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Monte Carlo simulation of inherited longevity
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Abstract

Within the Penna model of biological ageing, we show that longevity is heritable, for both
sexual and asexual reproduction. (©) 1999 Elsevier Science B.V. All rights reserved.
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1. Method

It is well known that longevity in humans is partly inherited: If the parents lived
very long, then their children have a higher chance to live long. More quantitatively,
Perls et al. [1] showed that brothers and sisters of centenarians have a four times higher
survival chance at old age than the siblings of people who died at a normal age of 73
years. The present paper aims to check this by Monte Carlo simulations of a suitable
model, first for asexual and then for sexual reproduction.

The most widely studied microscopic model of ageing is at present the Penna bit-
string model [2]. It has succeeded in explaining for instance, why the salmon dies soon
after reproduction, the positive female survival probability after menopause, and is in
agreement with the Gompertz law and the Azbel theory of mortality (for a review,
see e.g. [3,7,8]). The human genome is here reduced to the 32 bits of one computer
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word, where each bit represents a life-threatening inherited disease. The lifespan is
divided into 32 intervals each corresponding to one bit position; for humans therefore
one interval consists of 4-7 years, depending on the parameters chosen. A zero bit
means health; a bit set to one means that starting from that age interval until death
one additional disease is diminishing the health. 7 such diseases, i.e. T bits set to
one in the bitstring from age zero to the current age, kill the individual. People who
survive up to the reproductive age R get from then on B children per time interval.
Each child differs in M randomly selected bit positions from the parent; if a position
is selected which has already its bit set to one, then the bit is set back to zero. Besides
these genetic deaths, our simulations also allow for deaths because of the lack of food
and space through a Verhulst factor; but such deaths are ignored in all the statistics of
the present paper.

The computer program thus does not have to wait until an individual dies. Already
at birth the time of death is programmed in the genome. Thus when a baby is born, the
histogram element H (i, k) of the correlation matrix H is increased by unity, where i is
the genetic age of death for the parent and & that for the newly born child. Complete
correlation would mean that the matrix H(i, k) is diagonal while complete statistical
independence for the ages of death would mean that the matrix elements have the same
shape as a function of k, independent of the line i of the matrix.

The above description refers to asexual reproduction. For sexual reproduction the
child gets a random section of genes from the mother and the others from the father
(see [3,4,7-9] for a more precise description of the now diploid genome and its re-
combination). The histogram H (i, j, k) has now three indices, for the death ages i, j,k
of father, mother and child. Six of the 32 bit positions are randomly selected (same
for the whole population) as indicating dominant diseases affecting the child already
when one of the parents has the disease. For the other (recessive) positions the health
of the child is diminished only when both parents carry this mutation.

2. Results

For asexual reproduction, the histogram in Fig. 1 shows clearly the correlations
between the age of death of parents and children: The numbers H(7,i) in the main
diagonal are clearly bigger than away from it. Thus long-lived parents get long-lived
children. In observations of human populations, such studies would take much longer
than the funding periods of typical grants, and thus Perls et al. [1] instead observed
correlations between the age of death of brothers and sisters within the same family.
Fig. 2 shows from the same simulations used for Fig. 1 a very clear correlation
between the age of death for the first child in the family, and the average age of death
for the other children. In both Figs. 1 and 2 the histograms are normalized such that
the sum of the elements within one line, i.e. for a fixed age of the parent or first child,
equals 100. Fig. 3 shows how the average age of death within one generation of one
family depends on the oldest age of death in that group; this figure is nearly the same
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Fig. 1. Histogram (in percent) of child’s programmed death age (pda) versus parental death age. For a given
genetic death age for the mother we plot the distribution of the ages of genetic death for the offspring. The
sharp ridge in the diagonal shows that children die mostly at the same age as their parent, in this asexual
model. Note that the horizontal axes do not start at zero. Since we allowed back mutations from one to zero

for the bit-string, some children can live longer than their parents.

frequency

Fig. 2. Histogram (in percent) of child death age versus death age of first-born child. Compared with
Fig. 1, we only replaced the mother’s age of death by that of the first-born child.
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Sibling deaths for both large population (short time) and small population (long time)
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Fig. 3. Average death age of children versus death age of the oldest child in the family. Instead of the full
histogram as in Figs. 1 and 2 we show here only the average.

as that in a preliminary publication of the authors [Lancet 352 (1998) 911], where
much more iterations and a smaller population were used.

(As parameters for these figures we took 7 =R =3,M =4,B = 1. Then at age 13
about 99.8% of the population died, which correponds to an age of about 100 years for
the present German population. The mutation rate M =4 was taken unusually [2,3,7,8]
large to avoid that nearly all brothers and sisters die at the same age. The minimum
reproduction age R = 3 was taken unusually low to correspond to human marriage
customs. )

We varied the population between 32 and 5 x 107, and the number of iterations
between 150 and 2000 million, without clear changes seen in the histograms for ages
up to 15 intervals. However, the survival probabilities for ages beyond 10 depended
strongly on the size of the population as seen in Fig. 4; data with the same population
size but different numbers of iterations roughly overlap. These straight lines corre-
spond to the simple Gompertz law of an overall mortality increasing exponentially
with age, while the less steep increase of the mortality for the oldest old may corre-
spond to human reality [5,10-14]. For the parameters used in Refs. [2—4] with higher
R and lower M, these deviations from the Gompertz lines were much weaker. (The
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Initial population from left to right: 12, 20, 200, 2000, 20 000, 200 000, 2 M (two), 20 M (two)
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Fig. 4. Mortality versus age, with initial population increasing from 12 (left) to 20 million (right) as given in
the top line of the figure. The time varies between 150 (right) and 2000 million (left) iterations. The many
curves show that by decreasing the population the end of the plateau is shifted to the left, by an amount
logarithmic in the population size. This size effect vanishes and a plateau is reached already for averages
over many small populations, if we first average over the populations and then determine the joint survival
rates. In this paper, however, we first determine the survival rates and then average over time.

mortality is g(a) =In[S(a)/S(a+ 1)] as a function of age a, where S is the number of
Survivors. )

For sexual reproduction, we have to correlate the death ages of father (i), mother
(j) and child (k). In particular, we want to know if the distribution of the age of
death for the children is bimodal (close to the age of death for the father or for the
mother) or unimodal (close to the average age of death for the parents). Fig. 5 shows
clearly the bimodal character of the distribution: the probability of the children to die
is particularly high at the age of the mother’s death and at the age of the father’s
death. We see this from the cross structure in Fig. 5a where the child age was selected
to be on one of the recessive positions. In Fig. 5b the child age corresponds to one of
the dominant positions in the bit-string, and the cross structure is less pronounced. In
short, the danger to die is particularly high at the age of the parental death and at the
age where dominant diseases strike. We are not aware of quantitative human studies
with which we can compare this result.
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Fig. 5. Histogram of the probability (in percent) to die at age 11 (part a) and 10 (part b), versus the death
ages of father and mother. The ages with dominant mutations are 5, 6, 10, 14, 21, and 30. The two ridges
show that children die mostly at the same age as one of their parents, in this sexual model.
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3. Summary

In conclusion, the Penna model of mutation accumulation agrees nicely with the
observed heredity of longevity [1], because it is based on population genetics. This
success does not exclude, however, alternative theories of ageing [6] like oxygen rad-
icals; for example the sensitivity to these radicals damaging the DNA could also be
inherited.
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