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Resumo
Esse artigo apresenta uma metodologia para análise de granulometria por 

imagem, baseada na modelagem de energia no espaço das freqüências, utilizando a 
transformada Wavelet. Apresenta uma breve revisão da ferramenta da transformada 
Wavelet, e detalha a metodologia proposta. Os resultados apresentados foram 
obtidos utilizando imagens simuladas numericamente e imagens experimentais. 
Esses resultados mostram uma correlação importante entre a energia dos 
coefi cientes das Wavelets e a distribuição das dimensões dos objetos analisados.

Palavras-chave: Processamento de imagem, granulometria, Wavelet, materiais 
granulares.

Abstract
A methodology for granulometric image analysis based on modeling the 

spatial energy of frequencies, using the Wavelet transform is presented in this 
article. A brief review of the Wavelet Transform tool is presented, and the proposed 
methodology is detailed. The presented results were obtained using numerically 
and experimentally simulated images. These results show the relevant correlation 
between the energy of the Wavelet coeffi cients and the size distribution of the 
analyzed objects.

Keywords: Image processing, granulometry, Wavelet, granular material.

1. Introduction
The scientifi c and technological domain associated with computer vision 

includes many and diversifi ed applications, such as industrial automation, remote 
sensing, event detection for surveillance purposes, and biological image analysis 
(Gonzales & Woods, 2007). An interesting application for material science is 
the study of structures, based on image processing for the accurate estimation 
of specifi c characteristics (Mahadevan & Casasent, 2003). This particular type 
of computer vision tool provides imagery facilities for the identifi cation and/or 
classifi cation of objects under static or dynamic conditions (Pratt, 1991). In the 
last decades, the application of automatic visual inspection for geological terrain 
approaches has become a reality, providing advances in mining production 
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(Debba et al., 2006; Francus, 1998). 
The main purpose of these systems is 
to monitor the characteristics of mined 
material; analyzing their composition 
and granular aspects. 

In this specifi c context, the methods 
traditionally employed are based on 
segmentation techniques (Gonzales & 
Woods, 2007; Mahadevan & Casasent, 
2003; Francus, 1998), which involves 
partitioning of the image space domain, 
composing mutually excluded regions, 
where an interest feature appears 
uniformly and homogeneously. Even 
though the segmentation technique 
i s  w ide ly  employed  in  image 
processing, it presents some relevant 
analysis limitations when applied to 
natural or processed material having 
superposed and occluded objects in 
the image. Moreover, other problems 
can hinder segmentation efficiency, 
e.g. image noises, inhomogeneous/
defi cient illumination, color and texture 
complexity.

This article presents a method of 
granulometric image analysis that does 
not make any kind of individualization 
of the image objects. Instead of trying 
to recognize the shape and size of 
each object through segmentation-
like procedures, we intend to obtain 
transformed information to analyze 
image homogeneity (Oliveira, 2007). 
The main objective is to deal with the 
granulometric analysis of digital images 
using the special energy of frequencies 
obtained by wavelet  t ransform 
(Kaiser, 1994; Mallat, 1999; Morettin, 
1999). This analysis tool will provide 
auxiliary information for monitoring 
industrialized mineral processing. 
The results are evaluated taking into 
account the statistical correlation 
between the spatial frequency patterns 
for two wavelet transform coeffi cients: 
approximation and details.

2. Methodology
Wavelets are functions with 

characteristics that have made them 
known as small waves. More than 
functions, the wavelets consist of 

families of functions generated by spatial 
translations and scaling (dilatations 
or contractions) of one function (t), 
named mother-wavelet, as represented 
by the Eq. (1):

  (1)
where b is the translation parameter, and 
a is the scale factor.

The mother-wavelet is not unique, 
and classic literature about wavelet 
transform recommends choosing the 
wavelet family based on the features of 
the analyzed phenomenon, e.g. an image 
or any kind of signal. The usual families 
are the wavelets of Haar (Stollnitz et al., 
1995), Daubechies (Daubechies, 1992) 
and Morlets (Antoine et al., 1993). 

The main properties of wavelets 
for the time domain are (Kaiser, 1994): 
(i) a wavelet is a fi nite function and it’s 
admissible, i.e. in spite of oscillation, 
it has zero average; (ii) a wavelet is a 
regular function, with the derivative 
properties of smoothness and continuity; 
(iii) a wavelet is a function with compact 
support, that means it is located in the 
space. These features permit wavelet 
approximation by the superposition on 
the mother-wavelets functions, resulting 
in a set of time-scale representations 
of signal, each one with a different 
resolution, i.e. a multi-resolution 
analysis.

Supposing a function ψ a,b(t) 
presents the wavelet characteristics, 
the Continuous Wavelet Transform of 
a function f ∈ L²(ℜ) is defi ned by the 
convolution between the analyzed signal 
and the wavelet function, as represented 
by Eq. (2).

 (2)

The wavelet function W(a,b) 
belongs to the intersection of two spaces, 
L1(ℜ) and L²(ℜ), in such a way that 
the function family can be orthogonal 
or not. The orthogonal one defi nes a 
wavelet basis whose main advantage is 
to allow the perfect reconstruction of the 
signal using the coeffi cients of the direct 

transform (Mallat, 1999; Daubechies, 
1992). Nevertheless, there are many 
applications of wavelet transforms 
where orthogonal functions are not used 
(Daubechies, 1992).

The discrete version of wavelet 
transform has several approaches. 
The main one is defi ned through the 
discretization of the convolution 
procedure, and can be computed using 
the Fast Fourier Transform (Mallat, 
1999). Other methods proceed by 
restricting the values of the scaling 
and translation parameters in a discrete 
range, that means a = a0

j and b = k b0 a0
j, with 

i, j ∈ℜ, a0 > 1, and b0 > 1 (Daubechies, 
1992). Particularly, one of the most 
common cases is obtained using 
a0 = 2 and b0 = 1, resulting in the 
wavelet function expressed by Eq. (3).

 (3)

In this context, different j values 
correspond to different wavelet widths. 
Therefore, it is strongly desirable to 
have a translation parameter value b 
dependent of j, in such a way that the 
narrow wavelets (high frequencies) are 
translated using small steps, while the 
wide wavelets (low frequencies) are 
translated using greater steps (Kaiser, 
1994). The discrete wavelet transform 
is given by Eq. (4), where n = 2j.

 (4)

When the mother-wavelet presents 
some scale relationship, the discretization 
becomes a fi ltering operation with easy 
implementation and low computational 
complexity (Stollnitz et al., 1995). These 
scale relationships are part of the multi-
resolution analysis, a strategy of signal 
processing where a set of discrete and 
specialized fi lters are used to compute 
the discrete and orthogonal wavelet 
bases (Jawerth & Sweldens, 1994). 
In a practical sense, when analyzing a 
signal on a greater scale, i.e. one with 
smaller temporal resolution, the details 
are not considered. Performing a zoom 
of the image, the scale is reduced and 
the resolution improves.
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The mathematical concept of multi-resolution analysis 
involves the study of a crescent sequence of closed subspaces 
Vj | j ∈ Z satisfying some specifi c properties and composing 
a function’s space (Kaiser, 1994; Mallat, 1999). In other 
words, every time a set of closed subspaces satisfi es the multi-
resolution properties, there is an orthogonal wavelet basis 
(Φj,k : k ∈ Z) such that for each signal f ∈ L², there exists a 
representation composed of approximations (scale functions) 
and details (wavelet functions) projected in the subspace. 
The detail functions described by wavelets are equivalent to 
the function expressed by Eq. 3. The approximation or scale 
functions Φ originates from a family of functions that are 
orthogonal to the wavelets. These functions are named father-
wavelets (see Eq. (5)).

 (5)

The approximation representation of f is obtained 
using different levels of resolution, in such way that the 
subspace Vj is composed of approximation functions. To 
improve approximation, orthogonal projection of f over each 
Vj is performed. When the level goes from j to j+1, i.e. the 
representation advances with the condition Vj  Vj+1, details 
will be added to the image representation and information 
will be improved. At each step, the approximation coeffi cient 
cA receives less infl uence of from the high-frequency signal 
(or image) components. Meanwhile, the detail coeffi cient cD 
consists mainly of high-frequency components and noises.

The opposite reasoning is also valid, i.e. when one 
approximates f of the lower resolution level, the signal 
information is lost (Mallat, 1999). Considering a signal 
represented with a given resolution (j-1), the scaling functions 
Φ(x) form a basis for a signal set. In this context, the signal 
and its detail are combined with a fi ner resolution level j. In 
such way, all approximation and details contents are obtained 
using a successive process of decimation, called convolutions. 
The multi-resolution analysis is consequently responsible 
for the division of the original signal in different scales of 
resolution, named sub-band codifi cation (Kaiser, 1994). For 
this procedure, in the discrete wavelet transform, each signal 
x(t) belonging to the space Vj |Vj = Vj+1 + Wj-1 can be expressed 
by the basis of each space, where Wj is the orthogonal 
complement of the space Vj . Therefore, using the coeffi cients 
generated in the fi rst approximation A0(k) belonging to the 
scale J (Eq. (6)), the coeffi cients A1(k) and D1(k), scale j-1, 
can be determined (Eq. (7)).

 (6)

 (7)

This procedure includes signal decomposition to obtain 
the approximation and detail features by applying fi lters on the 
original signal. The resulting signal approximation corresponds 
to a low resolution of the signal representation, containing the 
low frequencies, while the resulting signal details correspond 
to the signal’s high frequencies, or the difference between two 
successive low resolution representations of the signal.

Alternatively, the signal reconstruction procedure goes 
on in the inverse sense of the decomposition (Oliveira, 2007). 
It may be initialized by departing from the coeffi cients A1(k) 
and D1(k) of the scale j-1, to produce the coeffi cient A0(k) of 
the scale j. This reconstruction operation is called synthesis.

2.1 Image analysis using wavelets
The application of the wavelet transform to a two-

dimensional signal using filtering is similar to the one-
dimensional procedure. The signal is transformed by fi ltering 
it through two fi lters, a low-pass and a high-pass. As a result, 
the original signal is divided into two signals containing 
different information.

The low-pass fi lters are also called smoothing fi lters. They 
present the property of maintaining the same coeffi cients for 
the convolution mask, independent of the image position or the 
invariance to translations. Another important property is the 
implementation of fi lters by the convolution operation, where 
the chosen mask defi nes the linear fi lter type to be applied. 
The main functions of the low-pass fi lters are to remove the 
small details of the original image and to attenuate noise. On 
the other hand, the high-pass fi lters have the function of putting 
the high frequencies of the original image in evidence. This 
action reinforces the edges and other fi ne details of the image 
(Stollnitz et al., 1995).

In a practical sense, the application of the low-pass and 
high-pass fi lters to the matrix representing the digital image 
corresponds to iterations of algebraic operations on lines and 
columns of the original matrix, in such a way that each level of 
iteration produces 4 sub-images with the wavelet coeffi cients 
(Stollnitz et al., 1995), one representing the approximation 
coeffi cients and the three others representing the details of 
the three directions on the image plan (horizontal, vertical 
and diagonal).

Figure 1 presents the coeffi cients decomposition for 
the two-dimensional wavelet transform. The scale function 
determines the approximation coefficients aj, the detail 
coeffi cients are represented by dH

j 
, dV

j and dD
j, corresponding 

to the vertical, horizontal and diagonal directions, respectively, 
while the j index is associated to the resolution level.

As discussed earlier, a relevant question appears when 
applying the wavelet transform: which mother-wavelet is 
the most appropriate for analyzing the interested signal. A 
direct and unique rule for this choice does not exist; the main 
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procedure is to take into account the characteristics of wavelet 
family, as well as the features to be analyzed in the signal 
(Mallat, 1999).

For this research, the Haar wavelet family was chosen. 
The main reasons for this option are the compact support of 
this wavelet family; the simplicity of its application, including 
the low computational requirements; and the effi ciency and 
performance for detecting abrupt changes in the image (e.g. 
objects edges) (Stollnitz et al., 1995). The one-dimensional 
scale function of the Haar family is defi ned as shown in Eq. 
(8), and the wavelet expression is given by Eq. (9), known as 
the step function, with translations and dilations generating 
an orthonormal basis in L².

 (8)

  (9)

The digital image decomposition using the two-
dimensional wavelet basis can be obtained in two different 
ways: standard and non standard decompositions (Stollnitz 
et al., 1995). The standard decomposition is performed by 
applying the one-dimensional wavelet transform in two 
directions of the image. Firstly, the transform is applied to the 
image lines, and afterwards, to the columns. The construction 
of this basis consists of all possible tensor products of a 
function of the one-dimensional basis.

In the case of the non standard decomposition, the 
transform application alternates lines and columns, and its 
two-dimensional basis is based on separable scaling and 
wavelet functions (Stollnitz et al., 1995). In such a way, the 
scale function is defi ned by Eq. (10), and the wavelets are given 
by Eqs. (11), (12) and (13), respectively for three directions 
(horizontal, vertical and diagonal).

 (10)

 (11)

 (12)

 (13)

The Haar wavelet transform of images was computed 
using decomposition in low and high frequencies, relative to 
the approximation and detail coeffi cients. This transform uses 
Eqs. (10), (11), (12) and (13). The Figure 2 shows the results 
of the wavelet transform, where the superior left quadrant 

correspond to the approximation coeffi cients aj, and the other 
quadrants corresponds to the detail coeffi cients: horizontal 
dH, vertical dV and diagonal dD, respectively, superior right, 
inferior left and inferior right.

2.2 Energy of wavelet coeffi cients
In accordance with the wavelet theory, the signal can 

be described in the time and frequency domains, where the 
signal amplitude is represented, respectively, as a function 
of time and as a function of each frequency. The proposed 
granulometric analysis is supported by the fact that the 
determination of the spatial scale pattern, and its variation, can 
be an approach to estimate the sizes of the objects composing 
a digital image. This hypothesis is based on the modeling 
of the granulometric distribution system. This modeling is 
supposed to be determined by the high and low frequencies 
of the signal, as well as the local energy distribution, so that 
signal features are extracted using the multi-resolution (spatial 
scale) framework of discrete wavelet transform.

Such assumptions became more reliable if we assumed 
the granulometric distribution as a texture analysis. Texture 
may be described roughly by its coarseness; the arbitrary 
spatial repetition of local pattern structures. As such, a  large 
period implies a coarse texture; a small period implies a 
fi ne texture (Gonzales & Woods, 2007; Pratt, 1991). The 
patterns are repeated over image regions defi ning periodic 
homogeneous regions. This perceptual coarseness is clearly 
not suffi cient as a quantitative texture measure, but can at least 
be used as a guide for variation of texture measures.

Figure 1 - Two-dimensional wavelet coeffi cients.
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In fact, the recent methods for 
texture classifi cation support the notion 
of spatial-frequency (multiscale) 
analysis that maximizes the simultaneous 
localization of energy in both spatial 
and frequency domains. Such analysis 
may be provided using the multi-
resolution representation of the wavelet 
theory (Laine & Fan, 1993; Unser, 
1995). Experimentally, the wavelet’s 
capabilities have provided a powerful 
discrimination tool despite their 
sensitivity and selectivity, compared to 
traditional resolution techniques (Aksoy 
& Haralick, 1998; Davis, 1980).

T h i s  p a p e r  p r e s e n t s  t h e 
granulometric analysis of the wavelet 
transformed signal using the energy 
computations. This analysis revealed the 
strong relationship between the relative 
sizes of the objects and their associated 
energies (Pun & Lee, 2004). Energy 
determination is based on the Parseval 
Theorem, i.e. considering that the energy 
contained in the signal is equal to the 
summation of the energy contained in 
the different resolution levels of the 
wavelet transform (Mallat, 1999). In 
other words, the signal energy can be 
decomposed in terms of the transform 
coeffi cients.

Based on this reasoning, the 
Haar wavelet transform is applied 
to compute the energy coefficients. 
The energy corresponding to the 
approximation coeffi cients is obtained 
using Eq. (14), while the energy 
corresponding to the detail coeffi cients 
is obtained using Eq. (15), where the 
details of the vertical, horizontal and 
diagonal directions are considered. 
In the following computational step, 
the correlation between these two 
energies is determined using Eq. (16).

(14)

 (15)

 (16)

3. Results
The methodology proposed in 

this article was validated through 
tests considering two image sets. 
The first image set is composed by 
numerically simulated images of piled-
up spheres. Examples of these images 
are shown in Figure 3, where the defi ned 
sphere diameters are 15, 35, 75 and 
90 pixels. The second set of images 
corresponds to experimental images 
of expanded polystyrene balls with 
different diameters. The images were 
taken using a digital camera, under 
similar illumination conditions. The 
experimental images were produced 
using balls with diameters between 15 
and 90mm (Figure 2 shows an image of 
the balls with a 60 mm diameter).

The first analysis procedure 
concerns the images obtained with 
numerical simulations. The ratio, Eratio, 
for the detail and approximation energies 
(Eqs. (14), (15) and (16)) was calculated 
for each image. The variation of Eratio 
with respect to the sphere diameters 
can be seen in Figure 4. Notice the 
linear behavior of this graph, with the 
uniform and growing slope of the energy 
ratio with the augmentation of sphere 

diameter. An interesting remark: besides 
the different layers superposing, i.e. 
different pile-ups, the analysis procedure 
did not result in different results. In other 
words, the method is quite robust with 
respect to these pile-up variations.

The same procedure was applied 
to the images of expanded polystyrene 
balls. Figure 5 shows the graph of 
the energy ratio with respect to ball 
diameters. In this case, we obtain the 
same linear tendency observed in the 
preceding case. The correlation is 
superior to 95%.

3 . 1  A n a l y s i s  o f 
heterogeneous mining 
material images

The procedure proposed herein, 
tested in simulated digital images 
and in prepared experimental images, 
should be applied to more realistic 
problems. Considering actual mining 
material, another aspect appears: the 
heterogeneity of the objects in the image, 
i.e. the real objects present different 
shapes and relative dimensions.

Figure 2 - Haar wavelet decomposition, approximation and detail coeffi cients. 
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In order to evaluate the results of 
the energy corresponding to the wavelet 
transform coeffi cients for this problem, 
the set of images presented in Figure 6 is 
considered. This Figure shows 5 images 
of rock fragments composing different 
confi gurations. Image #1 is the most 
homogeneous, presenting fragments 
with quite similar dimensions. Quite to 
the opposite, Image #5 presents the most 
heterogeneous situation, where a range 
of objects, from large fragments to very 
fi ne sand can be seen. Images #2, #3 
and #4 present intermediate situations of 
increasing heterogeneity. The presence 
of fine sand represents an important 
problem for the use of traditional 
techniques based on segmentation. 

Evident ly,  the  quant i ta t ive 
evaluation of image heterogeneity is a 
quite diffi cult task. Diverse criterions 
to disparity graduation involving shapes 
and dimensions of objects, as well their 
relative concentration in each image 
could be proposed. As a consequence, 
we will restrict the analysis of these 
image sets to the qualitative aspects, 
aiming to search for the potential 
applications of wavelet-transform-
based techniques. Even without this 
quantitative exactness and accuracy, it 
is possible to expect results pointing to 
the correlation between the variations of 
the coeffi cient’s energy and the proposed 
qualitative sequence of increasingly 
heterogeneous images (from image #1 
to image #5, in Figure 6). The results of 
the computed correlation energy using 
the same mathematical expression used 
in the case of the simulated spheres 
and the expanded polystyrene balls are 
shown in Table 1.

These results confi rm the intuitive 
ordering of the images with respect 
to the increasing heterogeneity of 
fragmental aspects and distribution. 
And they strongly suggest that a deep 
study concerning this specifi c objective 
of evaluating the heterogeneity of a 
material based on the sample image 
analysis be performed by applying the 
wavelet transform technique.

Figure 3 - Samples of numerically simulated images of piled up spheres of 15, 35, 75, and 
90 pixel diameters. 

Figure 4 - Correlation energy vs. diameter (in pixels) variations in simulated spheres.

4. Conclusion
The results presented in this article 

suggest the confi rmation of the main 
hypothesis about the evaluation of the 
granulometric variation of a set of digital 

images showing different size round 
objects through the modeling of the 
energy ratio of the image coeffi cients 
obtained using wavelet transform, more 
specifically the Haar wavelet. This 
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problem modeling is based on spatial 
frequency decomposition resulting from 
the application of low-pass and high-
pass fi lters to obtain the low and high 
spatial frequencies, respectively.

Moreover, the technique proposed 
presents aspects of robustness and 
capacity to obtain high correction 
performance in different situations, such 
as when analyzing images with diverse 
geometries and  object superposition 
occurrence. The evaluation of this 
technique induces a positive conclusion 
about its application as an auxiliary tool 
for the characterization and classifi cation 
of particularly granular material. It may 
also be applied together with other tools 
based on conventional approaches, such 
as segmentation, improving signifi cantly 
the performance and result qualities, 
particularly when the image presents 
object superposition diffi culty.

A n o t h e r  a d v a n t a g e  t o  b e 
remarked here concerns the easiness 
of the technique’s implementation; a 
consequence of the wide availability of 
computational packages and hardware 
devices designed for wavelet transform 
based on the Haar function. These 
characteristics point to practical 
applications for industrial processes, 
mainly mining and metallurgical 
activities, in real-time monitoring of 
diverse granular material for its size 
composition evaluation.
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