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a b s t r a c t

The Traveling Umpire Problem (TUP) is an optimization problem in which umpires have to be assigned to

games in a double round robin tournament. The objective is to obtain a solution with minimum total travel

distance over all umpires, while respecting hard constraints on assignments and sequences. Up till now, no

general nor dedicated algorithm was able to solve all instances with 12 and 14 teams. We present a novel

branch-and-bound approach to the TUP, in which a decomposition scheme coupled with an efficient propa-

gation technique produces the lower bounds. The algorithm is able to generate optimal solutions for all the

12- and 14-team instances as well as for 11 of the 16-team instances. In addition to the new optimal solutions,

some new best solutions are presented and other instances have been proven infeasible.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.
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. Introduction

The Traveling Umpire Problem (TUP) is a sports timetabling prob-

em giving attention to the schedule of the umpires (referees). The

oal is to assign the umpires to the matches of a tournament, whose

chedule is given beforehand.

A double round robin tournament is considered, with 2n teams

laying twice against each other – once in their home venue and

nce away. This results in a competition with 4n − 2 rounds, each

onsisting of n matches. Such tournament requires assigning n um-

ires to the games, with the objective to minimize their total travel

istance. In order to obtain a fair schedule, hard constraints (a)–(e)

re imposed:

(a) every match in the tournament is officiated by exactly one

umpire;

(b) every umpire must work in every round;

(c) every umpire must visit the home venue of every team at least

once;

(d) no umpire is in the same venue more than once in any q1 con-

secutive rounds;

(e) no umpire officiates games of the same team more than once

in any q2 consecutive rounds. This constraint is similar to the

previous one, but also takes the ‘away team’ into consideration.
∗ Corresponding author at: KU Leuven, Department of Computer Science, CODeS &

Minds-ITEC, Belgium. Tel.: +32 9 265 87 04, +32476054944.
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The values q1 and q2 range respectively from 1 to n and 1 to � n
2 �.1

Since the introduction of the TUP by Trick and Yildiz (2007),

onsidering the Major League Baseball tournament, many exact and

euristic approaches have been developed. The initial work was ex-

ended (Trick & Yildiz, 2011) by a Benders cuts guided large neigh-

orhood search. These papers also provided both Integer Program-

ing (IP) and Constraint Programming (CP) formulations for the

roblem. A greedy matching heuristic and a simulated annealing ap-

roach using a two-exchange neighborhood were described by Trick,

ildiz, and Yunes (2012). Trick and Yildiz (2012) presented a Ge-

etic Algorithm (GA) with a locally optimized crossover procedure.

stronger IP formulation and a relax-and-fix heuristic were pro-

osed by de Oliveira, de Souza, and Yunes (2014), who improved both

ower and upper bounds. Wauters, Van Malderen, and Vanden Berghe

2014) improved solutions and lower bounds by an enhanced it-

rative deepening search with leaf node improvements (IDLIs), an

terated local search (ILS) and a new decomposition based lower

ound methodology. Further improvements for some instances were

ound by Toffolo, Van Malderen, Wauters, and Vanden Berghe (2014),

ho proposed a branch-and-price algorithm with a fast branch-and-

ound for solving the pricing problems. Two branching strategies

ere investigated and many bounds were improved. Xue, Luo, and

im (2015) presented two exact approaches to the TUP: a branch-

nd-bound algorithm relying on a Lagrangian relaxation for obtaining
1 Trick and Yildiz (2007) originally presented the parameters d1 and d2 such that

1 = n − d1 and q2 = � n
2
� − d2, with 0 ≤ d1 < n and 0 ≤ d2 < � n

2
�.
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Fig. 1. Graph G = (V, E) representing an 8-team TUP instance.
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lower bounds and a branch-and-price-and-cut algorithm. The latter

approach enabled solving two 14-team instances within the runtime

limit of 48 hours. Several lower bounds were also improved.

In this work, we present a new branch-and-bound approach to

the TUP. We introduce a simple decomposition scheme that, coupled

with a propagation technique, results in very strong lower bounds.

This enables increasing the size of all instances solved to optimality

from 12 to 14 teams. In addition, many 16-team instances are solved.

The following section presents a formulation for the TUP based

on the formulations introduced by Trick and Yildiz (2007) and

de Oliveira et al. (2014). Section 3 details the proposed branch-and-

bound technique while Section 4 discusses the lower bound strate-

gies considered in the algorithm. Section 5 presents computational

experiments considering both lower and upper bounds and, finally,

Section 6 summarizes the conclusions.

2. Integer programming formulation for the TUP

We present a flow formulation for the TUP based on the formula-

tions presented by Trick and Yildiz (2007) and de Oliveira et al. (2014).

A graph G = (V, E) is given, in which each node represents a game and

directed edges connect the nodes (games) of round r to the nodes of

round r + 1. This graph G also contains:

• a source node, f, and directed edges connecting f to the nodes rep-

resenting games of the first round;
• a sink node, l, and directed edges connecting the nodes represent-

ing games of the last round to l.

Fig. 1 presents an example of this graph for an 8-team instance.

The formulation considers the following input data:

de: distance of directed edge e;

I : set of teams {1, . . . , 2n};

Hi: set of nodes where team i plays at home;

R : set of rounds {1, . . . , 4n − 2};

Q ′
ir

: set of nodes (games) of team i playing at home in rounds R ∩
{r, . . . , r + q1 − 1};

Q ′′
ir

: set of nodes (games) of team i (home or away) in rounds R ∩
{r, . . . , r + q2 − 1};

U: set of umpires {1, . . . , n}.

And the following variables:

xeu =
{

1 if edge e is selected for umpire u
0 otherwise

Finally, let δ(I) and ω(I) denote the set of edges that respectively

enter and exit the nodes in I. The formulation of the problem is given

by Eqs. (1)–(7).
inimize
∑
e∈E

∑
u∈U

dexeu (1)

ubject to
∑

e∈δ( j)

∑
u∈U

xeu = 1 ∀ j ∈ V\{source, sink} (2)

∑
∈δ( j)

xeu −
∑

e∈ω( j)

xeu =
{−1 if j is the source

+1 if j is the sink
0 ∀ j ∈ V\{source, sink},

∀u ∈ U (3)

∑
∈δ(Hi)

xeu ≥ 1 ∀i ∈ I; ∀u ∈ U (4)

∑
∈δ(Q ′

ir
)

xeu ≤ 1 ∀i ∈ I; ∀r ∈ R; ∀u ∈ U (5)

∑
∈δ(Q ′′

ir
)

xeu ≤ 1 ∀i ∈ I; ∀r ∈ R; ∀u ∈ U (6)

eu ∈ {0, 1} ∀e ∈ E; ∀u ∈ U (7)

The objective, given by Eq. (1), is to minimize the total distance

raveled by the umpires. Constraints (2) ascertain that each game is

fficiated by exactly one umpire. Constraints (3) are flow preserva-

ion constraints, and together with the graph structure ensure that

very umpire officiates exactly one game per round. If an umpire is

t the location of a team in round r, the umpire must leave from the

ame location to go to the next location in round r + 1. This is also

uaranteed by the flow preservation constraints. Constraints (4) state

hat every umpire must visit every location at least once during the

eason. Constraints (5) and (6) specify that every umpire must wait

1 − 1 days to revisit the same home location and q2 − 1 days to re-

isit the same team, respectively. Finally, constraints (7) specify that

he variables considered are binary.

. Branch-and-bound

Building on the branch-and-bound procedure established by Land

nd Doig (1960), we introduce a specialized decomposition-based

lgorithm to the TUP. This algorithm considers the same graph

= (V, E) presented for the integer programming formulation in

ection 2. Starting from the first round, the branch-and-bound algo-

ithm assigns games to umpires, one at a time and round after round,

ntil the sink node is reached. An assignment of a game to an umpire

n a round is feasible if (i) the umpire did not visit the same location

n the previous q1 − 1 rounds and (ii) the umpire did not officiate any

f the teams during the previous q2 − 1 rounds. Whenever multiple

ames can be assigned to one umpire in one round, the algorithm

reedily chooses the assignment incurring the smallest increase in

ravel distance. In case of ties, the games are sorted lexicographically.

If no valid assignment can be found for an umpire in a certain

ound, the procedure backtracks to the previous umpire and chooses

he next game in the ordered list of games in the round. If the um-

ire considered is the first one of the round, then the algorithm re-

urns to the previous round. This procedure continues until the sink

ode is reached for all umpires. If the resulting solution does not vio-

ate constraint (c), it is feasible and its total distance serves as an up-

er bound. This upper bound is, together with the calculated lower

ounds, used to prune the parts of the search tree where no optimal

olution can reside.
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Round 1

Round 2

Round 3

…
Round 4n-2

(d) (e)(d),(e)

Source  Node

A x E F x B G x C D x H

A x F B x H E x C D x G

A x D B x G C x H E x F

E x A D x B H x C F x G

Sink Node

Umpire 1 Umpire 2 Umpire 3 Umpire 4

Fig. 2. Illustration of the branch-and-bound procedure for an 8-team TUP instance.
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Algorithm 1: Branch-and-bound algorithm.

Let S∗ be a global variable representing the best solution,

initialized as S∗ ← ∅
Input: Solution S, umpire u and round r

BranchBound(S, u, r)

1 u+ ← (u mod n)+1 (umpire to be analyzed in the next

iteration)

2 r+ ← r + 1 if u = n and r otherwise (round to be analyzed in

the next iteration)

3 A ← sorted list of feasible allocations in S for umpire u in

round r

4 foreach a ∈ A do

5 if allocation a cannot be pruned then

6 S ← S ∪ {a}
7 if S is not complete then

8 BranchBound(S, u+, r+)

9 else

10 S′ ← LocalSearch(S)

11 if S∗ = ∅ or S′ is better than S∗ then

12 S∗ ← S′

13 S ← S \ {a}
Whenever a new feasible solution is obtained, a local search pro-

edure is applied in order to improve its quality. Even if the obtained

olution is not feasible, i.e. if it does not satisfy constraint (c), a lo-

al search algorithm is executed trying to first restore feasibility and

hen to improve the quality of the resulting solution. The local search

rocedure is detailed in Section 3.4.

Fig. 2 presents an example of the branch-and-bound execution in

n instance with 8 teams, q1 = 3 and q2 = 2. It shows that the branch-

nd-bound search is currently deciding which game Umpire 1 will of-

ciate after game B × H. The games A × D, B × G and C × H are cut

rom the search tree in the current stage, as they would lead to infea-

ible solutions. The first two games would violate constraint (d) while

he second and third would violate constraint (e). Thus, the only op-

ion for Umpire 1 in the next round is to officiate game E × F.

.1. Symmetry breaking

In order to speed up the branch-and-bound algorithm, we fix the

ames assigned to the umpires in the first round (Yildiz, 2008). This

educes symmetry in the original problem, as otherwise the umpires

ould be identical and introduce redundant subtrees. This preallo-

ation can also be achieved by adding constraints (8) to formula-

ion (1)–(7). Notation H(k) represents the edge connecting the source

ode to the kth game in the first round, with the games in lexico-

raphic order.

eu = 1 ∀u ∈ U, e = H(u) (8)

.2. Preprocessing the graph

Another way to speed up the branch-and-bound is achieved by re-

oving edges that always violate one of the constraints (de Oliveira

t al., 2014). If q1 > 1, then all edges connecting games in the same

enue are removed. Likewise, if q2 > 1 then edges connecting games

f the same team are also removed. For instance, the edges connect-

ng games B × H to B × G and B × H to C × H in Fig. 2 would be

emoved by this preprocessing procedure.

.3. Additional pruning rules

Constraint (c) – every umpire should visit the home of every team

t least once – can be used as an additional pruning rule, even though
t can only be evaluated on complete schedules. If the number of un-

isited home locations for an umpire in a certain round exceeds the

emaining number of rounds, given the assignments in the previous

ounds, it is impossible to obtain a solution satisfying constraint (c).

he branch-and-bound algorithm should backtrack and explore other

ssignments. This pruning strategy is not applied in the last round,

owever, because the maximum number of unvisited home locations

or an umpire would be one. In this case, the local search heuristic can

e used to restore feasibility, which may result in an improved upper

ound.

.4. Local search procedure

In order to quickly improve the upper bound, a local search pro-

edure is applied to the feasible and infeasible solutions obtained by

he branch-and-bound. This local search, introduced by Wauters et al.

2014), performs a steepest descent search with a matching neighbor-

ood, i.e. moves are applied until no improvement is found.

The matching neighborhood calculates the matching for each

ound in the solution. In order to be able to minimize infeasibility,

nfeasible assignments are also added to the matching problems in-

urring an additional cost. For every umpire u and every game g in a

iven round r, the matching cost Cug for assigning game g to umpire

is a combination of two deltas presented by Eq. (9):

ug = �dug + ρ �vug (9)

here �dug is the difference between the distance of the new and the

urrent assignment, �vug is the difference between the number of

ard constraint violations in the new and the current assignment, and

is a high penalty value for the violations, i.e. ρ is a value sufficiently

arge such that any variation on �vug is more significant than any

ossible value for �dug.

.5. General branch-and-bound procedure

The pseudo-code of a recursive version of the branch-and-bound

lgorithm is presented in Algorithm 1 . This algorithm should initially

e executed as BranchBound(∅, 1, 1), i.e., receiving the parameters: (i)

n empty solution, (ii) the first umpire and (iii) the first round. Ini-

ially, the umpire and round to be analyzed in the next iteration are
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Fig. 3. Example of a subproblem.
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set (lines 1 and 2) and a sorted list A of possible allocations for um-

pire u in round r is constructed (line 3). The algorithm then iterates

through list A (line 4), pruning the allocation when possible (line 5)

or adding it to the solution (line 6). If other allocations of the sched-

ule remain unexplored, then the procedure is recursively executed

for the next umpire and/or round (lines 7 and 8). Once the solution

is complete (line 9), i.e. all the games have umpires assigned, the lo-

cal search procedure described in Section 3.4 is executed (line 10). If

the resulting solution S′ is better than the best found, then it replaces

the best solution (lines 11 and 12). Finally, the current allocation is

removed in line 13.

4. Decomposition-based lower bounds

A good lower bound is a basic requirement for an efficient branch-

and-bound minimization procedure. The branch-and-bound proce-

dure developed for the TUP employs a decomposition approach to

quickly calculate strong lower bounds. Initially, the problem is de-

composed into |R| − 1 subproblems. Each of them consists of exactly

two consecutive rounds, which enables calculating a lower bound per

set of two subsequent rounds. Next, the decomposition is changed

by iteratively increasing the size of the subproblems by one round.

This section details this procedure, presents a simple lower bound

propagation procedure and, finally, shows how the obtained lower

bounds are used to reduce the search tree of the branch-and-bound

procedure.

4.1. Initial lower bounds

The first subproblems contain exactly two rounds and consist of

finding a set of trips (edges) for the umpires to officiate the games

in these rounds. The objective thus is to find a feasible edge set

that connects the subproblem’s rounds. This subproblem is a sim-

ple assignment problem, and can be solved efficiently with the Hun-

garian Algorithm (Munkres, 1957). Constraint (c) is ignored in the

subproblems.

Fig. 3 shows an example of a subproblem with two rounds, r

and r + 1. Four games are to be officiated by four umpires in each

round. The solution is a matching. Note that edges violating con-

straints (d) and (e) were removed from the graph. The preprocessing
Fig. 4. Example of lower bounds for a subproble
rocedure presented in Section 3.2 avoids analyzing these infeasible

onnections.

The sum of the distances of all |R| − 1 matchings is a valid lower

ound for the problem. It is equal to the minimum-cost flow with

ode capacity (equal to 1) for the original problem. This network flow

roblem is a relaxation of the TUP, obtained by removing constraints

4)–(6) from formulation (1)–(7).

The lower bound obtained is used by the branch-and-bound pro-

edure for pruning. Let mr be the value of the matching between the

onsecutive rounds r and r + 1. The initial lower bounds LBr1,r2
for the

ost between rounds r1 and r2, r1 < r2, are given by Eq. (10).

Br1,r2
=

∑
r∈R, r1≤r<r2

mr (10)

.2. Solve incremental subproblems to strengthen the lower bounds

The matchings provide valid, but relatively weak lower bounds.

n order to improve the quality of the bounds, we proceed by in-

rementing the size of the subproblems to solve. The main idea is

hat subproblems with more rounds consider more constraints, thus,

he obtained bounds tend to be stronger. However, by increasing the

umber of rounds, the subproblems become considerably harder. For

nstance, the subproblem with |R| rounds is equivalent to the original

raveling Umpire Problem with constraint (c) dropped.

The subproblems with three or more rounds are solved by the very

ame branch-and-bound presented in Section 3, except for the evalu-

tion of constraint (c), which is here irrelevant. Therefore, the prun-

ng rules presented in Section 3.3 are not considered.

Lower bounds computed previously are used for pruning incre-

entally larger subproblems. Fig. 4 shows an example of a subprob-

em containing four rounds of an instance with 8 teams, q1 = 3 and

2 = 2. While solving this subproblem, the bounds obtained from

maller subproblems, with two and three rounds, are used to prune

he search tree. Note that the algorithm ensures that smaller sub-

roblems which can provide bounds are solved before the enclos-

ng ‘larger’ subproblems. For instance, in the example of Fig. 4 it

s guaranteed that the subproblems with rounds {r + 2, r + 3} and

r + 1, r + 2, r + 3} are solved before the algorithm solves the sub-

roblem with rounds {r, r + 1, r + 2, r + 3}.

.3. Lower bounds propagation

One of the key advantages of the decomposition approach pre-

ented is that the solution of one subproblem can be used to

trengthen several lower bounds. Strengthening is achieved with a

imple bound propagation procedure.

Consider the subproblem of Fig. 4, which includes rounds r, r + 1,

+ 2 and r + 3. The total distance of the solution of this subproblem

rovides a new bound, Sr,r+3. This bound can be used to improve all

alues of LBr ,r with r1 ≤ r and r2 ≥ r + 3. Eq. (11) shows how these

1 2

m with four rounds {r, r + 1, r + 2, r + 3}.
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Algorithm 2: Lower bounds calculation algorithm.

Let S be an |R| × |R| matrix containing the values of solutions

for the subproblems

Let LB be an |R| × |R| matrix containing the lower bounds for all

pairs of rounds

CalculateLBs()

1 S ← 0|R|×|R|
2 LB ← 0|R|×|R|
3 foreach r ∈ {|R| − 1, ..., 1} do

4 Sr,r+1 ← value of matching between rounds r and r + 1

5 foreach r2 ∈ {r + 1, ..., |R|} do

6 LBr,r2
← Sr,r+1 + LBr+1,r2

7 foreach k ∈ {2, ..., |R| − 1} do

8 r ← |R| − k

9 while r ≥ 1 do

10 foreach r′ ∈ {r + k − 2, ..., r} | Sr′,r+k = 0 do

11 Sr′,r+k ← value of solution of the subproblem with

rounds {r′, ..., r + k}
12 foreach r1 ∈ {r′, ..., 1}, r2 ∈ {r + k, ..., |R|} do

13 LBr1,r2
←

max(LBr1,r2
, LBr1,r′ + Sr′,r+k + LBr+k,r2

)

14 r ← r − k
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Fig. 5. “Partial” matching problem example.
ounds can be improved. In this equation, k represents the difference

etween the first and the last round of the subproblem (k = 3 in the

xample of Fig. 4). Note that for any r, LBr,r = 0.

Br1,r2
= max(LBr1,r2

, LBr1,r + Sr,r+k + LBr+k,r2
) (11)

Eq. (11) is applied to all pairs of rounds (r1, r2), with r1 ∈ {r, …, 1}

nd r2 ∈ {r + k, . . . , |R|}, possibly improving several bounds.

.4. General lower bounds calculation algorithm

Algorithm 2 presents the lower bounds calculation procedure.

he algorithm begins by setting all values of the matrices S and LB to

ero (lines 1 and 2). The first for-loop (lines 3–6) calculates the initial

ower bounds for all pairs of rounds using the values of the matchings

etween every two consecutive rounds. The next for-loop (line 7) is

esponsible for solving the subproblems with more than two rounds.

he difference between the first and the last round (k) of the sub-

roblem starts at 2 and increases till |R| − 1, i.e. the subproblem size

tarts at 3 and increases till |R|. Line 8 specifies the first round of the

urrent subproblem (r). The subproblems are solved in the while-loop

line 9). Some subproblems require that lower bounds are calculated

eforehand. Lines 10 and 11 guarantee this requirement, by solving

rst subproblems starting in round r′ = r + k − 2 and decrementing

ill round r′ = r. To avoid recalculation, a subproblem with rounds

r′, ..., r + k} is solved only if Sr′,r+k = 0 (line 10). The new bounds are

hen propagated to all pairs of rounds that can benefit from the im-

roved values (lines 12 and 13). Finally, the first round r of the next

ubproblem is updated (line 14).

Algorithm 2 is executed in parallel during the branch-and-bound

rocedure. Two threads are used by the final algorithm: one to calcu-

ate lower bounds (Algorithm 2) and one to compute upper bounds

Algorithm 1). Note that not all instances require solving all their

ubproblems. Executing both algorithms sequentially could therefore

ead to a considerable waste of computation time, as it would require

olving all the subproblems. Tackling both lower and upper bounds

n parallel avoids this situation, since the algorithm stops whenever

ptimality is proven, which can be achieved before all subproblems
re solved. A possible disadvantage is that the algorithm’s execu-

ion is not deterministic, since information is exchanged between the

hreads.

.5. Pruning strategies

The branch-and-bound procedure prunes away nodes and reduces

he search tree based on the calculated lower bounds. Assume that

feasible solution with cost UB is given, and that the branch-and-

ound is analyzing the node corresponding to the allocation of a spe-

ific game to an umpire in round r. Let LBr, |R| be the lower bound

or all allocations after round r and let C be the sum of the distances

f all the allocations in the current solution plus the distance of the

llocation being analyzed. The search tree derived from the current

llocation can be pruned if C + LBr,|R| ≥ UB.

This strategy, however, has one drawback. If remaining umpires

re to be assigned in round r, the number of pruning opportunities

ay be limited because the bound LBr, |R| only considers allocations

f rounds after r, while allocations are pending for round r. To deal

ith this drawback and further improve the pruning strategy, the fol-

owing procedure is applied:

1. A subgraph is derived containing:
• the set of games of round r − 1 of umpires not yet allocated in

round r,
• the set of games of round r with allocations pending,
• the edges connecting games of these two sets.

2. A matching problem on the derived subgraph is solved.

This “partial” matching provides a value m that can be used to

mprove the lower bound, allowing to prune away a branch whenever

+ LBr,|R| + m ≥ UB.

Fig. 5 explains this procedure. The allocation of game C × H to

mpire 2 is being considered for round 3. Note that the game E × F of

ound 3 was already assigned to Umpire 1. In this case, the “partial”

atching problem consists of games A × F, E × C, A × D and B × G and

he edges connecting these games. Let m be the cost of the solution

f this matching problem. The allocation of C × H to Umpire 2 in the

urrent solution is ignored if C + LB3,|R| + m ≥ UB, where C is the sum

f the distances of all the allocations in the current solution plus the

ost of allocating game C × H to Umpire 2 after game D × G.

It is important to note that the “partial” matching procedure adds

onsiderable overhead to the branch-and-bound algorithm. In or-

er to reduce this overhead to an acceptable level, we employ a
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Table 1

Results for instances with 12 and 14 teams.

Instance CPLEX (180 minutes) Best results from the literature Branch-and-bound

LB UB Time and LB Time and UB Time Nodes |S| LB UB

12-7,2 85,267 87,509 – – – – 0.04 2.8E+06 17 � 86,889

12-6,3 � Infeas. – � – Infeas. 0.02 9.0E+05 15 � Infeas.

12-5,3 89,852 93,679 – – – – 0.02 6.3E+05 22 � 93,679

12-4,3 88,282 89,975 – – – – 0.09 5.5E+06 13 � 89,826

14-8,3 150,081 175,808 – – – – 34.83 4.9E+09 24 � 172,177

14-8,2 143,230 158,108 – – – – 2.92 3.5E+08 18 � 147,824

14-7,3 149,503 173,047 180.0 159,797 180.0 164,440 3.81 5.1E+08 26 � 164,440

14-7,2 142,970 152,195 – – – – 0.48 4.9E+07 25 � 146,656

14-6,3 149,571 166,791 2880.0 157,084 180.0 159,505 0.86 8.9E+07 26 � 158,875

14-6,2 143,153 145,881 – – – – 0.33 3.1E+07 26 � 145,124

14-5,3 149,889 162,135 2085.8 � 2085.8 154,962 2.17 2.0E+08 26 � 154,962

14-5,2 � 143,357 – – – – 0.18 1.5E+07 25 � 143,357

14A-8,3 141,233 173,475 – – – – 20.32 2.8E+09 26 � 166,184

14A-8,2 136,570 154,309 – – – – 2.47 2.8E+08 25 � 143,043

14A-7,3 141,702 167,110 180.0 153,199 180.0 158,760 2.05 2.6E+08 26 � 158,760

14A-7,2 136,982 148,121 – – – – 0.53 5.4E+07 25 � 140,562

14A-6,3 141,763 165,409 2880.0 151,044 180.0 153,216 0.50 5.5E+07 26 � 152,981

14A-6,2 137,497 142,892 – – – – 0.10 8.1E+06 26 � 138,927

14A-5,3 142,256 163,136 684.7 � 684.7 149,331 1.12 1.2E+08 26 � 149,331

14A-5,2 137,362 137,907 – – – – 0.57 6.0E+07 24 � 137,853

14B-8,3 141,526 172,196 – – – – 22.17 3.0E+09 22 � 165,026

14B-8,2 134,754 148,468 – – – – 12.78 1.5E+09 26 � 141,312

14B-7,3 141,721 170,436 2880.0 152,518 180.0 157,884 4.02 5.2E+08 24 � 157,884

14B-7,2 134,483 146,315 – – – – 1.02 1.2E+08 26 � 138,998

14B-6,3 141,660 161,644 2880.0 150,942 180.0 152,740 1.72 2.2E+08 26 � 152,740

14B-6,2 135,775 140,892 – – – – 0.86 1.0E+08 26 � 138,241

14B-5,3 141,972 158,405 – � – 149,455 1.05 1.2E+08 26 � 149,455

14B-5,2 � 136,069 – – – – 0.20 1.9E+07 23 � 136,069

14C-8,3 140,223 175,801 – – – – 14.45 2.0E+09 19 � 161,262

14C-8,2 134,217 150,595 – – – – 16.37 2.0E+09 21 � 141,015

14C-7,3 140,961 168,854 180.0 151,581 180.0 154,913 0.76 9.5E+07 22 � 154,913

14C-7,2 133,602 149,669 – – – – 5.49 6.5E+08 26 � 138,832

14C-6,3 140,490 165,965 2880.0 148,987 180.0 150,858 1.67 2.1E+08 26 � 150,858

14C-6,2 134,752 138,109 – – – – 0.66 7.6E+07 26 � 136,394

14C-5,3 141,260 158,721 2880.0 147,903 180.0 149,482 12.74 1.7E+09 26 � 148,349

14C-5,2 � 134,916 – – – – 0.55 5.7E+07 26 � 134,916
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2 http://mat.gsia.cmu.edu/TUP/ .
memoization scheme (Michie, 1968) that avoids recalculation of pre-

viously solved matching problems.

5. Computational experiments

The branch-and-bound algorithm was coded in Java 8 and the

experiments were executed on an Intel(R) Core(TM) i7-2600 CPU

@ 3.40 gigahertz computer with 16 gigabyte of RAM memory run-

ning Ubuntu Linux 12.04 LTS. In the spirit of reproducible science,

the source code and all the solution files are publicly available at

http://gent.cs.kuleuven.be/tup.

This section is organized as follows. First the results obtained by

the presented approach are compared with the best known results

from the literature (de Oliveira et al., 2014; Toffolo et al., 2014; Trick

& Yildiz, 2007, 2011, 2012, 2013; Trick et al., 2012; Wauters et al., 2014;

Xue et al., 2015), as well as with the results obtained using formula-

tion (1)–(8). Finally, the impact of the components of the presented

branch-and-bound is discussed in Section 5.2.

5.1. Results of the branch-and-bound with decomposition-based lower

bounds

Table 1 shows the results obtained for the benchmark instances

provided by Trick and Yildiz (2007) with 12 and 14 teams. The names
f the instances are abbreviated, such that ‘12-7,2’ represents in-

tance umps12 with q1 = 7 and q2 = 2. The table presents, for each

nstance:

• the results obtained by CPLEX using formulation (1)–(8) on the

preprocessed graph (Section 3.2): the lower (LB) and upper

bounds (UB) obtained in up to 3 hours;
• the best known results: the runtime (in minutes), when available,

for obtaining the best known lower bound and the best solution,

as well as the values of the best lower (LB) and upper bounds (UB),

collected from different papers;
• the results obtained by the presented branch-and-bound: the run-

time (in minutes), number of explored nodes and maximum size

of subproblems solved by Algorithm 2 (|S|), as well as the lower

(LB) and upper bounds (UB).

The best bounds are highlighted in the table, and � indicates that

he solution was proven to be either optimal or infeasible.

Note that we also report results for non-standard instances in

able 1, with q1 > n and q2 = 2. We conclude from Table 1 that the

ranch-and-bound results clearly outperform the best known results

rom the literature for the 14-team instances. Before this work,

nly three 14-team instances had their optimal proven. Xue et al.

2015) required around 46 hours to prove optimality for two of these

nstances (the runtime to obtain the optimal solution for instance

4B-5,3, collected from Trick and Yildiz website,2 is unknown). The

http://gent.cs.kuleuven.be/tup
http://mat.gsia.cmu.edu/TUP/
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Table 2

Results for instances with 16 and more teams.

Instance Best results from the literature Branch-and-bound

Time and LB Time and UB Time Nodes |S| LB UB

16-8,4 180.0 193,458 – – 232.96 3.6E+10 10 � Infeas.

16-8,3 – – – – 2880.00 4.0E+11 11 162,902 189,415

16-8,2 2880.0 156,089 180.0 160,705 2880.00 3.9E+11 11 145,531 184,977

16-7,4 – – – – 276.92 3.8E+10 15 � 197,028

16-7,3 2880.0 160,162 180.0 168,860 404.94 5.1E+10 27 � 165,765

16-7,2 2880.0 149,488 180.0 153,978 1101.98 1.3E+11 30 � 150,433

16A-8,4 2880.0 206,142 – – 225.82 3.6E+10 10 � Infeas.

16A-8,3 – – – – 2880.00 4.0E+11 11 175,590 214,512

16A-8,2 2880.0 168,275 180.0 171,882 2880.00 4.5E+11 9 160,739 –

16A-7,4 – – – – 271.15 3.9E+10 14 � 213,416

16A-7,3 180.0 172,964 180.0 179,960 251.69 3.1E+10 26 � 178,511

16A-7,2 2880.0 162,622 180.0 164,620 965.37 1.2E+11 30 � 163,709

16B-8,4 2880.0 215,521 – – 229.41 3.6E+10 9 � Infeas.

16B-8,3 – – – – 2880.00 4.1E+11 11 178,821 217,764

16B-8,2 2880.0 170,385 180.0 180,728 2880.00 3.6E+11 10 165,737 202,897

16B-7,4 – – – – 297.37 4.3E+10 13 � 223,868

16B-7,3 180.0 173,023 180.0 181,565 2270.28 2.9E+11 30 � 180,204

16B-7,2 2880.0 164,816 180.0 170,194 2301.98 2.6E+11 26 � 167,190

16C-8,4 2880.0 206,369 – – 236.94 3.6E+10 10 � Infeas.

16C-8,3 – – – – 2880.00 4.0E+11 11 175,435 214,993

16C-8,2 2880.0 169,698 180.0 179,939 2880.00 3.7E+11 10 164,541 204,887

16C-7,4 – – – – 335.69 4.7E+10 12 � 209,088

16C-7,3 2880.0 172,755 180.0 184,181 2880.00 3.4E+11 18 176,161 180,483

16C-7,2 2880.0 164,626 180.0 169,184 2258.49 2.6E+11 27 � 166,479

18-9,4 2880.0 213,806 – – 2880.00 3.7E+11 9 193,632 –

18-9,3 – – – – 2880.00 3.8E+11 9 186,173 262,987

18-8,4 – – – – 2880.00 3.3E+11 10 197,511 254,155

18-8,3 – – – – 2880.00 3.3E+11 11 187,335 248,302

18-7,4 – – – – 2880.00 3.1E+11 15 200,551 217,502

20-10,5 180.0 216,333 – – 2880.00 3.3E+11 8 220,907 –

22-11,5 180.0 245,518 – – 2880.00 3.1E+11 6 243,052 –

24-12,6 180.0 273,057 – – 2880.00 3.5E+10 4 250,590 –

26-13,6 180.0 312,786 – – 2880.00 2.8E+10 4 289,651 –

28-14,7 180.0 350,263 – – 2880.00 9.2E+09 3 322,208 –

30-15,7 180.0 413,103 – – 2880.00 4.1E+09 3 339,331 –

32-16,8 180.0 430,890 – – 2880.00 5.2E+09 3 369,695 –
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roposed branch-and-bound with decomposition-based lower

ounds is able to find (and prove) these optimal solutions in around

minutes, in total. Optimality was also proven in a very small

mount of time for all the other 14-team instances. The procedure

equired, on average, around 5 minutes to solve each instance. It is

oticeable, however, that instances with higher values for q1 and q2

emand more computational effort from the branch-and-bound.

Table 2 shows the results for the instances with 16 and more

eams. Again, � indicates that the solution was proven to be opti-

al or infeasible. The best bounds are highlighted. The time limit for

hese hard instances was set to 48 hours, in order to enable compar-

son with the approaches proposed by Xue et al. (2015). In this table,

e omit the results obtained with the mathematical formulation as

hey were not competitive.

We can see in Table 2 that the branch-and-bound found 11 op-

imal solutions for the 16-team instances, improving 8 upper bound

alues reported in the literature. Nevertheless, some of the results

btained are poor when compared to the best results from the liter-

ture. For example, no solution was obtained for instance ‘16A-8,2’.

his shows that obtaining feasible solutions for highly constrained

nstances can take a considerable amount of time. Without an up-

er bound, the proposed algorithm behaves as a naive enumeration

rocedure. For the more constrained instances, even solving the sub-

roblems is hard. This can be noticed by the smaller size |S| of the

argest subproblem solved for these instances. Therefore, despite the

mpressive results for the 14-team instances, the algorithm’s expo-

ential time complexity is noticed when solving instances with more

han 14 teams. This behavior is evident in the results for the 18-team

nstances, where the average gap is around 21%.

t

.2. Impact of the branch-and-bound components

We present experiments to analyze the impact of some of the

ain components of the presented branch-and-bound algorithm.

our versions of the algorithm have been prepared:

• the complete algorithm, with all the described components;
• the algorithm without the local search procedure presented in

Section 3.4;
• the algorithm without the partial matching presented in

Section 4.5;
• and the algorithm without the bound propagation presented in

Section 4.3;

The four different versions of the algorithm were executed for the

tandard 14-team instances. The total runtime and the total number

f nodes generated before finding (and proving) an optimal solution

ere analyzed. Fig. 6 presents a graph showing the results of these ex-

cutions. Since the total number of nodes is proportional to the total

untime, only the runtime is shown in the figure. Therefore, the ver-

ical axis presents the percentage of processing time to solve the in-

tance and the horizontal axis lists the different instances considered.

his figure shows that removing any of the components negatively

mpacts the total runtime. Between the considered components, the

artial matching had the highest overall impact, followed by the lo-

al search procedure. The bound propagation had the smallest impact

ecause the subproblems could be solved very quickly.

We also ran experiments disabling other features of the algorithm,

uch as the lower bound strengthening by decomposition. However,

he total runtime exceeded the imposed limit of 24 hours.
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Fig. 6. Performance of the branch-and-bound with some components deactivated on 14-team instances.
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6. Conclusions and future work

This work introduced a branch-and-bound approach with

decomposition-based lower bounds to the Traveling Umpire Problem,

devoting attention to both computation of strong lower bounds and

production of good feasible solutions.

The algorithm enabled improving a large number of lower and up-

per bounds. Among these improving results, optimality was proven

for all the 14-team instances and for 11 of the 16-team instances. It

was also proven that no feasible solutions exist for instances ‘16-8,4’.

The branch-and-bound was able to generate competitive feasible so-

lutions for some of the other instances, improving the best known

result in one case.

Future research can be conducted to improve the branch-and-

bound in order to address larger instances. For instance, the algorithm

can be parallelized and other branching rules can be investigated. The

results obtained with the 18-team instances encourage this direction.

It is also desirable to investigate the characteristics of the TUP that

favor the performance of the presented algorithm, aiming at a gener-

alized version of the procedure that can be applied to a wide range of

combinatorial optimization problems.
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