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whose existence is granted by topological stability. We consider the simplest possible order parameter
theory that provides this interpretation of the pseudogap and study its angular momentum states. Also
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explained under this view. The pseudogap is a lattice of skyrmions and the inner weak local magnetic
field falls below the experimental threshold of observation given by NMR/NQR and SR experiments.
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1. Introduction

The discovery of the high temperature (high T,.) superconduc-
tors by Bednorz and Miiller (1986) [1] brought new paradigms to
the field of condensed matter physics. Three-dimensional super-
conductivity originates in two-dimensional layers where Cooper
pairs are formed and outlive elsewhere. The understanding of any
layered compound demands its study at several doping, achieved
by changing the number of carriers available in the layers. These
properties are best displayed in the so-called temperature versus
doping diagram where the critical temperature T, defines a dome
shaped curve whose onset and disappearance take place at critical
doping values. In this phase diagram superconductivity is one
among many other possible electronic states that involve mag-
netic, charge and pairing degrees of freedom that either coexist,
cooperate or dispute the same spatial locations within the layers.
Besides the superconducting and the anti-ferromagnetic state
there is another characterized electronic state, the pseudogap
state, that lives below a temperature T* versus doping line in this
phase diagram. Interestingly this line approaches the supercon-
ducting dome from above by increasing the doping, always with a
negative slope and, at some doping value, intersects and crosses
the dome, ending at zero temperature, where it defines a so-called
quantum critical point. The pseudogap was revealed in 1989, soon

* Corresponding author.
E-mail address: alfredo.vargas-paredes@hotmail.com (A.A. Vargas-Paredes).

http://dx.doi.org/10.1016/j.jmmm.2014.09.042
0304-8853/© 2014 Elsevier B.V. All rights reserved.

after the discovery of Bednorz and Miiller, by the observation of a
sharp decrease of the nuclear spin susceptibility in the cuprate
layer atoms (CuO;) [2]. This sharp decrease of the NMR Knight
shift K indicated the existence of a (above T;) normal state gap, the
pseudogap. The nature of the pseudogap remains so far unknown
and a true challenge to the field. It is not clear whether the
pseudogap gap line T* is a thermodynamical or crossover transi-
tion [3]. Among the known properties of the pseudogap, are the
normal state gap and the spontaneously broken symmetries. The
pseudogap state breaks the time reversal symmetry because left-
circularly polarized photons give a different photocurrent from
right-circularly polarized photons below the line T* as shown
more than 10 years ago by Kaminski et al. [4]. Recently these
results have been confirmed through high precision measure-
ments of polar Kerr effect [5,6], which are also clearly suggestive of
a phase transition at T* below which arises a finite Kerr rotation
[7]. The pseudogap also breaks translational invariance symmetry
within the layers and this modulation was first observed through
scanning tunneling microscopy, initially coined as the checker-
board pattern, a tetragonal lattice with 4a periodicity, where a is
the CuO, unit cell length. This periodicity was firstly found inside
the vortex cores [8] of Bi;Sr,CaCu,0g ., », butsoon after incommen-
surate patterns were also observed in the normal state of this
compound [9], below the pseudogap line in the absence of a
magnetic field. It is quite remarkable that in the pseudogap phase
carriers within the layers arrange themselves into a periodic
pattern not necessarily commensurate with the crystallographic
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structure [10]. Nowadays the checkerboard pattern is seen as a
consequence a charge density wave [11]. Recent work using
resonant elastic x-ray scattering (REXS) correlation done by
Ghiringhelli et al. [12] found concrete evidence of this charge-
density-wave in the underdoped compound YBa,;Cu30g . x» with an
incommensurate periodicity of nearly 3.2a, both above and below
T.. Thus it is quite clear that a theoretical attempt to explain the
pseudogap must take into account the normal state gap and also
the broken symmetries. It happens that a magnetic order is
expected to arise due to the breaking of the time reversal
symmetry. Time reversal symmetry means that a state remains
unchanged upon time reversal. We know that the velocity (mo-
mentum) and also the magnetic field both reverse sign under a
time-reversal operation. Magnetic spins reverse direction when
time reverses direction, therefore magnetic order breaks time
reversal symmetry and may be the reason for it. The presence of
any kind of magnetic order leads to a local magnetic field that
must be experimentally accessed by several magnetic probes.
Indeed there has been an intense search for this predicted
spontaneous local magnetic field inside the high T, superconduc-
tors in the pseudogap phase. Polarized neutron diffraction experi-
ments [13,14] indicate a magnetic order below the pseudogap.
NMR/NQR [15,16] and xSR [17,18] experiments set an upper limit
to the magnetic field between the layers, which must be smaller
than 0.1 Gauss. A proposal of magnetic order with the layers has
been put forward by C.M. Varma [13,14,19,20], who claims that
microscopic orbital currents cause this order, and consequently,
the breaking of the time reversal symmetry.

Recently we have shown that an above the homogeneous
(normal) state gap and the broken symmetries can be understood
in the context of an order parameter description, and for this
reason, suggested this interpretation for the pseudogap [21]. Thus
the pseudogap is a gapped topological state made of skyrmions,
whose microscopic nature is still controversial. We recall that the
description of a condensate through an order parameter was
proposed by Ginzburg and Landau much before the BCS unveiled
the microscopic mechanism behind superconductivity. According
to Gorkov and Volovik [22] a system described by an order
parameter that breaks the time reversal symmetry must have an
accompanying magnetic order that yields a local magnetic field
near to the sample surface even in the absence of an external field.
Indeed our description of the pseudogap exactly fits the Gorkov
and Volovik scenario with the local magnetic field found around
the layers and not just near to the sample surface. This magnetic
field originates from spontaneous circulating supercurrents in the
layers that give rise to an inhomogeneous excited state which is
stable since it is prevented from decaying into the homogeneous
ground state by its topological stability. This tetragonal lattice of
skyrmions breaks time reversal symmetry and also translational
invariance has an energy gap above the homogeneous state that
we associate to the pseudogap. We obtain the numerical value of
the pseudogap density as a function of the local magnetic field
between the layers, which is assumed to fall below the experi-
mental threshold of observation set by NMR/NQR [15,16] and SR
[17,18] experiments. In this paper we provide a detailed study of
this order parameter approach to the pseudogap state and derive
its angular momentum properties.

2. The theory

We seek here the simplest possible theory able to describe a
condensate, the pseudogap, through an order parameter such that
it lies above the homogeneous state separated by a gap, hereafter
called the normal state gap, and presents broken symmetries.
Besides the supercurrents created by its inhomogeneity must be in

conformity with the experimental threshold imposed by the
maximum observed internal field. Because of its assumed simpli-
city the present theory does not describe the transition at T*, as
we only try to capture the major qualitative features of the
pseudogap. Thus the present description is restricted to tempera-
tures below but near to the T* line, and above T, such that the
condensate energy, which regulates the superconducting dome
and defines T, can be safely ignored. Thermal fluctuations are
not included here and so the discussion is restricted to mean
field considerations. Even in this simplified context we find that
to describe both the pseudogap and the superconducting states

there must be at least two components, ¥ = (:’/“) This simplest
d

possible theory is just the sum of the kinetic and the field density
energies

— —2
x| D¥Y? h
F= | — +—,
V]| 2m = 8z
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where m and q are the Copper pair mass and charge, respectively.
We assume minimal coupling to the field through the covariant
derivative D = (%#[i)V - (q/c)A and h = V x A. Undoubtedly the
lowest free energy state of Eq. (1) is the null homogeneous state
¥ = 0, thus with no supercurrents and no resulting local magnetic

field, ﬁ:o that we identify with the superconducting state
restricted to exist under the superconducting dome. Our claim is
that above this homogeneous null state lives an inhomogeneous
gapped state, topologically stable, conjectured to be the pseudo-
gap. In this paper we give a detailed derivation of the pseudogap
from Eq. (1) and obtain its angular momentum properties.

This simple theory has a global SU(2) rotational invariance
[23,24] that arises as a natural consequence of the presence of
two-components. We believe that this invariance is explicitly
broken by extra terms in the free energy, not considered in this
simple theory. Even without considering this explicit breaking we
find that this naively introduced SU (2) symmetry has possibly only
local meaning and is associated to the group of spatial rotations,
which turns ¥ into a truly spinorial order parameter. It is not
possible to bring the two-component order parameter into a one-
component form, ¥' = U¥, ¥'T=(y’ 0) by an SU(2) rotation,
UUT = 1 in case of an inhomogeneous state. It is only possible to
get rid of one of the components in case of an homogeneous
solution. For a spatially inhomogeneous solution, ¥ (X ), the rota-
tion to one component form can only be done locally, U(X).
Therefore the free energy of Eq. (1) cannot be reduced to one
component in case of an inhomogeneous solution. Under a local
rotation U(X) an extra term appears in the covariant derivative,
D'=D + UDU" so that F, = fd3x(|3’T’|2/2m)/V. We consider this
a signal of a non-abelian gauge symmetry in the pseudogap phase.
This possibility has been considered elsewhere [25,26] but will not
be treated here. From the free energy of Eq. (1) we obtain the
following variational equations:

-2
Dy

2m (2)
Vxh =27

c

where the supercurrent density is given by

7= i[yﬁfﬁv + (BW)W]

m ' (4)
The aforementioned weakness of the local magnetic field is a key
ingredient for the construction of a perturbation scheme to solve
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the above equations. The local magnetic field itself works as the
small parameter helpful to solve these equations recursively by the
following procedure. The order parameter ¥ is obtained from Eq.
(2) neglecting the interaction with the field, which means that the

equation to solve is truly VZY’ = 0. Once in power of this solution
¥, and the supercurrent obtained in this order, Eq. (3) is used to
derive ﬁ from a known source. This iterative procedure is repeated
recursively, and so, defines a perturbative scheme. We carry it just
to the first iteration, which means that the local magnetic field
must be very weak. Another important ingredient to added in our
search of the solution of the above equations is the geometry,
namely a stack of layers, such that the order parameter is assumed
to evanesce away from each one of them. Thus we seek a Fourier

2 PN
solution of V ¥ = 0, ¥ = ellk¥ +k3"3)&”@ ks where the wave vector
along the layer is

— R N —
k =k + k%, and k=Ikl (5)

This solution must satisfy Ifl2 + k2 = 0 between layers, therefore
displaying evanescence away from the layers means that k; = + ik.
To be of finite energy, the order parameter is chosen
y= e(“"y"‘"@')v/? for a layer at x; = 0. Thus between the layers
the order parameter does not vanish, which means that the
present treatment assumes a metallic medium and not a vacuum.

Interestingly ¥ solves V%": 0 above and below but not at the
layer itself (x; = 0). The Fourier coefficients ¥ are so far free, and
can be determined through the angular momentum properties of
the order parameter.

Although the above scheme contains the basic sought ideas, it
does not unfold the topological stable solutions that exist in the
layered system. To unveil them a dual view of the kinetic energy
[21] must be obtained, as shown in the next section.

3. The dual view of the theory

In this section we construct a dual formulation of the kinetic
energy density. To make our demonstration clearer we express
three-dimensional indices explicitly such that repeated indices
mean a summation according to the Einstein convention
-

Dy 1

T ﬁ(Diyf)'*aijl(leW),

(6)

and introduce the two-dimensional identity

-

and the Clifford algebra associated to the Pauli matrices o;j,
i=1,2,3

{on 0} = 2641, (7)

[a, Uj] = Zié’ijkf’k- (8)

The two-dimensional unity can be expressed in terms of the Pauli
matrices

16 = 0;0; — igyjy 0} (9)

Then we the kinetic energy acquires a new form

N
Dy? 1 2 _ i
S = 5| D e (DY o (D) | (10)

Manipulation of the second term of the r.h.s of Eq. (10) gives that

&k (D;¥) 0, (D} ¥)
= %V-[(BW)"' X ¥ — ¥ x (Bv/)]
1 2 - = PR
—|¥'¢ (D xD¥) - (D xD¥)-c¥|.
+ 2[ o (D x ) — (D x ) ] (11)

The antisymmetry of the Levi-Civita symbol allows us to express

5‘”?7’-(3 x 3?) =- (3 x 3?)‘-??: - ?—gﬁ-wf?w, (12)

N
in terms of h. Finally we reach the dual view of the kinetic energy

D¥? GD¥YP  iq >,
= DY MY iz
2m 2m 2mc
= =

+ V| Dy x3¥-¥'7 x DY)

The last term is a total derivative and yet it is a non-vanishing
contribution because of the exponential evanescence of the order
parameter away from the layer. In fact we find that this total
derivative term describes the normal state gap associated to the
pseudogap.

3.1. The variational and the first-order equations

The mathematical identity obtained in the previous section is
used here to obtain a new perspective of the problem. Using Eq.
(13) we can write the free energy of Eq. (1), as follows:

&) 1Z DR g e
szT R L N (aria)

2m 2mc
E)Z
72| By o= = o
—V-((D¥ Y-V D¥Y — .
+4m (DY) x @ cx (D¥)|+ %

(14)

Taking the variation of Eq. (14) for s¥' and 5K, we obtain the
Ginzburg-Landau equation and Ampere's Law with a new vest

1 _)—>2 _ -,
ﬁ(”'D)W__”Bh'”T (15)
v x (f_‘l) + 47[ny?‘1’)

= 24 w2 (7D

= mc[y AL D‘P)+c.c.]. (16)

where yu, = 7q/2mc. The surface term of Eq. (14) does not con-
tribute to the above variational because it is a total derivative and

A = 5% = 0 in the boundaries of integration. This second view of
the Ampere's law provides the following formulation of the
supercurrent:

T = i[w(;.ﬁav) +c c] - %V x (¢i3P).

2m (17)

Next we introduce the weak local magnetic field approximation,
discussed in the previous section, but now applied to the dual
view of the theory. However before doing so, we notice a
remarkable feature that can only be seen from the above dual
variational equations. Ampere's law, as given by Eq. (16), is exactly
solved by assuming the following first-order equations:

7D¥=0, (18)
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ﬁ = - 4nyBYT?T. (19)

These equations are at the heart of our approach. The solution of
Egs. (18) and (19) is also a solution of the variational equations of
Egs. (15) and (16) provided that the weak local magnetic field
approximation is taken into account. In fact Eqs. (18) and (19)
provide a precise meaning for the weak local magnetic field
approximation. A scale transformation ¥ — ¢¥, where ¢ is a small
parameter, leaves Eq. (18) invariant. It is Eq. (19) which sets the

scale since under this transformation ﬁ — ezﬁ). Therefore introdu-
cing a solution of the first-order equations into Eq. (15) renders its
left hand side null and its right hand side of order £>. In conclusion
the variational equations are automatically solved by the first-
order equations in order &>. Therefore we solve the first-order
equations in the lowest possible order instead of the variational
equations. We neglect &> corrections to Eq. (18) which means to
solve 3-V¥ = 0 instead. Then Eq. (19) determines the magnetic
field in order £2. Following this program the free energy must be
obtained under the small magnetic field approximation in order
€3, to be consistent with the order & kept in the variational
equations. Firstly we show that Eq. (18) can be written differently

if we multiply it by 7 ?(?.B 'P) — _id xD¥+D¥. The first
term in the r.h.s is known as the Rashba interaction. Thus the first-
order equation (18) becomes

iDy=2xDY. (20)

Under this relation Eq. (13) can be expressed as

D i 7% =2
=— Al (YTY) + amV P2,

2m

(21)

If we discard terms of order &* or superior only the last term has to
be kept in the kinetic energy. The field energy is also neglected since
it is of order &* since it is proportional to the square of the magnetic
field. Consequently the free energy of Eq. (1) becomes in order &>

2 3. 2
N Ay

F=2_
4mJ v (22)

In the next section we obtain solutions of the first-order equations, Eqs.
(18) and (19), for a single and multiple layers, respectively. The energy
density given by Eq. (22) is shown to describe a normal state gap.

4. The order parameter
4.1. Single layer

The first-order equation for ¥, Eq. (18), neglecting terms of
order & or higher corresponds to

FV¥Y=0 (23)

. hrd .
since ¥ « ¢, and A « £2. In components it becomes,

Vi Vi-iw\(w)_
vi+iv, -v3 N\¥a) " (24)

We seek the solution describing a single layer at x; =0 that
vanishes exponentially away from it for x; < 0 and x; > 0

y=3 e—kIX3leiF.7[Wu(’;)]'
K20 va(k) (25)
N

The k = 0 component is excluded since it describes a constant

homogeneous order parameter, assumed not to exist here. To

obtain a relation between y, and yy; components of Eq. (25) we
introduce this solution into Eq. (24)

k xgl (26)
where we define
k, =k + ik,. (27)

The solution of Eq. (26) only applies outside the layer, similarly to
the previous section solution. Finally we write the single layer
solution as

1
w— Z C?e—k\xgleik-x _ik_Jrﬁ
K #0 k x5l (28)

Any set of Fourier coefficients c; in Eq. (28) provides a solution of
Eq. (18) valid until order £3. We shall determine in this paper these
coefficients assuming orbital momentum properties for the order
parameter. The single layer solution of Eq. (28) satisfies the
following relations:

if-F)% k'k
|Y’|2 — Z C’iC? e—(k+k1)\X3|el(k 1=k )X [1 + ,;]:]'
k 4 ’

KK (29)

Wig = X C o e-(k+k,)|x3|ei(?,-?)-?[£ _ k_+]

Tk /

X3 ik k k (30)

piowo _ X Y cicr o~ (krk i (K - D)7 [ K2 + ky

2 Ix;l &= Kk k" k|
K (31)
Vi =y Ciw?,e‘“‘*’")'@e"@"—?)‘?[l - k;#]

i ‘ (32)

The mean values of the above quantities are calculated through
the definition

3 2 © i
RIS e ),

where [ is an arbitrary length by taking V=AI Consider that

@ei(ﬂﬁ,) — 5o
A kk» (34)

where A is the area of the unitary cell, one obtains that

Ic>1
dixhrq2 g Z L,
%4 | 4 k
K (35)
EXyi
S5 =0, (36)
d’X ot _
[ ey =o. (37)
d’X 1 _
/TW o3¥ = 0 (38)
d3X 21us12 8 2
- V= TZ kicz %,
k #0 (39)
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The mean values vanish for different reasons, while Eqgs. (36) and
(37) are null because contributions above and below the layer are
equal, and the factor x;/Ix;1 flips their sign, Eq. (38) is zero because

- -
of integration along the layer that renders k = k.

4.2. Multiple layers

The general solution for a stack of layers separated by a
distance d is given by

1
¥ = Z c ")e‘k"‘3 ndigik X k X3 —nd |.
K#0.n k IX; — ndl (40)

Because all the layers are assumed to be identical, ¢ = cp- We

study two different ways to sum over the layers that give distinct
but equivalent results, valid for the regions 0 <2x; <d and
—d < X3 < d, as shown in Figs. 1 and 2, respectively. Basically they
differ on their treatment of the sign provided by x;/1;1, above and
below the corresponding region. The solution that applies to
0 < x; < d takes into account that

o cosh [k(x3 - Q)]
~kix3—ndl _ 2

> e

kd '
n=-o0
smh( 5 ) (1)
. d
- sinh k(x - —)]
+Z X3 — nd e—kl)c3—ndl - [ ’ 2
& X3 — nd| kd '
n smh( 5 ) (42)

which yield the following multi-layer solution:

d
. ¥ cosh [k(x3 - 5)]
=2y
k¥#0  sinh (7) ik_+ sinh [k(x3 _ g)]
k 2 (43)

The validity of Eq. (43) is restricted to the region 0 < x; < d. For the
region shown in Fig. 2, namely —d < x; < d, the sum over the layers

consider the x; =0 layer separately, Y, 0 e~kixz—ndi | o-kixsl qpq
T z0 (% — nd[ix; — ndi)e 57 1 e75!(x;/1x;1), to obtain that

R 1 5 cosh(kx;)
o Z C—>e'k'7 ekl k, X [+ —=—] k ‘
4 —l kd _ Ky
220 k Il (e 1) i sinh(kx;) (44)

In this last expression the single layer solution of Eq. (28) is
easily retrieved by taking the limit d - «. To obtain the mean
values, similar to the single layer solution, it is required that
the mean value be taken over a well-defined unit cell since

along the direction perpendicular to the layers I[=d:
x|V () = /Od dxs/d [d’x|A(-+). Then one obtains that
IC 1
dvx w2 = % ) , th[kd]
£ k (45)
d*x
ST =0 (46)

A

Fig. 1. Pictorial view of a stack of layers separated by a distance d showing the
three-dimensional cell associated to the order parameter solution of Eq. (43).

A

A X,

— 20[
d
0

——

-

i
il
P>

—

Fig. 2. Pictorial view of a stack of layers separated by a distance d showing the
three-dimensional cell associated to the order parameter solution of Eq. (44).

f—vf ¥ =0, (47)

IC~
63Y’ Z L (kd
¥ #0 sinh ( > ) (48)

X g Z Kic P coth [kd]
v 4 i (49)
In the limit d — oo, Egs. (45), (48) and (49) yield their single layer
counterparts, given by Eqgs. (35), (38) and (39), respectively. Notice
that Eq. (48) is non-zero in contrast with the single layer case. Also
Eqgs. (46) and (49) have a 1/d factor due to the volume integration,
which is also present in Egs. (36) and (39), as the 1/I factor.
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5. The broken symmetries

A remarkable difference between the single and the multi-layer
solutions is that in the latter case the mean value of the local
magnetic field is non-zero and points perpendicularly to the

layers, regardless of the choice of the coefficients ¢y, according
to Egs. (19), (46), (47), and (48)
d X > |C"|
—h(¥)=-4
v ity 2 z(kd)
¥#0 sinh
2 (50)

This is a clear consequence of the breaking of the space reversal
symmetry in the multi-layer case. Nevertheless the multi-layer
solution is derived from the first-order equations, defined by Egs.
(18) and (19), which do not break this symmetry. Therefore
another solution is expected such that the two possible ways of
breaking the space reversal symmetry must be possible. Indeed
this other solution ¥’ is obtained by expressing Eq. (26) as

ik X
Y= T g (51)

The corresponding single layer solution is

. .k X3
- Z f‘?e_klx3‘€lk'x k |X3
K40 1 (52)

and the multi-layer is

k. d
e i sinh [k(}@ - 5)]
&K
k #0 sinh (7) cosh |:k (X3 — g):l
2 (53)

The mean values are given by

Bx o 2w 6gf kd

% Y —E coth [ X2

AR R R B P
k #0

(54)
d3X St ,
/75” oV = 0, (55)
d3x
—Zyie, =0,
% (56)
d3X 1t r |64>|2
S == % w
¥ =0 sinh
2 (57)
f X oy = Z ki coth [kd]
k;eo (58)

The mean local magnetic field is found to point oppositely to the
solution used in Eq. (50)

d x—) |CH

V 4””B z

K40 smh2(k2d) (59)

The existence of solutions with /(d3x/V)ﬁ in opposite directions,
given by Egs. (43) and (53), in case of multi-layers is suggestive of
the coexistence of these solutions separated by domain walls.

Their free energy has the same form

dz Z ez Izkd coth[kd]

as obtained from Eqgs. (22), (49) and (58). The reverted magnetic
field solution has IC?I2 replaced by IE?I2 in the above expression. In
case that Ic;| = Ic;| these two solutions are degenerate in energy
and favor the onset of domain walls. We will not treat such
coexistence here and concentrate our study only in the ¥ solution.

A remarkable feature of the present approach is the existence
of two kinds of supercurrent densities, namely volumetric and
superficial, located between layers and within the layers, respec-
tively. The single layer results for ¥'s,¥ and ¥'6,¥, given by Egs.
(29), show that above and below the x; = 0 layer such values flip
sign because of the factor x;/Ix;l. Consequently Eq. (19) shows that
the magnetic fields h; and h,, parallel to this layer, are discontin-
uous across the x; = 0 layer. It is a straightforward consequence of
Maxwell's boundary condition that there is a superficial super-
current configuration given by

%x[h( H-H(© )]

(60)

4r>

¢ (61)

These boundary conditions under a fixed Zup reveal the mechan-
ism of time reversal and parity breaking. The time reversal
symmetry transformation is given by 71) - - 7{ in Eq. (61), which
is not invariant under this transformation. The parity symmetry
transformation, given by % — — &; in Eq. (61), is also not invariant.
Only the product of the time reversal and parity transformations
(PT) remains invariant under the presence of the surface super-
current. We find that the surface supercurrent leads to the onset
of a charge density wave whose properties will be studied
elsewhere.

6. The angular momentum states

The layered structure has a preferable direction, defined by the
X3 axis, an so, we take from the total angular momentum
=

i
j_xx V+56 (62)

the component J5 to determine the coefficients c;. It happens that

up to order £ Eq. (18) becomes F.V¥=0 and it holds that
U, E’V] =0, i=1.2,3. Therefore we study J,¥, which is also a

solution since ?-?(13?’):0. Although we are not treating a

quantum mechanical problem here, the present Hilbert space

considerations are useful since the order parameter can be
regarded as a superposition of angular momentum states m
1

Y= a,% where ¥, = ﬁ[m + Z]W’"'

(63)

m

where a,, are arbitrary coefficients. For simplicity we shall not
study here admixtures and only pure m states, which means that
all but one of the coefficients «,, vanish. Consider the orbital
angular momentum component l = x;p, — Xp;, which admits a
position representation, p; = (#/i)(o/dx;), and also a wave number
representation, x; = i(d/ok;) and p, = 7k;. For instance, apply the
position space representation, ,(x), to the up component y, of Eq.

(28): LX)y, (x) = ﬁZ*ﬁ(xlkz—x2k1)e”"7”“"3‘. In wave number
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space representation it holds that Ly, = Y7 ¢z [—13(k)ei?'?"‘"‘3‘]=

gy
> [13(k)c?]e”"" -ksl the last expression follows since a sum over

a total derivative is null. Thus I3 can be thought of as directly acting
on the coefficients cz- In wave number space the eigenvector
eigenvalue problem for the I3 operator is easily soluble:
Lk = + mak", thus (k)™ and +#m are the sought eigenstates
and eigenvalues, respectively. For any two functions, f and g, in
wave number space, it holds that L[f(k)g(k)] = [Lf (k)]g(k)+
f(k)[Lg(k)] . For instance, l;(k?)= Iy(k.k_) = 0 . There are two sets
of eigenvectors of Js: sze(kt/k)m. The normalization 1/k™ is
introduced to avoid growth of the coefficients c; for large k, and
the multiplicative constant & is arbitrary. The total angular

momentum eigenvector problem becomes, L¥,,=7#(+m+

1)‘I’m‘i , but the property (k_{k)" = (k,/k)™ shows that there is

2
truly just one set of eigenvectors, ¥, = ¥, ,, since ¥,_=Y¥_..,
as long as m ranges from positive to negative values. Writing
k. = ke*ip gives that c; = ee* im ¢ and shows that the two signs,
+m, are associated to rotations in opposite directions by angles

+m¢. Therefore the order parameters become

k" o cosh (kx3)
¥, = S \
n=e (k) . (kd) ik—*sinh(kf@]
k #0 sinh | — k
2 (64)

where X; = x; — d/2. Interestingly the mean values for the angular

momentum order parameter, ¥,, are independent of m, since

ICTI2 =¢
K

. 5 52 1 kd
o )P = S — coth| ==
fV Wl = €22 D . coth | =

’
=

(65)

2

2
+ &

d*x
Tyjmglylm = 0, (66)
dx
Tylmﬂz.lum = 0, (67)
3.
dv—xﬁl’,;@ﬁ”m:ez 1 d\’
¥ #0 smhz( )
2 (68)
3
fdv—xvzw'mﬁ = 822 Y k coth % :
¥ #0 (69)

We find quite remarkable that the mean magnetic field, which relies
on Eq. (19), and the above Egs. (66)-(68), is angular momentum (m)

[ei(m”/z) cos (% - gx1) + cos (% + gxz)] cosh (g)‘g)
m inh gd (ma[2) o mn T mn inh [ ex
sinh | == |e sin{ == - gx | —isin| S5+ gx, | | sinh (g%
{ei(’"”/z) cos [% +g(—x+ xz)] + e7ima4) o [% +g(x+ xz)]} cosh (ﬁg)‘@)

sinh (%) _{ei(((m—l)n)M) sin [? +g(—x+ Xz)] + eim=1214) G [% +glx + Xz)]} sinh (,ﬁgx3)

independent. The same holds for the free energy which defines
the normal state gap, given by Egs. (22) and (69), also shown
to be m independent. The single layer limit with definite
angular momentum m is simply retrieved from the above equations
at the limit d - « once noticed that the behavior 1/d is just a
consequence of the volume V = Ad, and so, in case of the single layer,
d can be replaced by an arbitrary length . We shall not treat here
admixtures of different m states and concentrate only in the pure
cases.

7. The tetragonal lattice

To reach further understanding of the order parameter we
simplify matters by restricting the Fourier components, defined as
k=g, & = g,n, (g = 2x/ly, g, = 2z/Ly) for a orthorhombic cell
A=LL, to a small set ny=-1,0,1 and n,=-1,0,1 with
n; = n, = 0 excluded (no homogeneous state). Then the sum over
F is restricted to the eight points of Fig. 3. We shall also restrict
our analysis to the tetragonal symmetry which means that
L=L=1Land g =g, =g=2z/L and in this case unit cell A= 2
will be interpreted as that of the checkerboard pattern. Then the
order parameter becomes

Eq. (70) describes the multi-layer order parameter with restricted
Fourier components in a well-defined angular momentum state, as
defined by J; whose eigenvalues are given by Eq. (63). Because of
the restricted Fourier space it has the property that ¥,,s= ¥,
Again we notice that mean values acquire very simple forms,
which are m independent

(70)
., 4 gd 2gd
— ¥ I = &—|2 coth | == 2 coth | —==1]|,
y =y coth | == + V2 co 5 1)
d*x
/Tnglym = O, (72)
x
fvil’m(rz‘l’m =0, (73)
d3 . ) 1 1
— ¥l oy, = €4 + E
v sinhz(g—d) sinhz(@)
2 2 (74)
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K2
(-91,92). (0,92) (91,92)
(91,0
(-91,0)
4—‘ . > K1
(-91,-92) (0,-g2) (91,-92)

Fig. 3. The restricted Fourier space contains eight points in a rectangular unitary
cell of sides Ly and Ly, where g = 2#/l; and g, = 2x/L,.

3
/d‘/—xvzly’ml2 = 823c21g [2 coth [gd] + /2 coth ( J—gd]]

They are straightforwardly obtained from Eqgs. (65)-(69), once
noticed that there are four identical contributions coming from E)
along the axis and other four coming from the diagonals of Fig. 3,
and each set contributes with k=g and k = 2 g, respectively.

(75)

8. The experimental values

We show here that the normal (above the homogeneous) state
gap can be determined by assumption of the experimental value
for the local magnetic field between layers. To completely deter-
mine the multi-layer order parameter, given by Eq. (70), the
constant € must be obtained. This indefiniteness is also present
in the free energy obtained from Egs. (22) and (69).

_ 1" 232% &), &d
F—4me i [Zcoth(2 + /2 coth il 76)

The so-called infrared limit, or limit of very small wave number, of
the above expression shows undoubtedly the existence of a
normal state gap density

2(4[d)*
F(L - o) — 48¢ o (77)
As previously discussed, the constant € is determined by small
magnetic field condition set by experimental limit of NMR/NQR
[15,16] and uSR [17,18] experiments. To establish this connection
between theory and experiment we obtain the mean value of the
local magnetic field from Eq. (19). Interestingly for a ¥, state

f(d3x/V)ﬁ = 0 for a single layer while for a stack of layers

3
/d—xﬁ =- lGﬂyﬂez ' 1 + 1 3.

The vanishing of the mean field for a single layer but not for multi-
layers is a consequence of a “solenoid” effect. The mean field of the
single supercurrent loop vanishes but for a stack of current loops it
does not vanish, since it is non-zero inside and zero outside.
Because Eq. (78) applies for any m this solenoid interpretation is
not directly related to circulating supercurrents within the layers.
Next we take that this experimental threshold sets the theoretical
mean value

d’x—
‘/ v ‘ = fe (79)

where we choose to work with h,,, = 0.01 Gauss. The ratio d/L
must also be known to determine the value of &, where d is the
distance between two consecutive layers and L defines the size of
the tetragonal unit cell within a layer. For numerical purposes we
have in mind the compound YBa,Cu;0,_qgg as this material
presents the checkerboard pattern [27] with L = 4a = 1.6 nm, as
we take a=0.4 nm and d=1.2 nm. Thus this ratio is given by
d

1= 0.75. (80)
In convenient units the Bohr magneton is y; = 9.2 Gauss nm?, and
then we obtain the numerical value of &2

£ =53 x 10" nm3. (81)
Finally we obtain the free energy, which is the normal state gap
F=0.5meVnm>. (82)

For comparison we give the approximate values for the super-
conducting gap density of metals and cuprates. They are
10~ meV nm~3 and 10 meV nm 3, respectively. This follows from
the BCS formula Fy,, = 2An,, where 24 is the energy required to
break a single Cooper pair and ng represents the density of
available Cooper pairs, namely n, = 0.187An/E;, n and Er being
the electronic density and the Fermi energy, respectively, for
metals n ~ 0.1 nm~, A/E: ~ 10 and 24 ~ 1.0 meV, while for the
cuprates the gap is 10 times larger than that of metals,
24 ~10 meV, and n, ~ 1.0 nm~>, since there are a few Cooper
pairs [28] occupying the coherence length volume, ¢3¢, where
Ep ~ 1.5nm, & ~ 03 nm. In the next section we show that the
stability of this inhomogeneous state is due to topology, which
prevents its decay into the lower energy homogeneous state
(F=0).

9. The topological charge

The order parameter ¥, describes a lattice of skyrmions and to
understand its topological properties we invoke the Moebius strip,
formed by rotating one end of 180° and joining it with the other
end. Once glued in this way it cannot be returned to the 0°
configuration. This introduces a discrete number which counts
the number of twists present in the Moebius strip. In case of the
skyrmions the number of skyrmion cores within a layer plays
the role of the twists in the Moebius strip. Figs. 4-6 show these
skyrmion cores because superficial supercurrents circulate around
them. The skyrmion cores are sinkholes and at the same sources of
magnetic field stream lines that cross the layer. These streamlines
form closed loops around a given layer, which is then perforated

twice. The condition that Vﬁ = 0 cannot be violated makes the
rupture of these streamline loops nearly impossible, the fact that
brings stability to the ¥,, skyrmion solution. Thus similar to the
twists in the Moebius strip, the closed loops of magnetic field
streamlines cannot be made disappear in favor of a no loop
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Fig. 4. The subplots (a) and (c) show the local magnetic field, hs, and the subplots (b) and (d) the surface supercurrent, J;, for the J; = 1/2% and J; = — 1/27 states,
respectively.

Fig. 5. The subplots (a) and (c) show the local magnetic field, hs, and the subplots (b) and (d) the surface supercurrent, J;, for the J; =3/2% and J; = — 327 states,
respectively.
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respectively.

configuration. From a mathematical perspective the topological
stability stems from the existence of two closed surfaces that can
be mapped one into the other, namely a torus into a sphere. The
torus is a consequence of the lattice pattern since the unit cell has
periodic boundary conditions. The sphere is a consequence of the
global rotational symmetry SU(2) of the order parameter that can
be identified with an S?-sphere. The mapping of the torus into the
sphere defines the second homotopy group of S, 1, (5% = Z, which
is the topological charge, or skyrmionic number. Thus the integer Z
defines the number of possible magnetic field configurations
around a layer, which is ultimately defined by the number of
cores. This is the skyrmion's topological charge and is given by the
following expression:

_ (9 oh) g
Q= /dx[(axl x axz]h] :
X

3=0 (83)

where fi = H)/IH)I. The topological charge is not invariant under the

time reversal symmetry operation ﬁ - - ﬁ) We find that this
skyrmionic topological charge is a function of the angular mo-
mentum m, as shown in Table 1. Table 1 becomes cyclic for m > 3,
which means the state m=0 has the same topological charge of
the m=4 state, the state m=1 has the same charge of the m=5
state and so on. To calculate the topological charge Q we integrate
numerically Eq. (83) using the software Mathematica. We find an

Table 1
Limits of the skyrmionic charge for the eigenvectors ¥y, ,.

m ¥m
Q d JE!
Lmax

-4 +1 0.01 _%ﬁ
-3 +2 0.01 _%ﬁ
-2 -2 0.01 _%ﬁ
-1 -1 0.01 _%ﬁ

0 +1 1.2 +%ﬁ
+1 +2 0.01 +%ﬁ
+2 -2 0.01 55
+3 -1 0.01 +%ﬁ

upper bound limit to the existence of the topological with regard
to the unit cell size, called L4, but not a lower bound limit. The
checkerboard pattern L=1.6 nm falls within this limit, L < L.
Surprisingly L4 for the case m=0 is different from the remaining
ones, and there are skyrmions only in the range 1.2 < d/L < o,
whereas for the remaining it holds that 0.01 < d/L < co.
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A remarkable property of the present model is that the mean
magnetic field value taken in any two-dimensional unit cell
parallel to the layer at 0 < x;3 < d is

d*x— ) 1 1 .
——h =-16au,e + X3.
P
/?:3 A sinhz(”Ld) Sinhz(VZLﬂd]

(84)

exactly as given in Eq. (78).

Further understanding of the present model is brought by
Figs. 4-6. They contain plots that are all obtained from the order
parameter ¥, given by Eq. (70). The m states are also called by

their J3 values, namely, 7#(m + %), according to Eq. (63). The cases
Jy=+ 17 (m=0and m=—1), +2# (m=1 and m=—2), and 37
(m=2 and m= —3) are shown in Figs. 4-6, respectively. Each of
these figures contains four plots associated to the same J3 modulus,
two for the positive J3 state, and the other two for the negative J;
state. The surface supercurrent Z and the local magnetic field
component hs are shown along a selected layer. The surface super-
current is shown through arrows that indicate its circulation within
the layer and the hs three-dimensional plot has the interesting
feature of having positive and negative values, confirming the
presence of magnetic filed stream lines crossing the layer. Thus
the subplots of Figs. 4-6 correspond to the following. Subplots
(a) and (b) display hs and J; for the m state, respectively, whereas
subplots (c) and (d) are associated to the h; and J; —-m — 1 state,
respectively. Comparison between subplots (b) and (d) for each of
these three figures show that the surface supercurrents for the
cases m and —-m — 1 are the reverse of each other. Comparison
between subplots (a) and (c¢) indicate an apparent reversal of hs sign
for all the three figures. In fact this reversal does not exist because
subplots (a) and (c) must have the same mean value given by Eq.
(68). They do have the same mean magnetic field sign (negative)
determined by Eq. (78). Therefore it is quite remarkable that Figs. 4-
6 display subplots with both senses of angular momentum, which
means surface supercurrents circulating in opposite senses and yet
the mean magnetic field points in one single direction for all cases.
We look in more details each one of the figures. Subplots (a) and
(b) of Fig. 4 describe the J; = %}i (m = 0) state. Indeed periodic
boundary conditions show that each corner carry one-fourth of the
circulation of a single skyrmion at the unit cell in agreement with
Table 1 that gives, for this case, that Q=+ 1. The corner of the unit
cell has h; < 0 and is where the skyrmion core is located. Subplots
(c) and (d) of Fig. 4 describe the J, = - %ﬁ state, whose super-
current circulation is just in the opposite direction, and Q = — 1. The
hs plot is not the reverse of the previous case, as it seems to be,
since both have the same value of / (d*A)h,. Subplots (a) and

(b) of Fig. 5 describe the J, = %}? (m = 1) state. Nevertheless in this
case near to the corner there two skyrmions instead, and according
to Table 1 Q=+ 2. The corner of the unit cell has h; < 0 and is where
the skyrmion core is located. Subplots (c) and (d) of Fig. 4 describe

the J, = - %ﬁ state, whose supercurrent circulation is just in the
opposite direction and Q = — 2. Fig. 6 shows circulation around the
center of the unit cell in the opposite direction of previous figures.
Subplots (a) and (b) of Fig. 6 describe the J, = %}i (m = 2) state.
According to Table 1 Q = — 2. Subplots (c) and (d) of Fig. 4 describe
the J, = - %}% state, whose supercurrent circulation is just in the
opposite direction and Q =+ 2.

10. Conclusions

We show here that a very simple theoretical framework
upholds properties to describe a topological state that we con-
jecture to be the pseudogap. To account for this the theory must
contain at least two order parameters. We have studied the
angular momentum properties of this state and calculated the
gap that separates it from the homogeneous state under the
condition that the local magnetic field falls below the threshold
set by NMR/NQR and xSR experiments. This inhomogeneous state
is a lattice of skyrmions that breaks time reversal symmetry and
leads to the checkerboard pattern.
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