
Revista de Informática Teórica e Aplicada - RITA - ISSN 2175-2745
Vol. 25, Num. 3 (2018) 62-74

RESEARCH ARTICLE

Formal Semantics for Java-like Languages and Research
Opportunities
Semânticas Formais para Linguagens Similares ao Java e Oportunidades de Pesquisa

Samuel da Silva Feitosa1*, Rodrigo Geraldo Ribeiro2, André Rauber Du Bois1

Abstract: Currently, Java is one of the most used programming languages, being adopted in many large
projects, where applications reach a level of complexity for which manual testing and human inspection are
not enough to guarantee quality in software development. Because of that, there is a growing research field
that concerns the formalization of small subsets of Java-like languages aimed to conduct studies that were
impossible to achieve through informal approaches. In this context, the objective of this paper is twofold: the
discussion of the state-of-the-art on Java-like semantics and the presentation of research opportunities in this
area. For the first goal, we present a research about Java-like formal semantics, filtering those that provide some
insights in type-safety proofs, choosing the four most cited projects to be presented in details. We also briefly
present some related studies that extended the originals aggregating useful features. Additionally, we provide a
comparison between the most cited projects in order to show which functionalities are covered by each one of
them. As for the second goal, we discuss possible future studies that can be performed by using the presented
formal semantics.

Keywords: Java Semantics — Operational Semantics — Type Systems — Type Safety

Resumo: Atualmente Java é uma das linguagens de programação mais utilizadas, sendo adotada em muitos
projetos de grande escala, onde aplicações alcançam um nı́vel de complexidade no qual testes e inspeções
manuais não são suficientes para garantir qualidade no desenvolvimento de software. Por conta disso, existe um
crescente campo de pesquisa que diz respeito a formalização de pequenos fragmentos de linguagens similares
ao Java, almejando a condução de estudos os quais eram impossı́veis de realizar através de abordagens
informais. Neste contexto, este artigo tem dois objetivos: a discussão do estado da arte sobre semânticas
similares ao Java e a apresentação de oportunidades de pequisa nesta área. Para o primeiro objetivo, é
proposta uma pequisa sobre semânticas formais da linguagem Java, filtrando aquelas que provêem provas
de segurança de tipos, escolhendo os quatro projetos mais citados para serem apresentados em detalhes.
Também são apresentados brevemente alguns estudos derivados que estendem os originais agregando
funcionalidades. Adicionalmente, é apresentada uma comparação entre os projetos mais citados como forma
de demonstrar quais funcionalidades são cobertas por cada um deles. Como segundo objetivo são discu-
tidos possı́veis trabalhos futuros que podem ser realizados através do uso das semânticas formais apresentadas.

Palavras-Chave: Semântica do Java — Semântica Operacional — Sistemas de Tipos — Segurança
de Tipos

1Programa de Pós-Graduação em Computação, Universidade Federal de Pelotas - UFPel, Brazil
2Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Ouro Preto - UFOP, Brazil
*Corresponding author: samuel.feitosa@inf.ufpel.edu.br
DOI: https://doi.org/10.22456/2175-2745.80912 • Received: 08/03/2018 • Accepted: 20/06/2018
CC BY-NC-ND 4.0 - This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

1. Introduction

Nowadays, Java is one of the most popular programming lan-
guages [1, 2]. It is a general-purpose, concurrent, strongly
typed, class-based object-oriented language. Since its release

in 1995 by Sun Microsystems, and currently owned by Oracle
Corporation, Java has been evolving over the time, adding
features and programming facilities to its new versions. In a
recent release of Java (JDK 8), the addition of new features
such as lambda expressions, method references, and func-

Formal Semantics for Java-like Languages and Research Opportunities

tional interfaces offer a programming model that fuses the
object-oriented and functional styles [3].

Considering the growth in adoption of Java language for
large projects, many applications have reached a level of com-
plexity for which testing, code reviews, and human inspection
are no longer sufficient quality-assurance guarantees. This
problem increases the need for tools that employ static anal-
ysis techniques, aiming to explore all possibilities in an ap-
plication, in order to guarantee the absence of unexpected
behaviors [4]. Normally, developing and using these tools is
a difficult task to be undertaken considering certain sizes of
problems. To overcome this situation it is possible to model
formal subsets of the problem applying a certain degree of
abstraction, using only properties of interest, facilitating the
understanding of the problem and also allowing the use of
automatic tools [5].

Therefore, an important research area focuses on the for-
mal semantics of languages and type-system specification,
which helps the comprehension of a problem, allows to make
formal proofs, and provides means to the establishment of
fundamental properties of systems. Moreover, solutions can
be machine checked through proof assistants providing a de-
gree of confidence that cannot be reached using informal
approaches. We should note that without a formal semantics it
is impossible to state or prove anything about a language with
certainty. For example, we cannot state that a program meets
its specification, a type system is sound, or that a compiler or
an interpreter is correct [6].

Some programming languages, such as ML [7], already
come with a formal specification. Nevertheless, the official
specification of languages are usually made in English prose
with varying degrees of rigor and precision [5]. On the other
hand, researchers are making efforts to formally study such
languages. Indeed, there is a large body of literature on formal
models of Java-like languages [8, 9, 10, 11], where each of
these models are designed to treat certain features of Java in
depth, abstracting other features. Also, recently a complete
executable semantics for an older version of Java was pro-
posed [6], but without contemplating new important features.

In this context, this work intends to provide a description
of the most popular formalisms of Java according to Google
Scholar database [12], comparing their features against each
other, presenting significant projects that somehow use the
previously presented formalisms, and discussing possible fu-
ture studies. The criterion to define the most popular for-
malisms was the number of citations of each project found.
Our search was filtered by those formalisms that described the
Java semantics using structural operational semantics (both
small-step or big-step), and by those that presented some in-
sights on proofs of type-safety. These standard formalisms for
Java-like languages greatly simplify investigations of novel
programming constructs and help the identification of errors
and misunderstandings. We are aware that our text does not
cover all Java-like specifications, and that it only summarizes
each of the presented approaches, but it can be useful as a

starting point for future studies in this field.
Specifically, we claim the following contributions:

• We provide a catalog containing the description of the
four most popular Java-like formalisms, presenting their
main characteristics, and discussing related projects.

• We present a comparison among the features of each
formalism, which can be useful when choosing one of
them.

• We produce a list of topics for future work, which can
be explored by others researchers.

The rest of this text is organized as follows: Section 2
presents the state-of-the-art in formal semantics for Java-like
languages, reviewing the most used projects, and making a
comparison between them. Section 3 discusses opportunities
to research in this field, presenting studies found in the bibli-
ography and possible future projects. Finally, we present the
final remarks in Section 4.

2. Formal Semantics for Java
Java is a statically, strong typed, object-oriented, multi-threaded
language. Except for threads, it is completely deterministic.
The official specification of Java language is the JLS [13].
JLS has 755 pages and 19 chapters; more than 650 pages
were used to describe the language and its behavior. Java is
distributed as part of the Java Development Kit (JDK) and
currently is in the version 10. At the imperative level, this lan-
guage has 38 operators (JLS §3.12), 18 statements (§14), and
some dozens of expressions (§15), among other features, and
is evolving over time [6]. A Java program can be represented
by a combination of several of its features. Considering that,
the formalization (and update) of the whole language becomes
an almost impossible task, justifying the need for definitions
of formal subsets for Java.

Indeed, there exist several studies on the formalization of
parts of the Java language [8, 9, 10, 11, 6, 14, 15, 16], and
we have defined some criteria to select some of them to be
presented in this text. Initially, we looked up for projects that
describe the semantics of Java, particularly by structural oper-
ational semantics, filtering those that presented proofs of type-
safety, both in formal or informal (non-mechanized) ways.
From these, we selected the four most popular formalisms,
i.e., those with the higher number of citations according to
Google Scholar [12] database. Using this criterion, Feather-
weight Java could be considered the most popular, with almost
900 citations, followed by Classic Java, with approximately
500 quotes. JavaS and Jinja currently present between 300
and 400 citations. The remainder of this section summarizes
the selected formalizations, discussing their completeness
and conformance with the official specification of Java, and
comparing them with each other.

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 25 • N. 3 • p.63/74 • 2018

Formal Semantics for Java-like Languages and Research Opportunities

2.1 Featherweight Java
Featherweight Java (FJ) [10], proposed by Igarashi, Pierce,
and Wadler, is a minimal core calculus for Java, in the sense
that as many features of Java as possible are omitted while
maintaining the essential flavor of the language and its type
system. However, this fragment is large enough to include
many useful programs. A program in FJ consists of a declara-
tion of a set of classes and an expression to be evaluated, that
corresponds to the public static void main method of Java.

FJ is related to Java, as λ -Calculus is to Haskell. It offers
similar operations, providing classes, methods, attributes, in-
heritance and dynamic casts with semantics close to Java’s.
Featherweight Java project favors simplicity over expressivity
and offers only five ways to create terms: object creation,
method invocation, attribute access, casting, and variables.
The following example shows how classes can be modeled in
FJ. There are three classes, A, B, and Pair, with constructor
and method declarations.

1 class A extends Object {
2 A() { super(); }
3 }
4 class B extends Object {
5 B() { super(); }
6 }
7 class Pair extends Object {
8 A fst; B snd;
9 Pair(A fst, B snd) {

10 super();
11 this.fst=fst;
12 this.snd=snd;
13 }
14 Pair setfst(A newfst) {
15 return new Pair(newfst, this.snd);
16 }
17 }

FJ semantics applies a purely functional view without
side effects. In other words, attributes in memory are not
affected by object operations [17]. Furthermore, interfaces,
overloading, call to base class methods, null pointers, base
types, abstract methods, statements, access control, and ex-
ceptions are not present in the language [10].

Because the language does not allow side effects, it is
possible to formalize the evaluation just using the FJ syntax,
without the need for auxiliary mechanisms to model the heap.

Figure 1 presents the syntactic definitions originally pro-
posed for FJ, where L refers to the classes list, K and M to
constructors and methods respectively, and finally, e repre-
sents the expressions of that language. It is assumed that the
set of variables includes the special variable this and super is
a reserved keyword. Throughout this document, we write f
as shorthand for a possibly empty sequence f1,..., fn (similarly
for C, x, e, etc.).

Figure 2 presents the evaluation rules originally proposed
for FJ, formalizing how to evaluate attribute access (R-Field),
method invocation (R-Invk), and casts (R-Cast) [10], the only
three possible terms to be used in the main program. The

Syntax

L ::= class declarations
class C extends C {C f ;K M}

K ::= constructor declarations
C(C f) {super(f); this. f = f ;}

M ::= method declarations
C m(C x) {return e;}

e ::= expressions
x variable
e. f field access
e.m(e) method invocation
new C(e) object creation
(C) e cast

Figure 1. Syntactic definitions for FJ.

presented functions fields and mbody, are also formalized in
the original paper, representing respectively a way to obtain a
list of attributes of some class C, and the term inside a method
m that belongs to a given class C. In the method invocation
rule, it is written [x 7→ u, this 7→ new C(v)]t0 for the result
of replacing x1 by u1,...,xn by un, and this by “new C(v)” in
expression t0. In the cast rule, the symbol <: is used to
express the sub-typing relation between C and D, stating that
C is a subtype of D. These symbols are also used throughout
the document.

Evaluation Rules

fields(C) = C̄ f̄
new C(v̄).fi → vi

(R-Field)

mbody(m, C) = (x̄, t0)
new C(v̄).m(ū)→ [x̄ 7→ ū, this 7→ new C(v̄)]t0

(R-Invk)

C <: D
(D) (new C(v̄))→ new C(v̄)

(R-Cast)

Figure 2. Evaluation rules for FJ.

The typing rules for expressions are in Figure 3. There
we can note the use of an environment Γ, which represents
a finite mapping from variables to types, written x: C. We
let Γ(x) denote the type C such that x : C ∈ Γ. The typing
judgment for expressions has the form Γ ` e : C, read as
“in the environment Γ, the expression e has type C”. Some
abbreviations are also used like in the reduction rules. The
typing rules are syntax directed, with one rule for each form
of expression, except for casts. Most of the typing rules are
straightforward adaptations of the rules in Java: the rule (T-
Var) checks if the variable x is in the Γ context and gets its
type; rule (T-Field) uses the function f ields to obtain the
field type; the rules for method invocations (T-Invk) and for
constructors (T-New) check that each actual parameter has a

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 25 • N. 3 • p.64/74 • 2018

Formal Semantics for Java-like Languages and Research Opportunities

type that is subtype of the corresponding formal parameter
type; the last three rules are related to casts, for each upcasts,
downcasts and unrelated objects, respectively. The latter was
added to allow proofs of type soundness.

For short, the formalization of sub-typing relation, auxil-
iary definitions, congruence and sanity checks for methods
and classes were omitted here, but can be found in the original
FJ paper [10].

An important contribution of FJ is the soundness proofs
for the proposed type system. We show the Theorem 1 as
an example, to show the way proofs were modeled by the
authors.

Theorem 1 (FJ Type Soundness) If /0 ` e : C and e→∗ e′

with e′ a normal form, then e′ is either a value v with /0 ` v : D
and D <: C, or an expression containing (D) new C(e) where
C <: D.

Proof. Immediate from Subject Reduction (Theorem
2.4.1) and Progress (Theorem 2.4.2) theorems found in the
original paper [10].

2.1.1 Projects Derived from FJ
FJ is the currently most popular Java formalism and is both
simple and concise due to careful selection of features. Several
projects were presented extending FJ definitions by adding
important features or novel programming constructors. Mid-
dleweight Java [18] and Welterweight Java [19] are new cal-
culus based on FJ. The first remains compact and can be
seen as an extension of FJ big enough to include the essential
imperative features of Java, modeling object identity, field as-
signment, null pointers, constructor methods and block struc-
ture. The second presents an alternative core calculus to FJ,
also modeling imperative features and supporting Java-style
threads and Java-style concurrency control, with aliasing and
thread-local stack frames.

Being a small subset of Java, novel constructions for
object-oriented languages can be embedded in this language,
allowing checking for type-safety. There exist several exam-
ples, and here we cite just a few. A proposal for closures [20]
was presented years before the release of Java 8, quantum
investigations in the OO context [21], a Coq formalization of
FJ for studying product lines of theorems [22], and more re-
cently a study addressing compositional and incremental type
checking for object-oriented programming languages through
co-contextual typing rules [23].

FJ is intended to be a starting point for the study of vari-
ous operational features of object-oriented programming in
Java-like languages, being compact enough to make rigorous
proof feasible. Its operational semantics seems to be easier
to understand than the others formalizations that follow this
section.

2.2 ClassicJava
ClassicJava [8, 24] is a small subset of sequential Java pro-
posed by Flatt, Krishnamurthi, and Felleisen. To model its

type structure, the authors use type elaborations [25], where
it is verified that a program defines a static tree of classes
and a directed acyclic graph (DAG) of interfaces. For the
semantics, rewriting techniques were used, where evaluation
is modeled as a reduction on expression-store pairs in the
context of a static type graph. The class model relies on as
few implementation details as possible.

In ClassicJava, a program P is represented by a sequence
of classes and interfaces followed by an expression. Each
class definition consists of a sequence of field declarations
and a sequence of method declarations. In the interfaces, the
difference is that there are only methods. A method body
in a class can be abstract when the method should be over-
ridden in a subclass or can be an expression. In the case of
interfaces, the method body must be always abstract. Sim-
ilarly to Java, the objects are created with the new operator,
but the constructors are omitted in the proposed specification.
Thus, instance variables are initialized to null. There are also
constructors that represents casts (view operator) and assign-
ments (let operator). Figure 4 shows the formal syntax of
ClassicJava.

To be considered valid, a program should satisfy a number
of simple predicates and relations, for example: ClassOnce
indicates that a class name is declared only once, FieldOn-
cePerClass checks if field names in each class are unique,
MethodOncePerClass checks oneness for method names, In-
terfacesAbstract verifies that methods in interfaces are ab-
stract, relation ≺c

P associates each class name in P to the
class it extends, relation ∈∈c

P (overloaded) capture the field
and method declarations of P, and so on. The complete list of
auxiliary definitions can be found in the original paper [8].

The operational semantics for ClassicJava is defined as a
contextual rewriting system on pairs of expressions and stores.
A store S is a mapping from objects to class-tagged field
records. A field record F is a mapping from elaborated field
names to values.

Figure 5 shows the operational semantics for ClassicJava.
By looking at the get rule, for example, it is possible to note
that a search for an attribute fd in a class c′ is performed by
using the field record F , resulting in a value v. For the case of
the call rule one can note that it invokes a method by rewriting
the method call expression to the body of the invoked method,
syntactically replacing argument variables in this expression
with the supplied argument values and the special variable
this. The other rules can be understood in a similar way.

The type elaboration rules translate expressions that ac-
cess a field or call a method into annotated expressions. For
instance, when a field is used, the annotation contains the
compile-time type of the instance expression, which deter-
mines the class containing the declaration of the accessed
field. The complete typing rules can be found in the original
paper [8]. There the authors show that a program is well-typed
if its classes definitions and final expressions are well-typed.
A definition, in turn, is well-typed when its fields and method
declarations use legal types and the method body expressions

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 25 • N. 3 • p.65/74 • 2018

Formal Semantics for Java-like Languages and Research Opportunities

Expression Typing

Γ ` x : Γ(x)
(T-Var)

Γ ` e0 : C0 fields(C0) = C f
Γ ` e0.fi : Ci

(T-Field)

Γ ` e0 : C0 mtype(m, C0) = D→ C Γ ` e : C C <: D
Γ ` e0.m(e) : C

(T-Invk)

fields(C) = D f Γ ` e : C C <: D
Γ ` new C(e) : C

(T-New)
Γ ` e0 : D D <: C

Γ ` (C) e0 : C
(T-UCast)

Γ ` e0 : D C <: D C 6= D
Γ ` (C) e0 : C

(T-DCast)
Γ ` e0 : D C ≮: D D ≮ C

Γ ` (C) e0 : C
(T-SCast)

Figure 3. Typing rules for FJ.

Syntax

P ::= program specification
de f n∗ e

de f n ::= class and interface declarations
class c extends c implements i∗ { f ield∗ meth∗}

f ield ::= field statement
t f d

meth ::= method declarations
t md(arg∗) {body}

arg ::= argument list
tvar

body ::= method body declarations
e | abstract

e ::= expressions
new c instancing a class
var a variable name or this
null null value
e : c. f d field access
e : c. f d = e field assignment
e.md(e∗) method invocation
super ≡ this : c.md(e∗) method invocation
view t e cast
let var = e in e assignment

Figure 4. Syntactic definitions for ClassicJava.

are well-typed. Finally, expressions are typed and elaborated
in the context of an environment that binds free variables to
types.

The authors also have presented formal proofs, which aim
to guarantee the safety of this calculus, i.e., an evaluation
cannot get stuck. This property was formulated through the
type soundness theorem, where an evaluation step yields one
of two possible configurations: either a well-defined error

state or a new expression-store pair. In the latter case, there
exists a new type environment that is consistent with the new
store, and it establishes that the new expression has a type
below t. The complete proof is available in an extended
version of the original ClassicJava paper [24].

2.2.1 Projects Derived from ClassicJava
ClassicJava was meant to be an intuitive model of an essen-
tial Java subset. It was modeled originally to demonstrate an
extension that develops a model of class-to-class functions re-
ferred as mixins - a mixin function maps a class to an extended
class by adding or overriding fields and methods - and to state
the type soundness theorems for the language. However, this
calculus was used for many others purposes.

Several projects based on ClassicJava were proposed to
work with threads and concurrency. One of them presents a
static race detection for multi-threaded Java programs, through
a small multi-threaded subset of Java, which extends the men-
tioned formalization [26]. Another similar project proposes
a new static type system for multi-threaded programs, where
well-typed programs in this system are guaranteed to be free
of data races and deadlocks [27]. Also in this research area,
among others, a core language to examine notions of safety
with respect to transactions and mutual exclusion was pro-
posed [28].

This formalism also was extended in different areas, such
as contracts for OO languages, ownership types, and aspect-
oriented languages. A study on the problem of contract en-
forcement in the object-oriented world from a foundational
perspective was made generating Contract Java [29]. In an-
other project, it was proposed a type system to work with
ownership types, which provides a statically enforceable way
of specifying object encapsulation and enables local reasoning
about correctness in object-oriented languages [30]. And re-
cently, some studies for aspect-oriented languages have been

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 25 • N. 3 • p.66/74 • 2018

Formal Semantics for Java-like Languages and Research Opportunities

Evaluation Rules

E = [] | E : c. f d | E : c. f d = e | v : c. f d = E
e = ... | ob ject | E.md(e...) | v.md(v...E e...)
v = ob ject | null | super ≡ v : c.md(v...E e...)

| view t E | let var = E in e

P ` 〈E[new c],S 〉 ↪→ 〈E[ob ject],S [ob ject] 7→ 〈c,F 〉]〉 where ob ject [new]
/∈ dom(S) and F = {c′. f d 7→ null | c≤c

P c′ and ∃t s.t. 〈c′. f d, t〉 ∈∈c
P c′}

P ` 〈E[ob ject : c′. f d],S 〉 ↪→ 〈E[v],S 〉 where S (ob ject) = 〈c, F 〉 [get]
and F (c′. f d) = v

P ` 〈E[ob ject : c′. f d = v],S 〉 ↪→ 〈E[v],S [ob ject 7→ 〈c, F [c′. f d 7→ v]〉]〉 [set]
where S (ob ject) = 〈c, F 〉

P ` 〈E[ob ject.md(v1, ...,vn)],S 〉 ↪→ 〈E[e[ob ject/this,v1/var1, ...,vn/varn]],S 〉 [call]
where S (ob ject) = 〈c,F 〉 and 〈md,(t1...tn)−→ t),(var1...varn),e〉 ∈c

P c

P ` 〈E[super ≡ ob ject : c′.md(v1, ...,vn)],S 〉 [super]
↪→ 〈E[e[ob ject/this,v1/var1, ...,vn/varn]],S 〉

where 〈md,(t1...tn)−→ t),(var1...varn),e〉 ∈c
P c′

P ` 〈E[view t ′ ob ject],S 〉 ↪→ 〈E[ob ject],S 〉 where S (ob ject) = 〈c, F 〉 [cast]
and ≤c

P t ′

P ` 〈E[let var = v in e],S 〉 ↪→ 〈E[e[v/var]],S 〉 [let]

P ` 〈E[view t ′ ob ject],S 〉 ↪→ 〈error : bad cast,S 〉 where S (ob ject) = 〈c, F 〉 [xcast]
and �c

P t ′

P ` 〈E[null : c. f d],S 〉 ↪→ 〈error : derre f erenced null,S 〉 [nget]

P ` 〈E[null : c. f d = v],S 〉 ↪→ 〈error : derre f erenced null,S 〉 [nset]

P ` 〈E[null.md(v1, ...,vn)],S 〉 ↪→ 〈error : derre f erenced null,S 〉 [ncall]

Figure 5. Evaluation rules for ClassicJava.

developed [31, 32].

2.3 JavaS, JavaSE and JavaR
Another formal semantics for a subset of Java was developed
by Drossopoulou and Eisenbach, where they have presented
an operational semantics, a formal type system, and sketched1

an outline of the type soundness proof [34, 35, 9]. This subset
includes primitive types, classes with inheritance, instance
variables, and instance methods, interfaces, shadowing of
instance variables, dynamic method binding, statically resolv-
able overloading of methods, object creation, null pointers,
arrays and a minimal treatment of exceptions.

The author’s approach was to define JavaS, which is a prov-
ably safe subset of Java containing the features listed above,

1The authors provided informal (and incomplete) proofs to argue that the
type system of Java is sound. The work of Syme [33] complemented these
proofs and provided a machine-checked version of them in the Declare proof
assistant.

a term rewrite system to describe the operational semantics
and a type inference to describe compile-time type checking.
They also prove that program execution preserves the type up
to the subclass/subinterface relationship [9]. Furthermore, the
type system was described in terms of an inference system.

This formal calculus was designed as a series of compo-
nents, where JavaS is a formal representation of the subset of
Java semantics, JavaSE is an enriched version of JavaS con-
taining compile-time type information, and JavaR that extends
JavaSE and describes the run-time terms. Figure 6 shows the
syntax of JavaS.

In JavaS a program consists of a sequence of class bod-
ies. Class bodies consist of a sequence of method bodies.
Method bodies consist of the method identifier, the names
and the types of the arguments, and a statement sequence.
It is required exactly one return statement in each method
body, and that it is the last statement. Also, it is considered

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 25 • N. 3 • p.67/74 • 2018

Formal Semantics for Java-like Languages and Research Opportunities

Syntax

Program ::= program specification
(ClassBody)∗

ClassBody ::= class declarations
ClassId ext ClassName {(MethBody)∗}

MethBody ::= method declarations
MethId is (λ ParId : VarType.)∗ {Stmts; return [Expr]}

Stmts ::= statement list
ε | Stmts ; Stmt

Stmt ::= statement declarations
i f Expr then Stmts else Stmts if statement
Var := Expr assignment
Expr.MethName(Expr∗) method invocation
throw Expr exception throw
try Stmts(catch ClassName Id Stmts)∗ f inally Stmts
try Stmts(catch ClassName Id Stmts)+

Expr ::= expressions
Value primitive values
Var variable names
Expr.MethName(Expr∗) method invocation
new ClassName instancing a class
new SimpleType([Expr])+([])∗ array instantiation

Figure 6. Syntactic definitions for JavaS.

only conditional statements, assignments, method calls, try
and throw statements. This was done because iteration and
others constructors can be achieved in terms of conditionals
and recursion.

The calculus considers values, method calls, and instance
variable access. The values are primitives (such as true, 4, ‘c’,
etc.), references or arrays. References are null, or pointers to
objects. The expression new C creates a new object of class C,
whereas the expression new T[en]+ creates a n dimensional
array. Also, pointers to objects are implicit.

As the others Java calculus, this proposal also models
the class hierarchy, proposing the v relationship. Moreover,
they also describe the environment, usually denoted by a Γ,
using the BNF notation and containing both the subclass and
interface hierarchies and variable type declarations. The en-
vironment also holds the type definitions of all variables and
methods of a class and its interface. For short, this gram-
mar [9] was omitted from here.

The following piece of code serves to demonstrate the
JavaS syntax and some of the features tacked by the authors.

1 ps = Phil ext Object {
2 think is λy:Phil.{...}
3 think is λy:FrPhil.{...}
4 }
5 FrPhil ext Phil {
6 think is λy:
7 Phil.{this.like := oyster;...}
8 }

Considering the presented program, the environment Γ is:

1 Γ = Phil ext Object {
2 like : Truth,
3 think : Phil → Phil
4 think : FrPhil → Book},
5 FrPhil ext Phil { like: Food,
6 think : Phil → Phil},
7 aPhil : Phil,pascal : FrPhil }

The operational semantics for this language was defined
as a ternary rewrite relationship between configurations, pro-
grams, and configurations. Configurations are tuples of JavaR
terms and states. The terms represent the part of the orig-
inal program remaining to be executed. The method calls
evaluation were described as textual substitutions [9]. There
are three relations for specifying the reduction of terms, one
for each syntax category:

exp
;(Γ,p),

var;(Γ,p),
stmt; (Γ,p). Global

parameters are an environment Γ (containing the class and
interface hierarchies, needed for runtime type checking) and
the program p being executed [33].

The proposed rewrite system has 36 rules in total, where
15 of them are “redex” rules that specify the reduction of ex-
pressions in the cases where sub-expressions have reductions.
A sample of this rules is:

stmt0,s0
stmt; (Γ,p) stmt1,s1

{stmt0,stmts},s0
stmt; (Γ,p) {stmt1,stmts},s1

There are 11 rules for dealing with the generation of ex-
ceptions: 5 for null pointers dereferences, 4 for bad array
index bounds, one for bad size when creating a new array and
one for runtime type checking when assigning to arrays. A
simple example is:

ground(exp) ground(val)

null[exp] := val,s0
stmt; (Γ,p) NullPointExc,s0

In this calculus, a term is ground if it is in normal form,
i.e. no further reduction can be made. For short, several rules
were omitted from this text, such as for field dereferencing,
variable lookup, class creation, field assignment, local variable
assignment, conditional statements, method call and rules for
dealing with arrays. All of them are covered in the original
paper [34]. This presentation also omits the type system rules
and auxiliary definitions.

By proving subject reduction and soundness, the authors
argue that the type system of JavaS is sound, in the sense that
unless an exception is raised, the evaluation of any expression
will produce a value of a type “compatible” with the type
assigned to it by the type system.

2.3.1 Projects Derived from JavaS
The formalization of JavaS was a pioneer in this area, propos-
ing an operational semantics, defining a formal type system

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 25 • N. 3 • p.68/74 • 2018

Formal Semantics for Java-like Languages and Research Opportunities

and sketching an outline of the type soundness proof, becom-
ing an inspiration to several projects. A machine-checked
proof of the whole calculus was done, using a tool called
Declare, complementing the written semantics and proofs by
correcting and clarifying significant details [33].

The language Javalight is directly related to JavaS, although
it uses a different approach in the representation of programs
and an evaluation semantics (aka “big-step”) instead of a
transition semantics (aka “small-step”). Javalight language
was also machine-checked, but in this case with the theorem
prover Isabelle/HOL [36].

The operational semantics of JavaS was also used to help
in the development of proofs for JFlow, a new programming
language that extends the Java language and permits static
checking of flow annotations [37]. There are also some mech-
anized specifications for other languages, such as JavaScript
and PHP, that were inspired by this work [38, 39, 40].

2.4 Javalight and Jinja
Jinja [41, 11] is a Java-like programming language with a
formal semantics designed to exhibit core features of Java,
proposed by Nipkow and improved in conjunction with Klein.
According to the authors, the language is a compromise be-
tween the realism of the language and tractability and clar-
ity of the formal semantics. It is also an improvement of
Javalight [36], enhancing the treatment of exceptions.

In contrast to others formalizations, they presented a big
and a small step semantics, which are independent of the type
system, showing their equivalence. They also presented the
type system rules, a definite initialization analysis, and the
type safety proofs of the small step semantics. Additionally,
the whole development has been carried out in the theorem
prover Isabelle/HOL [42].

The abstract syntax of programs is given by the type defini-
tions in Figure 7. A program is a list of class declarations. A
class declaration consists of the name of the class and the class
itself. A class consists of the name of its direct superclass,
a list of field declarations, and a list of method declarations.
A field declaration is a pair consisting of a field name and
its type. A method declaration consists of the method name,
the parameter types, the result type, and the method body.
A method body is a pair of formal parameter names and an
expression [11].

Jinja is an imperative language, where all the expressions
evaluate to certain values. Values in this language can be
primitive, references, null values or the dummy value Unit. As
an expression-based language, the statements are expressions
that evaluate to Unit. The following expressions are supported
by Jinja: the creation of new objects, casting, values, variable
access, binary operations, variable assignment, field access,
field assignment, method call, block with locally declared
variables, sequential composition, conditionals, loops, and
exception throwing and catching. The following example
shows a program source-code using this language.

1 class B extends A {field F:TB

Syntax

prog ::= program declaration
cdecl list

cdecl ::= class declarations
cname× class

class ::= class definition
cname× f decl list×mdecl list

f decl ::= field declarations
vname× ty

mdecl ::= method declarations
mname× ty list× ty

J−mb ::= method body
vname list× expr

Figure 7. Syntactic definitions for FJ.

2 method M:TBs->T1 = (pB,bB)}
3 class C extends B {field F:TC
4 method M:TCs->T2 = (pC,bC)}

In this example, the field F in class C hides the one in class
B. The same occurs with the method M. This differs from
Java, where methods can also be overloaded, which means
that multiple declarations of M can be visible simultaneously
since they are distinguished by their argument types.

In this language, everything (expression evaluation, type
checking, etc.) is performed in the context of a program
P. Thus, there are some auxiliary definitions, omitted from
here, like is-class, subclass, sees-method, sees-field, has-field,
etc., that can be used to obtain information that are inside the
abstract syntax tree of a program to assist on the evaluation.

The evaluation rules were presented in two parts: first, the
authors introduce a big step or evaluation semantics, and then
a small step or reduction semantics. The big step semantics
was used in the compiler proof, and the small step semantics
in the type safety proof. As this language deals with effects,
it was necessary to define a state, that is represented by a
pair, which models a heap and a store. A store is a map from
variable names to values and a heap is a map from address to
objects.

For the big-step semantics, the evaluation judgment is of
the form P ` 〈e,s〉 ⇒ 〈e′,s′〉, where e and s are the initial
expression and state, and e′ and s′ the final expression and
state. Figure 8 show some of the rules for Jinja big-step
semantics.

The first rule (R-New) first allocates a new address: func-
tion new-Addr returns a “new” address, that is, new-Addr h
= bac implies h a = None. Then predicate has-fields com-
putes the list of all field declarations in and above class C,
and init-fields creates the default field table. The second (R-
Field) evaluates e to an address, looks up the object at the
address, indexes its field table with (F, D), and evaluates to the
value found in the field table. The lengthiest rule presented
here (R-Method) is the one for a method call. It evaluates e

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 25 • N. 3 • p.69/74 • 2018

Formal Semantics for Java-like Languages and Research Opportunities

Evaluation Rules

new-Addr h = bac P ` C has-fields FDTs h’ = h(a 7→ (C, init-fields FDTs))
P ` 〈new C,(h, l)〉 ⇒ 〈addr a, (h’, l)〉

(R-New)

P ` 〈e, s0〉 ⇒ 〈addr a,(h,l)〉 h a = b(C, fs)c fs(F, D) = bvc
P ` 〈e.F{D},s0〉 ⇒ 〈Val v,(h,l)〉

(R-Field)

P ` 〈e,s0〉 ⇒ 〈addr a, s1〉 P ` 〈ps,s1〉[⇒]〈map Val vs,(h2,l2)〉
h2 a = b(C,fs)c P ` C sees M: Ts→T = (pns, body) in D |vs|= |pns|

l′2 = [this 7→ Addr a, pns [7→] vs] P ` 〈body,(h2,l′2)〉 ⇒ 〈e′,(h3,l3)〉
P ` 〈e.M(ps),s0〉 ⇒ 〈e′,(h3,l2)〉

(R-Method)

Figure 8. Partial big-step semantics for Jinja.

to an address a and the parameter list ps to a list of values
vs, looks up the class C of the object in the heap at a, looks
up the parameter names pns and the body of the method M
visible from C, and evaluates the body in a store that maps
this to Addr a and the formal parameter names to the actual
parameter values. The final store is the one obtained from the
evaluation of the parameters. The complete set of rules can
be found at the original papers [41, 11].

According to the authors, the small-step semantics was
provided because the big step semantics has several draw-
backs, for example, it cannot accommodate parallelism, and
the type safety proof needs a fine-grained semantics. The
main difference between the two proposed semantics is that
in the small-step they present subexpression reduction, which
essentially describe the order that subexpressions are evalu-
ated. Having the subexpressions sufficiently reduced, they
describe the expression reduction. Most of that rules are fairly
intuitive and many resemble their big-step conterparts [11].
These rules were omitted from this text.

In their papers, the authors relate the big-step with the
small-step semantics, show the type-system rules and then
prove its type-safety by showing the progress and preserva-
tion theorem for the proposed language. Additionally, the
whole development of this project runs to 20000 lines of Is-
abelle/HOL text, which can be found online [42].

2.4.1 Projects Derived from Javalight and Jinja
Jinja has become the basis for further investigations when
concerning to Java-like languages. For example, it was pos-
sible to work on a framework to transform a single-threaded
operational semantics into a semantics with an interleaved ex-
ecution of threads, as an extension of Jinja [43]. Jinja was also
used as starting point for a formalization of multiple inheri-
tance in C++ [44]. Proof-synthesis algorithms for flow chart
languages were also derived from this formalization [45].

More recently, among others projects that are based on
Jinja or make use of it for some purpose, it was proposed a tool
for the automated termination analysis of Java Bytecode pro-
grams, allowing verification of runtime complexity of existing

Java programs [46]. In this same research area, it was revisited
some known transformations from Jinja bytecode to rewrite
systems from the viewpoint of runtime complexity, where the
authors have been proposed an alternative representation of
Jinja bytecode executions as computational graphs obtaining
a novel representation [47]. Furthermore, there exist projects
that make use of more precise formalizations in some parts of
the project, as the hybrid approach for proving noninterference
of Java programs [48]. Another interesting project, concerns
about a Coq formal specification of the Siaam model [49],
built over the Jinja specification.

Because these languages include bytecode-verification,
virtual machine, compiler and a machine-checked formaliza-
tion using the Isabelle/HOL theorem prover, they can be used
in different kinds of projects and can be explored in future
studies.

2.5 A Comparison Between the Most Used Seman-
tics

The use of formal modeling can offer significant advances
to the design of a complex system. The introduction of
lightweight versions of a programming language, where com-
plex features are dropped to enable rigorous arguments about
key properties, allow a better understanding of the language
characteristics, facilitate the investigation of novel construc-
tions, and can be a useful tool for studying the consequences
of extensions and variations.

However, choosing a formal model for a programming
language when starting a research can be a difficult task, since
there is a large number of projects in this area and several
factors to be considered. For example, one project may need a
more complete semantics, where a big number of features are
included, while another project could prefer a more compact
language, in order to study some specific extension that does
not depend on a complete approach. A look at the related
projects can be a good starting point to choose among the
variety of formalisms, because it is possible to observe the
pattern applied to these projects, and the similarities with the
intended project. Considering this, in this section, we pro-

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 25 • N. 3 • p.70/74 • 2018

Formal Semantics for Java-like Languages and Research Opportunities

vide a comparison between the models presented in previous
sections.

Table 1 shows which features are modeled in each of the
discussed formal languages. Features of original Java that are
not modeled in any of the presented languages (for example
packages, access modifiers, λ -expressions, concurrency, re-
flection, among others) were suppressed from this table. For
clarity, we split the table into categories, and we group some
similar features for space optimization. We use three different
kinds of support level, where means that the category or fea-
ture is fully supported by the presented formalism, G# stands
for a partial support, and # when the feature is not supported
at all. For presentation purposes we abbreviate Featherweight
Java as FJ, ClassicJava as CJ, JavaS as JS, and Jinja as JJ in
the first line of the table. We intended to present the main
functionalities for each studied language, thus some minor
features may not appear in this table.

Feature FJ CJ JS JJ
Primitive Types and Values # # G#
Integer # #
Boolean # #
String literal # # #
Basic Statements # G#
Null values and Assignment #
Conditionals # #
Loops and Sequences # #
Try-catch-finally # #
Math Operators # # #
Basic OOP G# G# G# G#
Classes and inheritance
Interfaces # #
Casts #
Constructors, super and this G# # G#
Polymorphism and overriding #
Overloading and static methods # # # #
Generics # # #
Arrays # # #
Formal Specifications G# G# G#
Big-step semantics # # #
Small-step semantics
Progress and preservation
Use of proof assistant # # G#

Support level: = Full G# = Partial # = None
FJ is Feath. Java, CJ is ClassicJava, JS is JavaS, JJ is Jinja.

Table 1. Comparison between the most used Java-like
semantics.

When looking at this table, we can identify two differ-
ent patterns. The first, represented by Featherweight Java
and ClassicJava, is compactness. The second, represented by
JavaS and Jinja, is completeness. While the first ones are con-
centrated on a minimal object-oriented formalism, the others
are formalizing a larger subset of Java language. These pat-
terns can be useful to choose between one or another approach,

so next, we discuss each pattern separately.
Featherweight Java and ClassicJava offer similar function-

alities, where the goal of these projects was to define a core
calculus that is as small as possible, capturing just the features
of Java that are relevant for some particular task. In the case
of FJ, the task was to analyze extensions of the core type sys-
tem. The task of CJ was to analyze an extension of Java with
mixins, a feature of Common Lisp language. The approach
demonstrated by the authors of FJ is somewhat smaller than
CJ, where the syntax, typing rules, and operational semantics
of FJ take approximately three times less space than the other.
Consequently, the soundness proofs are also correspondingly
smaller. This fact can be a criterion for choosing one instead
of the other. By the related projects presented previously, we
can note that FJ was applied mostly in Java extensions or
novel constructions in the object-oriented context, while CJ
was applied in several projects to work with threads and con-
currency. It is obvious that these projects can be (and were)
used in different areas, but the applications in related projects
can be useful to decide which one is best for new projects.

The functionalities offered by JavaS and Jinja are also
similar. The goal of the first was to show that Java’s type
system is sound, while the goal of the second was to provide a
formal semantics of the core features of Java, emphasizing on
a unified model of the source language, the virtual machine,
and the compiler. JS was one of the first steps toward a formal
semantics for Java, and hence, it was an inspiration for later
projects. However, because it explored a larger subset of
an older version of Java, it is not usually taken as the basis
for new projects, but it can be used for study purposes. In
contrast, JJ was widely used as the basis for investigations
of object-oriented characteristics. As JJ is not properly a
subset of Java, it was also used on formalizations of other
object-oriented languages. Because JJ also offers proofs, a
virtual machine, and a compiler verified in the theorem prover
Isabelle/HOL, it seems to be a good formalism when a more
complete formalism of Java is needed.

The comparison presented in this section does not intend
to cover all aspects of the presented formalisms, but it can
provide insights on useful criteria for when choosing a formal-
ism to be applied in some project. With this at hand, the next
section presents some ideas that can be explored by using this
material.

3. Research Opportunities
This section is dedicated to providing some insights for future
research in the area of formal semantics and type system of
programming languages, specifically in the object-oriented
context. We organize the ideas in some categories, as follows.

Functional concepts in object-oriented languages: Tra-
ditional programming languages (imperative) are incorporat-
ing functional features over the years, making the code writing
more and more multi-paradigm. For example, the concept
of lambda expressions was embedded in version 8 of Java

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 25 • N. 3 • p.71/74 • 2018

Formal Semantics for Java-like Languages and Research Opportunities

language [3], which allows treating functions as arguments,
making the language more expressive. In this sense, it is possi-
ble to investigate what kind of abstractions used in functional
languages can be mapped to the object-oriented ones using
these new constructions. Among several possibilities, one
can cite: parallel evaluation for working with lists, explore
the lazy evaluation strategy, using infinite streams, the con-
cept of monads [50], etc. As far as it is known, there is no
formalization of these new aspects exactly as Java language
works, such as lambda expressions, method references, and
functional interfaces, and it can also be explored in future
work.

Property-based random testing and mechanized proofs:
Usually, in large projects, there exist some mechanisms to au-
tomate the management of testing. Unfortunately, such tests
rarely cover all interesting cases of code, which means that
some bugs may never be discovered. The use of random test-
ing in the context of Java seems to be a promising approach
since it is already applied in several other occasions [51].
Also, when considering more formal aspects, the use of proof
assistant become a powerful tool for specification and verifi-
cation of programming language semantics, although proof
development is time-consuming and difficult to learn, in gen-
eral.

Cost semantics: Another promising research area consists
on cost estimation for programs using functional concepts,
like higher-order functions. A study relating asymptotic anal-
ysis with cost semantics [52] can be explored for further in-
vestigations. In a cost semantics, it is possible to specify
an abstract cost for a program which can be validated by a
provable implementation that transfers the abstract cost to
a precise concrete cost on a particular platform [53]. There
are several projects dealing with functional languages. It is
an opportunity to research on this subject for object-oriented
languages for both sequential and parallel executions.

Dependent types: The study of dependent types has al-
ready been applied on the object-oriented context. For ex-
ample, there exist some research about index refinements, or
dependent types over a restricted domain, which is combined
with the notion of pre- and post-type, giving the programmers
the ability to reason about effective computations [54]. In
this same area it is possible to investigate about Liquid Types
(Logically Qualified Data Types), which is precise enough to
prove a variety of safety properties [55].

Different extensions: More generally, it is also possible to
study about several extensions for Java-like languages for-
mally, such as studies on transactional memory, quantum
computation, wild-cards and pattern matching, automatic par-
allelism, and many others. This kind of research is very
important for providing a new well-tested feature with formal
proofs that it behaves correctly.

4. Final Remarks
This document has been presented a study on different se-
mantics for Java-like languages, comparing them with each
other and showing several projects that were inspired by the
proposed semantics. This study was motivated by the need for
formalisms in the object-oriented context and the lack of for-
malization for some new characteristics of the Java language.

Based on this study, it is possible to make a choice among
the most used Java-like semantics, considering the needs for
different projects. An indirect consequence of this text is a bet-
ter understanding of distinct ways to formalize the semantics
and the type system of programming languages. In addition,
the section that discusses research opportunities has pointed
out several paths that can be followed by future projects, with
help of the provided bibliography.

Author contributions
This paper shows a comparison between the most cited formal
semantics for Java, developed by the authors as a result of the
last year’s research on this field. The Ph.D. student Samuel
da Silva Feitosa worked on text writing and literature review.
Professor Rodrigo Geraldo Ribeiro contributed to the liter-
ature review organization, and Professor André Rauber Du
Bois was the research advisor and contributed to text review.

References
[1] TIOBE.COM. TIOBE Index. 2017. Disponı́vel em:
〈https://www.tiobe.com/tiobe-index/〉.
[2] LANGPOP.COM. Programming Language Popularity
Index. 2013. Disponı́vel em: 〈http://langpop.corger.nl/〉.
[3] ORACLE.COM. The Java Language Specification.
2015. Disponı́vel em: 〈http://docs.oracle.com/javase/specs/
jls/se8/html/〉.
[4] DEBBABI, M.; FOURATI, M. A formal type system for
Java. J. Object Technol., v. 6, n. 8, p. 117–184, 2007.

[5] FILARETTI, D.; MAFFEIS, S. An executable
formal semantics of PHP. In: Proceedings of the 28th
European Conference on ECOOP 2014 — Object-Oriented
Programming. New York, NY, USA: Springer-Verlag New
York, Inc., 2014. v. 8586.

[6] BOGDANAS, D.; ROSU, G. K-Java: A complete
semantics of Java. SIGPLAN Not., v. 50, n. 1, p. 445–456,
2015.

[7] MILNER, R. The definition of standard ML: revised. 1.
ed. Cambridge, USA: MIT press, 1997.

[8] FLATT, M.; KRISHNAMURTHI, S.; FELLEISEN,
M. Classes and mixins. In: Proceedings of the 25th
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. New York, NY, USA: ACM, 1998.
(POPL, ’98).

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 25 • N. 3 • p.72/74 • 2018

https://www.tiobe.com/tiobe-index/
http://langpop.corger.nl/
http://docs.oracle.com/javase/specs/jls/se8/html/
http://docs.oracle.com/javase/specs/jls/se8/html/

Formal Semantics for Java-like Languages and Research Opportunities

[9] DROSSOPOULOU, S.; EISENBACH, S. Describing
the semantics of java and proving type soundness. In: Formal
Syntax and Semantics of Java. London, UK: Springer-Verlag,
1999. v. 1.

[10] IGARASHI, A.; PIERCE, B. C.; WADLER, P.
Featherweight java: A minimal core calculus for java and gj.
ACM Trans. Program. Lang. Syst., v. 23, n. 3, p. 396–450,
2001.

[11] KLEIN, G.; NIPKOW, T. A machine-checked model for
a java-like language, virtual machine, and compiler. ACM
Trans. Program. Lang. Syst., v. 28, n. 4, p. 619–695, 2006.

[12] GOOGLE. Google Scholar. 2018. Disponı́vel em:
〈https://scholar.google.com.br/〉.
[13] ORACLE.COM. The Java Language Specification.
2018. Disponı́vel em: 〈https://docs.oracle.com/javase/specs/
jls/se10/html/〉.
[14] CIANCARINI, S. C. C. L. P. A reduction semantics for
java. Citeseerx, v. 1, n. 1, p. 1–17, 1998.

[15] FARZAN, A.; CHEN, F.; MESEGUER, J. Formal
analysis of java programs in javafan. In: ALUR, R.; PELED,
D. A. (Ed.). In Proceedings of CAV. Berlin, Germany:
Springer, 2004. (LNCS, v. 3314).

[16] STARK, R. F.; BORGER, E.; SCHMID, J. Java and the
Java Virtual Machine: Definition, Verification, Validation
with Cdrom. 2001. ed. Secaucus, NJ, USA: Springer-Verlag
New York, Inc., 2001. v. 1.

[17] PIERCE, B. C. Types and Programming Languages. 1st.
ed. Cambridge, Usa: The MIT Press, 2002. v. 1.

[18] BIERMAN, G. M.; PARKINSON, M.; PITTS, A. MJ:
An imperative core calculus for Java and Java with effects.
Cambridge, UK, 2003.

[19] ÖSTLUND, J.; WRIGSTAD, T. Welterweight java.
In: VITEK, J. (Ed.). Proceedings of the 48th International
Conference on Objects, Models, Components, Patterns.
Berlin, Heidelberg: Springer-Verlag, 2010. (TOOLS, ’10).

[20] BELLIA, M.; OCCHIUTO, M. E. Properties of java
simple closures. Fundam. Inf., v. 109, n. 3, p. 237–253, 2011.

[21] FEITOSA SAMUEL DA SILVAAND VIZZOTTO, J.
K. P. E. K. D. B. A. R. A monadic semantics for quantum
computing in featherweight java. In: . Proceedings of
the 20th Brazilian Symposium on Progamming Languages,
SBLP 2016. 1. ed. Maringá, Brazil: Springer International
Publishing, 2016. v. 1, p. 31–45.

[22] DELAWARE, B.; COOK, W.; BATORY, D. Product
lines of theorems. In: ACM SIGPLAN Notices. New York,
USA: ACM, 2011. v. 46.

[23] KUCI, E. et al. A co-contextual type checker
for featherweight java (incl. proofs). arXiv preprint
arXiv:1705.05828, v. 1, n. 1, p. 1–54, 2017.

[24] FLATT, M.; KRISHNAMURTHI, S.; FELLEISEN, M.
A programmer’s reduction semantics for classes and mixins.

In: ALVES-FOSS, J. (Ed.). Formal Syntax and Semantics of
Java. London, UK: Springer-Verlag, 1999. v. 1.

[25] POTTIER, F. Hindley-milner elaboration in applicative
style: Functional pearl. In: JEURING, J.; CHAKRAVARTY,
M. M. (Ed.). Proceedings of the 19th ACM SIGPLAN
International Conference on Functional Programming. New
York, USA: ACM, 2014. (ICFP, ’14).

[26] FLANAGAN, C.; FREUND, S. N. Type-based race
detection for java. SIGPLAN Not., v. 35, n. 5, p. 219–232,
2000.

[27] BOYAPATI, C.; LEE, R.; RINARD, M. A type system
for preventing data races and deadlocks in java programs.
In: Proceedings of the ACM Conference on Object-Oriented
Programming, Systems, Languages and Applications.
Cambridge, USA: MIT Press, 2002. v. 1.

[28] WELC, A.; HOSKING, A. L.; JAGANNATHAN, S.
Transparently reconciling transactions with locking for java
synchronization. In: THOMAS, D. (Ed.). Proceedings of the
20th European Conference on Object-Oriented Programming.
Berlin, Heidelberg: Springer-Verlag, 2006.

[29] FINDLER, R. B.; FELLEISEN, M. Contract soundness
for object-oriented languages. SIGPLAN Not., v. 36, n. 11, p.
1–15, 2001.

[30] BOYAPATI, C.; LISKOV, B.; SHRIRA, L. Ownership
types for object encapsulation. In: AIKEN, A.; MORRISETT,
G. (Ed.). ACM SIGPLAN Notices. New York, USA: ACM
press, 2003. v. 38.

[31] HAMLEN, K. W.; JONES, M. M.; SRIDHAR,
M. Aspect-oriented runtime monitor certification. In:
FLANAGAN, C.; KöNIG, B. (Ed.). Proceedings of the 18th
International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Berlin, Heidelberg:
Springer-Verlag, 2012. v. 1.

[32] MOLDEREZ, T.; JANSSENS, D. Modular reasoning in
aspect-oriented languages from a substitution perspective.
In: CHIBA, S.; TANTER Éric; HIRSCHFELD, E. E.
andRobert (Ed.). Transactions on Aspect-Oriented Software
Development XII. Berlin, Germany: Springer, 2015. v. 8989,
p. 3–59.

[33] SYME, D. Proving java type soundness. In:
ALVES-FOSS, J. (Ed.). Formal Syntax and Semantics of Java.
London, UK: Springer-Verlag, 1999. v. 1.

[34] DROSSOPOULOU, S.; EISENBACH, S. Java is type
safe - probably. In: AKŞIT, M.; MATSUOKA, S. (Ed.). In
European Conference On Object Oriented Programming.
Berlin, Germany: Springer-Verlag, 1997. (LNCS, v. 1241), p.
389–418.

[35] DROSSOPOULOU, S.; EISENBACH, S.; KHURSHID,
S. Is the java type system sound? Theor. Pract. Object Syst.,
John Wiley & Sons, Inc., New York, NY, USA, v. 5, n. 1, p.
3–24, 1999.

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 25 • N. 3 • p.73/74 • 2018

https://scholar.google.com.br/
https://docs.oracle.com/javase/specs/jls/se10/html/
https://docs.oracle.com/javase/specs/jls/se10/html/

Formal Semantics for Java-like Languages and Research Opportunities

[36] NIPKOW, T.; OHEIMB, D. von. Javalight is
type-safe—definitely. In: Proceedings of the 25th
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. New York, USA: ACM, 1998.
(POPL, ’98).

[37] MYERS, A. C. Mostly-static decentralized information
flow control. Tese (Doutorado) — Massachusetts Institute of
Technology, Cambridge, USA, 1999.

[38] BODIN, M. a. A trusted mechanised javascript
specification. In: JAGANNATHAN, S.; SEWELL, P. (Ed.).
ACM SIGPLAN Notices. New York, USA: ACM, 2014. v. 49.

[39] BODIN, M. Certified semantics and analysis of
JavaScript. Tese (Doutorado) — Université Rennes 1, 2016.

[40] FILARETTI, D. An executable formal semantics of PHP
with applications to program analysis. Tese (Doutorado) —
Imperial College London, London, UK, 2015.

[41] NIPKOW, T. Jinja: Towards a comprehensive formal
semantics for a java-like language. In: NIPKOW, T. et al.
(Ed.). IN PROCEEDINGS OF THE MARKTOBERDORF
SUMMER SCHOOL. NATO SCIENCE SERIES. Munich,
Germany: Press, 2003. v. 1.

[42] KLEIN, G.; NIPKOW, T. Jinja is not Java
- Archive of Formal Proofs. 2017. Disponı́vel em:
〈https://www.isa-afp.org/entries/Jinja.html〉.
[43] LOCHBIHLER, A. Type safe nondeterminism - a
formal semantics of java threads. In: International Workshop
on Foundations of Object-Oriented Languages (FOOL 2008).
San Francisco, USA: Karlsruhe Institute of Technology, 2008.
v. 1.

[44] WASSERRAB, D. et al. An operational semantics and
type safety proof for multiple inheritance in. In: TARR, P. et
al. (Ed.). ACM SIGPLAN Notices. New York, USA: ACM,
2006. v. 41.

[45] CHAIEB, A. Proof-producing program analysis.
In: BARKAOUI, K.; CAVALCANTI, A.; CERONE, A.
(Ed.). Proceedings of the Third International Conference
on Theoretical Aspects of Computing. Berlin, Heidelberg:
Springer-Verlag, 2006. (ICTAC, ’06).

[46] PIRKER, M.; SCHAPER, B. M. From Jinja Bytecode to
Computation Graphs. Bachelor’s Thesis — University of
Innsbruck, 2012.

[47] MOSER, G.; SCHAPER, M. A complexity preserving
transformation from jinja bytecode to rewrite systems. arXiv
preprint arXiv:1204.1568, v. 1, n. 1, p. 1–36, 2012.

[48] KÜSTERS, R. et al. A hybrid approach for proving
noninterference of java programs. In: FOURNET, C.; HICKS,
M. (Ed.). Computer Security Foundations Symposium (CSF),
2015 IEEE 28th. Verona, Italy: IEEE, 2015. v. 1.

[49] CLAUDEL, B.; SABAH, Q.; STEFANI, J.-B. Simple
isolation for an actor abstract machine. In: International
Conference on Formal Techniques for Distributed Objects,
Components, and Systems. Cham, Switzerland: Springer,
Cham, 2015. (LNCS, v. 9039).

[50] MOGGI, E. Computational lambda-calculus and
monads. In: Proceedings of the Fourth Annual Symposium
on Logic in computer science. Hoboken, New Jersey: IEEE
Press, 1989. (LNCS, v. 9039).

[51] CLAESSEN, K.; HUGHES, J. QuickCheck: A
lightweight tool for random testing of Haskell programs. In:
ODERSKY, M.; WADLER, P. (Ed.). Proceedings of the Fifth
ACM SIGPLAN International Conference on Functional
Programming. New York, NY, USA: ACM, 2000. (ICFP,
’00).

[52] BLELLOCH, G. E.; HARPER, R. Cache and i/o
efficent functional algorithms. In: Proceedings of the 40th
Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. New York, USA: ACM, 2013.
(POPL, v. 1).

[53] HARPER, R. Yet Another Reason Not To
Be Lazy Or Imperative. 2012. Disponı́vel em:
〈https://existentialtype.wordpress.com/2012/08/26/
yet-another-reason-not-to-be-lazy-or-imperative/〉.
[54] CAMPOS, J.; VASCONCELOS, V. T. Imperative
objects with dependent types. In: MONAHAN, R. (Ed.).
Proceedings of the 17th Workshop on Formal Techniques
for Java-like Programs. New York, NY, USA: ACM, 2015.
(FTfJP, ’15).

[55] RONDON, P. M.; KAWAGUCI, M.; JHALA, R. Liquid
types. In: Proceedings of the 29th ACM SIGPLAN Conference
on Programming Language Design and Implementation. New
York, USA: ACM, 2008. (PLDI, ’08).

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 25 • N. 3 • p.74/74 • 2018

https://www.isa-afp.org/entries/Jinja.html
https://existentialtype.wordpress.com/2012/08/26/yet-another-reason-not-to-be-lazy-or-imperative/
https://existentialtype.wordpress.com/2012/08/26/yet-another-reason-not-to-be-lazy-or-imperative/

	Introduction
	Introduction
	Formal Semantics for Java
	Featherweight Java
	Projects Derived from FJ

	ClassicJava
	Projects Derived from ClassicJava

	Java_S, Java_SE and Java_R
	Projects Derived from Java_S

	Java_light and Jinja
	Projects Derived from Java_light and Jinja

	A Comparison Between the Most Used Semantics

	Research Opportunities
	Final Remarks
	References

