that is, on computing the

quasi-°at zone hierarchy of a weight map f. This computation is repeated at every

iteration of the method (i.e. for every edge of the tree T ). Hence, ¯nding an e±cient

way to perform this task in the context of Method 1 presents a high speedup

potential.

The straightforward implementation of Lines 3 and 6 of Method 1 consists of

computing, at each iteration, the quasi-°at zone hierarchy of f using an e±cient

algorithm such as the one presented in Ref. 20. Provided that the edges of T can be

sorted in linear time, which, in our case, can be done with a counting sort algorithm,

the time-complexity of this algorithm is quasi-linear OðjV j þ �ðjV jÞÞ (where � is the

extremely slowly growing inverse of the single-valued Ackermann function). Hence,

in this case, the overall time-complexity of Lines 3 and 6 is OðjV j2 þ jV j�ðjV jÞÞ since
the quasi-°at zone hierarchy computation is repeated exactly jEðT Þj ¼ jV j � 1 times.

However, from one iteration of the main loop of Method 1 to the next one, only

the weight of one edge of the graph is updated and therefore most parts of the

component tree remain unchanged (see, for instance, Fig. 4). Therefore, an im-

portant speedup can be obtained if we avoid to recompute from scratch the whole

component tree at each iteration. In order to avoid this recomputation, we need to

rely on an algorithm that only updates the part of the component tree which is

a®ected by the single weight update considered at the present iteration. In this

section, we propose such an algorithm that is referred to as an incremental quasi-

°at zone update algorithm.

The presented incremental quasi-°at zone update algorithm relies on works done

for parallel computation of component trees presented in Refs. 3, 9, 15 and 40. In

these articles, the authors present algorithms to merge the component trees of two

disjoint (adjacent) image blocks in order to obtain the component tree of the image

consisting of these two blocks. We can adapt these algorithms (in particular

Algorithm 6 in Ref. 15) into an incremental quasi-°at zone update algorithm. At

each iteration of Line 2 in Method 1, the weight of the edge u is decreased from its

initial value maxf� 2 Eg to its ¯nal value resulting from the minimization of Eq. (5).

This means that, before we decrease the weight of u ¼ fx; yg, the components con-

taining x and y in the tree were disjoint (up to level maxf� 2 Eg). We can adapt the

algorithm proposed by Ref. 15, in order to merge these disjoint parts of the tree and

update the tree only on the components containing x and y, thus avoiding the need to

recompute the whole hierarchy at every iteration of Method 1.

Algorithm 4 gives a precise description of this quasi-°at zone update algorithm

given the component tree T of a hierarchyH which is the quasi-°at zone hierarchy of

a weight map f, the edge u ¼ fx; yg whose weight must be decreased, and the value �

which corresponds to the decreased weight of u. The algorithm ¯rst identi¯es the

part of the tree which must be modi¯ed, namely the components containing x and y

at levels higher than � (Line 1). Then, the tree representation of the components

E. C. Cahuina et al.
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containing x and y at higher level is built (Lines 2 to 14) by either merging existing

nodes (Line 10), creating new parenthood relation between existing nodes (Lines 7

and 11), or creating new nodes (Line 2). To perform these tasks, Algorithm 4 relies on

four auxiliary functions.

. Given a vertex x of V and a level � in E, ¯ndTransitionðx; �Þ returns a node n

which is the ancestor of the node representing fxg such that (i) level½n� � �, and

(ii) level½parent½n�� > �. This operation is performed by traversing upward the

branch of T containing x, starting at the node n ¼ fxg and ending when a node n

satisfying (i) and (ii) is found.

. Given two nodes c1 and c2 of T and a value � in E, nodeðc1; c2; �Þ creates a node n

at level � which becomes the parent of c1 and of c2.

. Given two nodes c1 and c2 of T , attachðc1; c2Þ sets c1 to be the parent of c2.

. Given two nodes c1 and c2, mergeðc1; c2Þ calls mergeðc2; c1Þ if c2 has more children

than c1, otherwise it sets the parent of the children of c2 to be c1, and it returns c1.

(a) Input graph

(b) Initialization (c) Iteration 1

(d) Iteration 2 (e) Iteration 3

(f) Iteration 4 (g) Iteration 5

Fig. 4. Tree representations of the quasi-°at zone hierarchies of the graphs of Fig. 2; (g) shows the output

hierarchy computed by HGB method.
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Algorithm 4 modi¯es the tree structure in the following manner: ¯rst, given an

edge u ¼ fx; yg of decreased weight �, it starts from the singleton components fxg
and fyg. Then, findTransition identi¯es the nodes c1 and c2 associated to the

components H�
x and H�

y , respectively. A node n is created to represent the union of

theses components (Line 2). Then, the do-while loop (Lines 5 to 14) traverses

simultaneously the branches containing x and y from the nodes c1 and c2, identifying

the ancestors of these nodes, and updating the parenthood relationships along these

branches. At each iteration, the two nodes are merged if they have the same level

(Line 10) or, if one has a level less than the other, the one of highest level becomes the

parent of the one of lowest level (Line 7). This is repeated until a common ancestor is

found. Consequently, only the components containing x and y are involved in the

update algorithm and we do not need to recompute a whole hierarchy at every

iteration.

It can be seen that Algorithm 4 involves only constant time operations performed

on the nodes corresponding to the branch containing x and y. Therefore, following

the discussion at the end of Sec. 3.4, in the worst case, Algorithm 4 runs in OðjV jÞ

Algorithm 4. Incremental quasi-flat zone hierarchy update
Input : The component tree T = (N , parent) of the hierarchy H which is

the quasi-flat zone hierarchy of a map f , an array level that stores
the level of every node of T (i.e. every region of H), an edge
u = {x, y} of T , the value λ at which the weight of the edge u must
be decreased.

Output: The updated component tree T , which is the component tree of
the quasi-flat zone hierarchy of the updated map f (i.e. the map f

such that f (v) = f(v) for any v = u and f (u) = λ)

1 c1 := findTransition(x, λ) ; c2 := findTransition(y, λ) ;
2 n := node(c1, c2, nE (λ)) ;
3 c1 := parent[c1]; c2 := parent[c2];
4 do
5 if level[c2] < level[c1] then swap(c1, c2);
6 if level[c1] < level[c2] then
7 attach(c1, n) ;
8 n := c1; c1 := parent[c1] ;
9 else

10 n := merge(c1, c2) ;
11 attach(n , n) ;
12 n := n ; c1 := parent[c1]; c2 := parent[c2];
13 end
14 while p1 = p2 ;

E. C. Cahuina et al.
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time complexity and in the case where the tree T is balanced it runs in Oðlog2ðjV jÞÞ
time complexity. Hence, in the worst case, using Algorithm 4, the overall time-

complexity of Line 3 in Method 1 in Method 1 is OðjV j2Þ, whereas in the more

favorable case where the tree remains balanced, this complexity reduces

to OðjV jlog2jV jÞ.

4. Assessments

The experiments reported in this section aim at measuring and comparing the exe-

cution times of all the variations of the algorithms proposed in the previous sections

for the HGB method. The experimental set-up is ¯rst presented in Sec. 4.1 and then

the experimental results are given in Sec. 4.2.

4.1. Experimental set-up

As we have three variations for the minimization step (Line 4 in Method 1), namely

Algorithms 1, 2 and 3, and two variations for the quasi-°at zone hierarchy compu-

tation (Lines 3 and 6 in Method 1), namely the nonincremental one (based on

Ref. 20) and the incremental one (based on Algorithm 4), the total number of all

the combinations is six. Hence, in total, we study the execution times of these six

variations.

All the algorithms were implemented in C and executed on a computer with a 3.2

GHz CPU, 8GB RAM on Ubuntu Linux 16.04.

In order to cope with realistic situations, we use the Berkeley Segmentation

Dataset (BSDS) proposed by Ref. 1 for our experiments. This dataset consists of 500

natural images of size 321� 481 pixels and is very popular in image segmentation

experiments.

A ¯rst assessment consists of measuring the execution times of the six presented

variations when applied to one of the images from the BSDS dataset. The chosen

image is shown in Fig. 5(a) and the result of any of the six variations is shown in

Fig. 5(b) in the form of a saliency map. This image was chosen because of its

textured aspect which leads to hierarchies with a high number of regions and scales,

hence exploiting the ability of the algorithms to deal with a high number of regions

and of levels (5218 levels). This experiment is designed in order to assess the gain

achieved from switching from the least e±cient variation of Method 1 to the most

e±cient one.

A second assessment is designed in order to assess the scalability of the most

e±cient variation of Method 1 when applied to a whole dataset of images repre-

senting a wider variety of situations that can be encountered in computer vision

tasks. This second experiment consists of measuring the execution times taken by the

fastest variation of Method 1 on the full BSDS dataset. The fastest variation to

compute the result of Method 1 is determined from the ¯rst assessment and consists

of using Algorithms 3 and 4.

E±cient Algorithms for Hierarchical Graph-Based Segmentation
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Reported execution times result from repeating ten times the execution of a same

method on a same image and considering the average time taken by these ten

executions.

4.2. Experimental results

Table 1 shows the execution times taken by each of the six variations of Method 1

when applied to the image shown in Fig. 5(a). In the table, the ¯rst column labeled

QFZ algorithm refers to the type of algorithm used to construct the QFZ hierarchy:

it can be either the nonincremental one based on Ref. 20 or the incremental one,

Table 1. Execution times from the image of Fig. 5(a) (321� 481 pixels). The
resulting hierarchy contains 5218 levels.

Execution Times (s)

QFZ Algorithm Minimization Algorithm Total QFZ Minimization

Nonincremental Algorithm 1 14666.08 13186.31 1479.56

Algorithm 2 13392.51 13375.29 17.02

Algorithm 3 13166.25 13165.54 0.49

Incremental Algorithm 1 1487.96 0.13 1487.75
Algorithm 2 15.42 0.13 15.21

Algorithm 3 0.49 0.10 0.32

(a) Input image (b) Hierarchical segmentation

Fig. 5. Image used for the algorithm assessment and the resulting HGB hierarchy represented as a

saliency map.
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namely Algorithm 4, based on Refs. 15 and 40. The second column refers to the

algorithm which is used for performing the minimization described in Eq. (5): it can

be either the naive algorithm (Algorithm 1), the minimization by range algorithm

(Algorithm 2) or the minimization by branch algorithm (Algorithm 3). The third

column presents the overall execution times of the six variations which include the

time for computing quasi-°at zone hierarchies (fourth column) and for computing

the result of the minimization described by Eq. (5) (¯fth column).

As we can observe in Table 1, the total execution time using the nonincremental

QFZ hierarchy construction and any minimization algorithm leads into very pro-

hibitive times of over 4 h. However, most of this time is consumed on the QFZ

hierarchy construction (over 3 h). For the minimization step, Algorithm 1 is the least

e±cient taking around 24min. Then, Algorithm 2 using the range minimization leads

to 17 s of execution. Finally, Algorithm 3 is the fastest algorithm for the minimization

step with less than one second. When we use the incremental QFZ hierarchy con-

struction, the time spent on updating the hierarchical tree takes only 0.1 s. This,

together with Algorithm 3 for the minimization step, leads to a total execution time

of 0.49 s, which is our most e±cient variation. From these results, we can conclude

that it is only possible to compute the HGB method in user time with the help of

both the incremental QFZ hierarchy construction and the minimization by branch

(Algorithm 3). Observe that, at each iteration of the main loop of Method 1, the QFZ

construction takes approximatively 0.086 s in average with the nonincremental

(original) version, whereas, with the incremental version, the handling of the QFZ

hierarchy takes, at every iteration, 0.00000084 s in average.

Figure 6 shows the distribution of the execution times of our most e±cient

variation of Method 1 applied to all images in the BSDS dataset. The average

execution time over the dataset is 0.47 s with a standard deviation of 0.09 s. This

con¯rms that that our most e±cient variation of Method 1, namely the implemen-

tation of Method 1 with Algorithms 3 and 4, runs in user time whatever the

considered image from the BSDS dataset.

5. Conclusions

In this paper, we investigated the HGB method proposed in Ref. 11 with the aim of

developing exact and time-e±cient algorithms for its implementation on images.

We focused on the two main steps of the HGB method for improving e±ciency:

Fig. 6. Box and Whisker plot for execution times on BSDS dataset. On the horizontal axis the times are

given in seconds.
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(i) the minimization involved in Eq. (5), and (ii) the computation of the quasi-°at

zones hierarchies. Concerning (i), we presented a general framework which allows

reducing the search space involved in the minimization problem as shown by

Theorem 5. We considered two applications of this framework leading to two

algorithms which both improve the e±ciency, in terms theoretical of time com-

plexity and of practical running times, compared to a naive algorithm for solving the

minimization problem. Furthermore, due to the proposed framework, the proof of

correctness for each of these two algorithms (namely Corollary 7 and 9) is provided.

In order to compute e±ciently the quasi-°at zone hierarchy (ii), we considered a

nonincremental and an incremental algorithm based on Ref. 20 and on Ref. 15,

respectively. Even if the worst-case complexities of these two algorithms are com-

parable, the running times of the HGB method are signi¯cantly decreased when the

incremental algorithm is used instead of the nonincremental one. Overall, on images

from the standard BSDS dataset, the least e±cient strategy that we proposed

computes the result of the HGB method in more than 4 h whereas the most e±cient

one takes about half a second.

Furthermore, we would like to emphasize that the framework presented in this

article leads to a better understanding of the minimization equation which is at

the heart of the HGB method. In particular, it opens doors towards modi¯cations

of this equation which could allow us to signi¯cantly improve the quality of the

resulting hierarchies. Among others, in future works, we may be able to propose

fast and exact algorithms to compute the results of HGB method using di®erent

dissimilarity measures than the one of Felzenszwalb–Huttenlocher. In this direc-

tion, we may for instance consider the criteria presented in Ref. 22 or in Ref. 24

which are more complex than the one of Felzenszwalb and Huttenlocher. First,

results in this direction are encouraging (see Refs. 12 and 14). Moreover, in order

to robustify the results in practice, we may also consider replacing the minimum

of the solutions in stable intervals by the maximum, the median or a percentile of

the solutions in the stable intervals. These interesting questions are beyond the

scope of the present article and represent interesting research topic for our future

works.
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