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Traditional strategies, such as fingerprinting and face recognition, are becoming more and more fraud
susceptible. As a consequence, new and more fraud proof biometrics modalities have been considered,
ECG ) one of them being the heartbeat pattern acquired by an electrocardiogram (ECG). While methods for sub-
Frequency sampling ject identification based on ECG signal work with signals sampled in high frequencies (>100 Hz), the main
Majority voting scheme goal of this work is to evaluate the use of ECG signal in low frequencies for such aim. In this work, the ECG
signal is sampled in low frequencies (30 Hz and 60 Hz) and represented by four feature extraction meth-
ods available in the literature, which are then feed to a Support Vector Machines (SVM) classifier to per-
form the identification. In addition, a classification approach based on majority voting using multiple
samples per subject is employed and compared to the traditional classification based on the presentation
of single samples per subject each time. Considering a database composed of 193 subjects, results show
identification accuracies higher than 95% and near to optimality (i.e., 100%) when the ECG signal is sam-
pled in 30 Hz and 60 Hz, respectively, being the last one very close to the ones obtained when the signal is
sampled in 360 Hz (the maximum frequency existing in our database). We also evaluate the impact of:
(1) the number of training and testing samples for learning and identification, respectively; (2) the sca-
lability of the biometry (i.e., increment on the number of subjects); and (3) the use of multiple samples for

person identification.

© 2013 Elsevier Ltd. All rights reserved.

1. Introdution

The identification of a subject using a unique biological feature,
i.e., biometric feature, is very important in the society nowadays.
Therefore, the study and development of automatic and accurate
systems for such aim are a subject of high interest in the research
community. Traditional strategies, such as fingerprinting and face
recognition, are becoming more and more susceptible to frauds
(Singha, Singhb, & Guptac, 2012). As a consequence, novel fraud
proof biometrics modalities have been studied, such as the heart-
beat pattern acquired by an electrocardiogram (ECG) (Odinaka
et al.,, 2012). The ECG describes the variation of the electric activity
produced by the heart as a function of time, as illustrated in the top
row of Fig. 1. Its acquisition is extremely simple and non-invasive,
which makes it easy to be employed as a biometry. According to
Odinaka et al. (2012), the ECG signal has been studied as a biome-
try for more than one decade and has shown promising results.

Features extracted from the ECG signal can be categorized into
three classes: fiducial, non-fiducial and hybrids of them. The first
class considers the fiducial points extracted from the ECG signal,
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as in Chazal, O’'Dwyer, and Reilly (2004) and Song, Lee, Cho, Lee,
and Yoo (2005), which are more affected by the sub-sampling as
illustrated in Fig. 1. One can see the lost of information in lower
frequencies (e.g., the R peak - the impulse locus). Methods based
on non-fiducial features do not use fiducial points directly as fea-
tures. For example, one can use the fiducial points Q, R and S to cre-
ate a segment of the heartbeat. The length of the segment is
considered a fiducial feature but if the area under the segment is
used as a feature, it is considered a non-fiducial feature. Some
authors do not use fiducial points to build the non-fiducial fea-
tures, but segment the ECG signal into several parts that may (Li
& Narayanan, 2010) or not (Yu & Chou, 2008) present overlapping.
In addition, there are several authors (Giiler & Ubeyli, 2005; Yu &
Chen, 2007) that use a mix of fiducial and non-fiducial features
to create the feature vector. Such mix of classes of feature are
called hybrids.

The first work using the ECG as a biometry was proposed by
Biel, Pettersson, Philipson, and Wide (2001), in which the authors
reported an accuracy of 100% to identify 22 subjects using 12 fidu-
cial points in the ECG curve, principal component analysis (PCA) to
reduce the dimensionality and a generative model classifier (GMC)
to identify the samples. After that seminal work, other methods
have been proposed. Irvine, Wiederhold, and Gavshon (2001) re-
ported accuracy of 91% to identify 104 subjects using 15 fiducial
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points chosen by Wilks Lambda Feature Selection and the Linear
Discriminant Analysis classifier. Employing PCA and GMC, Zhang
and Wei (2006) employed 14 features extracted from the fiducial
points, which was able to identify 520 subjects with accuracy of
97.4%. Using an approach based on the wavelet coefficients ex-
tracted from ECG, Chiu, Chuang, and Hsu (2008) achieved an accu-
racy of 95.71% considering 45 subjects. Recently, in Fanga and
Chanb (2013), a QRS detection-free ECG biometric based on the
phase space trajectory of the ECG signal using a coarse grained-
structure was proposed. They performed tests using 100 subjects
and the achieved accuracy was 99% when using three-lead ECG.
The high accuracies achieved by these works indicate the viability
of using ECG as a biometry.

The ECG signal is usually sampled in high frequency (higher
than 100 Hz) to capture features associated with cardiac diseases
(Luz, Nunes, de Albuquerque, Papa, & Menotti, 2013). For this rea-
son, the equipments that acquire the ECG signal (e.g., Holter), are
projected to sample the ECG signal in frequencies higher than
100 Hz. Sidek and Khalil (2013) investigated the impact of the sam-
pling frequency of the ECG signal for the subject identification. In
that work, the results showed that the increase in the sampling fre-
quency provides a higher accuracy. However, the authors consid-
ered samples with at least 128 Hz and not lower frequencies. To
the best of our knowledge, there are no works in the literature that
investigate the impact of the sampling in lower frequencies
(<100 Hz) to perform subject identification, which will be one of
the focus of this work.

This work investigates the viability and reliability of performing
identification based on ECG sampled in low frequencies. From the
ECG signals sampled in low frequency, four ECG feature extractors
are employed to extract representations aiming at identifying sub-
jects using a Support Vector Machines (SVM) classifier. Since in
identification based on the ECG signal, each sample is a heartbeat,
multiple samples of a subject can be acquired in a few seconds.
Therefore, this work also evaluates the impact caused by changing
the number of samples per subject used during training and test-
ing. In addition, we employ a majority voting scheme since for each
subject we can decide his/her identity using several heartbeats in-
stead of a single one because we know that those samples belong
to a single, but still unknown, subject. Hence, the evaluation of
each sample does not need to be independent, one by one, such
as in other biometrics such as picture-based face identification.
According to the experimental results, the classification based on
multiple samples using a majority voting scheme, referred to as
dependent classification is more stable and accurate than the tradi-
tional classification approach, referred to as independent classifica-
tion. Moreover, the biometry scalability (i.e., increment on the
number of subjects) is also evaluated.

A

Fig. 1. ECG signal sampled in low frequencies. In the first row, it is shown the
original ECG signal, while in the last two ones the corresponding signal sampled in
60 Hz and 30 Hz, respectively.

The experimental results, presented in Section 3, show the via-
bility of performing subject identification in low sampling frequen-
cies (30Hz and 60 Hz), which might guide new researches on
heart-signal based biometry applications such as the usage of Eule-
rian Video Magnification (Wu et al., 2012) (at 30 Hz from a video),
smart mobile phone and video game control accelerometers (at
60 Hz or higher in practice for iPhone and Wii control) (Kwon,
Lee, Chung, & Park, 2011).

The remainder of this work is organized as follows. The evalua-
tion methodology considered in this work is presented in Section 2.
In Section 3, the experiments performing the proposed evaluations
are described and also a discussion regarding the results is pre-
sented. Finally, in Section 4, conclusions are pointed out.

2. Evaluation methodology

This section describes the methodology employed for perform-
ing the proposed evaluations. First, the ECG signal is sampled in a
specific frequency and then it is preprocessed. Then, ECG fiducial
points are detected aiming at segmenting each heartbeat so that
feature extraction might be executed. Once the features have been
extracted, samples are randomly selected and this new set is then
split into training and testing sets. The training samples are used to
build subject’s models with a standard classifier (e.g., SVM), which
are employed then to classify the testing samples. The flowchart in
Fig. 2 illustrates the methodology and each step of the process is
described in details in the following sections. Note that the ECG
signal sampling step is omitted here because it is data dependent.
It will be discussed in more details when the datasets are described
in Section 3.

2.1. ECG preprocessing

In the first step, the ECG signal obtained from different dat-
abases publicly available are frequency normalized using simple
linear interpolation. The preprocessing step aims at reducing the
noise from the ECG signal, derived from muscular interference or
more commonly from the power grid (50 Hz or 60 Hz). Finite im-
pulse response (FIR) recursive digital filters are the mostly used
for attenuation of these noises. In addition, signal amplitude nor-
malization is also performed in the preprocessing step.

2.2. Heartbeat segmentation

The ECG segmentation consists of delimiting the heartbeat most
interesting part, the QRS complex, its points (Sayadi & Shamsollahi,
2009), and other interesting fiducial points such as P and T points
and the segments related to them. Such information is used by fea-
ture extraction techniques. Once the QRS complex and fiducial
points are segmented, one can obtain several physiological infor-
mation such as the heart rate, length and amplitude of pulse. For
performing the heartbeat segmentation task, there are in the liter-
ature algorithms with accuracy near to the optimality (i.e., almost
100%) (Afonso, Tompkins, Nguyen, & Luo, 1999; Hu, Tompkins,
Urrusti, & Afonso, 1990; Pan & Tompkins, 1985;Sayadi & Shamsol-
lahi, 2009). However, in this work, we use databases in which this
information was previously annotated.

2.3. Feature extraction

To evaluate different representations, four distinct set of fea-
tures are extracted from the ECG signal. These sets were selected
from works that use techniques largely disseminated in the litera-
ture for representing a heartbeat to classify arrhythmia, in which
the goal is to discriminate/classify a single heartbeat of a subject,
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Fig. 2. Flowchart of the subject identification system from ECG signals used in this work.

i.e.,, a single sample (Giiler & Ubeyli, 2005; Song et al., 2005; Yu &
Chen, 2007; Yu & Chou, 2008). The feature extraction methods con-
sidered in this work are detailed in the next paragraphs.

Song etal. (2005). The authors used the wavelet transform to ex-
tract 15 features of each heartbeat. The wavelet transform allows
the analysis of the signal in both time and frequency domain
(Mallat, 1999). The heartbeat is represented by a 400 ms window
of sampling points from ECG signal around the R peak. This dis-
crete curve composed by these points is decomposed in seven lev-
els of wavelet transform, in which only the detail subbands are
used. Along with these wavelet features, other two features from
the RR interval (temporal distance between the peak (R point) of
two consecutive heartbeats/points): the RR interval between the
current beat and its predecessor (RR-predecessor), the RR interval
between the current beat and its successor (RR-posterior); were in-
cluded to the feature vector, resulting in 37 features.

Giiler and Ubeyli (2005). The authors also used the wavelet
transform to decompose a ECG signal of 700 ms approximately sur-
rounding the R peak in four detail and one approximation sub-
bands. In order to reduce the dimensionality to 19 features, the
authors have proposed the use of statistical techniques: absolute
mean, standard deviation and power of the coefficients in each
wavelet subband, besides the ratio of the absolute mean of the
underlying subbands. The researchers highlighted that the choice
of the mother Wavelet function used for feature extraction is cru-
cial for the final effectiveness of the classification model. Thus, all
methods re-implemented in this work that use the wavelet trans-
form were carefully reproduced taking into account the same
wavelet transform and mother function originally proposed by
the authors of those works.

Yu and Chen (2007). In the work proposed in Yu and Chen
(2007), the authors used statistical techniques directly on heart-
beat samples and, also, in three wavelet sub-bands: details of the
first level of wavelet transform decomposition and approximation
and details of the second level one. It is also used the AC power of
the original signal, the AC power of each wavelet sub-band, the AC
power of the autocorrelation function of the coefficients of each
sub-band, and the ratio between the maximum and minimum val-
ues in each sub-band, adding up to 12 features. Besides these 12
statistical features, the authors also used the RR interval (RR-
predecessor).

Yu and Chou (2008). The authors used Independent Component
Analysis (ICA) for extracting 100 coefficients of a heartbeat com-
posed of 200 sampling points centered at the R peak. The ICA coef-
ficients are computed using the linear Fast-ICA algorithm proposed
in Hyvdrinen (1999) and only the 33 first coefficients are used.
According to these researchers, the ICA is used to decompose the
original ECG in a weighted sum of the components that are statis-
tically and mutually independents. Besides these coefficients, it is
included the RR interval (RR-predecessor), adding up to 34
features.

2.4. Sample classification

Usually, the effectiveness of subject identification methods is
measured using the accuracy of heartbeat classification. In this

work, we propose to evaluate the effectiveness of this system using
a majority voting scheme since for each subject we can decide his/
her identity using several heartbeats instead of a single one. Thus,
in this work, we use two measures of accuracy in order to deter-
mine the subject identification effectiveness. The first, referred to
as independent classification, is based on the traditional and inde-
pendent approach in which the accuracy is calculated as the num-
ber of correctly classified heartbeat over the total number of
heartbeats. The second, referred to as dependent classification, is
based on a majority voting scheme considering the classification
of a sequence of consecutive samples (heartbeats) obtained from
a subject. A subject being classified for the dependent classification
approach has assign the identity that appears the maximum num-
ber of times, considering all his/her samples collected during one
section.

After the feature extraction, a classification model is learned
using the SVM algorithm (Cortes & Vapnik, 1995; Scholkopf &
Smola, 2002) using a training database. This model is then used
to evaluate a testing database. The SVM has been chosen as learn-
ing algorithm since it is one of the most popular classifiers found in
the literature and it has reported promising results for subject
identification using ECG signal (Li & Narayanan, 2010; Ye, Coimbra,
& Kumar, 2010).

2.5. Computational complexity

The computational complexity of this methodology is as fol-
lows. All processes (ECG signal sampling, ECG signal preprocessing,
heartbeat segmentation, and feature extraction), developed for
predicting/identifying a sample/subject, have linear time complex-
ity with respect to the number of sampled points in the ECG signal,
except the classification phase, which is bounded by the type of the
kernel used in the SVM and the support vectors learned on the
training phase.

The learning phase, which involves the same steps of the pre-
diction phase except the training phase, depends on the SVM algo-
rithm, which is cubic in the worst case with respect to the training
set and feature vector sizes. The implementation of the majority
voting scheme using buckets for subject votes has also linear time
complexity regarding the number of possible subjects to be classi-
fied. Although the methodology described does not present a final
linear time complexity, its runtime for evaluating heartbeats is
suitable for real-time applications.

3. Experimental evaluation

In this section, we evaluate different sampling frequencies de-
scribed by different feature extraction methods to assess the feasi-
bility of ECG-based recognition in low sampling frequencies, such
as 30 and 60 Hz. In addition, we evaluate the employment of the
majority voting scheme (dependent classification) to subject identi-
fication, the scalability of ECG signals by varying the number of
subjects and the impact in the accuracies when changing the num-
ber of training and testing samples for learning and identification,
respectively.
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3.1. The databases and experimental setup

There are several publicly available databases for evaluating
systems aiming at the identification of patterns in ECG signals.
Nonetheless, other non public databases have been also used in
several studies. The popular databases are available in Physionet’s
web (Moody & Mark, 2001) and in this work we chose four dat-
abases from there: MIT-BIH Arrhythmia (MITDB), MIT-BIH Supra-
ventricular Arrhythmia Database (MITSUP), MIT-BIH Normal
Sinus Rhythm (NSRDB), and European ST-T (EDB).

The MITDB database contains 48 records of heartbeats, each one
of approximately 30 min, sampled in 360 Hz, belonging to 47 dif-
ferent patients/subjects (there are two records for a same patient).
These records were chosen from a set of more than 4000 patient’s
records using holters of the Beth Israel Hospital Arrhythmia Labora-
tory (today Beth Israel Deaconess Medical Center) from 1975s until
1979s. 23 out of 48 were randomly chosen from this large set. To
obtain a balanced sampling of patients with varied heart diseases
(ie., arrhythmia), the remaining 25 records (to accomplish 48)
were carefully selected. Among these 25, rare and hard to classify
disease type situations were chosen in order to create a database
with very different conditions. The ECG signals were acquired from
25 men varying between 32 and 89 years old and 22 women from
23 to 89 years old. Note that this database is the most researched
one for arrhythmic studies.

The MITSUP database comprises 78 records of patients, with
30 min of duration each, sampled in 128 Hz, and has been pro-
posed to be a complement of the MITDB. Its records also were ob-
tained using holters of the Beth Israel Hospital Arrhythmia
Laboratory in the same epoch.

The NSRDB database includes records of 18 subjects acquired in
the Arrhythmic Laboratory of the Beth Israel Hospital. These sub-
jects were chosen to compose this database because they had no
“visible” heart disease, that is, they had a healthy heart. This data-
base is composed of records from 5 men (from 26 to 45 years old)
and 13 women (from 20 to 50 years old). All these records were
sampled in 128 Hz.

The EDB database is a collection of 90 records acquired from 79
subjects, sampled in 250 Hz. These records were extracted from 70
men (from 30 until 84 years old) and 8 women (from 55 until
71 years old). As all of these subjects were suffering from a specific
cardiac disease (i.e., myocardial ischemia), the database was origi-
nally built to allow ST-segment and T-wave analysis.

Table 1 summarizes these figures with respect to the databases.
It is important to note that: (1) Subjects with duplicated records
are present in the MITDB and EDB databases and one of each dupli-
cated record was discarded; (2) Records of subjects/patients using
pacemakers were not selected; (3) Records of subjects/patients
containing in majority arrhythmic heartbeats were not selected
as well. Thus, those records of such subjects were not used, result-
ing then on 193 subjects/records for our experiments.

The aforementioned databases were chosen mainly because
they were made using the same type of holter for acquiring the
ECG signal of all subjects. In contrast, as the frequency sampling
of these databases are different (see Table 1, in Freq. column), it
was required a frequency normalization process as stated in

Table 1
Statistics summary of the databases used.

Database Records/subjects Chosen records Duration Freq. (Hz)
MITDB 48/47 43 30 min 360
MITSUP 78/78 64 30 min 128
NSRDB 18/18 18 24h 128
EDB 90/79 68 02 h 250

previous sections. Indeed, all records were re-sampled using the
maximum frequency among the database (360 Hz) by employing
a simple linear interpolation process before the preprocessing
phase of our methodology.

All experiments performed in this work were executed 30
times. Each time, an experimental set was created by choosing
samples randomly from n initially specified subjects to generate
the training and testing sets. That is, for each run of an experiment
set, the subjects used were randomly chosen from the database
composed of 193 records. For each subject, a sequence of consecu-
tive samples (heartbeats) are randomly chosen as well. The aver-
age (u) and standard deviation (o) of the effectiveness (ie.,
accuracies) were computed. In Figs. 3 and 4, confidence intervals
using 5% significance level are indicated as vertical bars in the plots
and are built based on u * ¢. For the SVM, the regularization and
the hyper-parameter for the RBF kernel were always set to C=10
and vy =1/(8f), in which f is the dimension of the feature vector
used. It is important to note that all implementation codes in
Matlab and datasets used in this work are publicly available.'

3.2. Experimental results

To evaluate the application of ECG as a biometry to more real-
istic scenarios, we performed five types of experiments assessing
different aspects of the identification: (1) feature extraction and
the sampling frequency; (2) the number of samples used for train-
ing and testing; (3) the majority voting scheme (dependent classifi-
cation) compared to the independent classification; (4) the
scalability of such biometric as a function of the number of subjects
considered; and (5) sampling in lower frequencies.

It is important to remember that we used the overall accuracy
as the evaluation metric computed in two ways: (1) traditional
one (independent classification): the number of correctly classified
samples divided by the number of samples presented to the sys-
tem; (2) employing a majority voting scheme among multiple sam-
ples of a same subject classified by the system (dependent
classification).

Feature extraction and sampling frequency. In this experiment,
we evaluate four feature extraction sets and different sampling fre-
quencies (20 Hz, 30 Hz, 60 Hz, 120 Hz, 200 Hz, and 360 Hz), aiming
at verifying their influence in the overall accuracy using 180 sub-
jects/records (randomly chosen from the entire database com-
posed of 193 records), 128 heartbeats (samples) from each
subject for both training and testing. We have chosen 128 samples
for testing/training as the maximum expected time (2 min or
120 s) that a person should be exposed for the subject identifica-
tion process. The results are shown in Table 2 and indicate that
higher sampling frequencies result in higher accuracy to identify
a subject, as expected. Note that, in this experiment, we employed
the independent/traditional classification approach for computing
the overall accuracy.

According to Table 2, experiments performed with the feature
extraction method proposed by Song et al. (2005) show that the
accuracy becomes stable when the sampling frequency reaches
60 Hz. The results obtained by the feature extraction proposed by
Giiler and Ubeyli (2005) drops under 360 Hz and dramatically
drops under 60 Hz. Finally, the results obtained by the feature
extractions proposed by Yu and Chen (2007) and Yu and Chou
(2008) are not promised. Moreover is was not possible to extract
features for these two feature extraction methods in low frequen-
cies (60, 30, and 20 Hz) since more points than available are
required. Due to that, the accuracies for such configurations are
indicated as “-".

1 https://code.google.com/p/ecg-biometric/.
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Fig. 3. ECG-based identification evaluation. Number of training and testing samples, majority voting, and frequency sampling.

From the figures in Table 2, we can observe that the accuracies
obtained in low frequencies (20 Hz, 30 Hz, and 60 Hz) using the
feature sets proposed in Song et al. (2005) and Giiler and Ubeyli
(2005) for subject identification indicate promising results for dis-
criminating subjects using the ECG signal. As the focus of this work
is on low frequencies and high values of accuracy (>85%) the
remaining experiments and evaluations consider only frequency
sampling in 30 Hz or higher and only the feature extraction meth-
od proposed in Song et al. (2005).

Number of samples for training and testing. This experiment aims
at evaluating the influence of the number of samples used for
learning and for identification. Fig. 3 shows the results achieved

with different number of training (each row) and testing samples
(x-axis of the plots). As a result, for a fixed sampling frequency
(columns of the Fig. 3), we can see that the more training samples
are used, the more accurate the results are (for both types of accu-
racy measures), which is an intuitive result since more information
is been used. On the other hand, when a large number of testing
samples are considered, the accuracy tends to reduces slightly. It
is important to observe that, in general, the independent classifica-
tion approach (accuracy measured in traditional way) decreases
slightly with the increase of testing samples. Nonetheless, the
dependent classification approach implemented using the majority
voting scheme achieves, in general, its highest scores using 16 or



2314

Frequency: 30Hz, number of training/testing samples per subject: 128/16

E. ]. S. et al. / Expert Systems with Applications 41 (2014) 2309-2315

Frequency: 60Hz, number of training/testing samples per subject: 128/16  Frequency: 360Hz, number of training/testing samples per subject: 128/16

95 \ !
—+— Dependent classification
—— Indepedent classification

95

Rank-1 Recognition Rate (%
/
Rank-1 Recognition Rate (%

— T

T 1

4

100 * * * * * * * *

e N

95+ 1

Rank-1 Recognition Rate (%)

—+— Dependent classification —#— Dependent classification

—— Indepedent classification —— Indepedent classification

90! i i i i i i | 90 i i i i
20 40 60 80 100 120 140 160 180 20 40 60 80

Number of subjects

Number of subjects

i i i i i 90 i i i i i i i i i
100 120 140 160 180 20 40 60 80 100 120 140 160 180
Number of subjects

Fig. 4. Scalability evaluation. The recognition rate as a function of the number of subjects, varying from 20 to 180.

Table 2

Evaluation of the four feature extraction methods using 180 subject (randomly
chosen from 193) and 128 samples for both training and testing. Each experiment was
performed 30 times reporting its mean and standard deviation accuracy (u+a). 1 -
Song et al. (2005), 2 - Giiler and Ubeyli (2005), 3 - Yu and Chen (2007), 4 - Yu and
Chou (2008).

Freq. (Hz) Methods (accuracy in %)
1 2 3 4
20 76.5+0.1 13.1+49 - -
30 87.5+0.1 124+79 - -
60 93.6+0.0 70.5+0.2 - -
120 94.5+0.0 76.4+0.2 17.52+0.1 30.96 £ 0.1
200 94.9+0.1 78.7+0.2 18.01£0.1 39.11+0.1
360 94.7+0.1 86.4+0.1 30.12+0.1 33.19+03

32 testing samples and its decrease rate with the increasing of test-
ing samples is softer than the independent classification one. In
some cases, the dependent classification accuracy is kept slightly
as the same.

Majority voting. The usage of a majority voting scheme for com-
puting the accuracy (here called dependent classification) is possi-
ble in identification using ECG signal since several samples
(heartbeats) can be collected from a subject in a small period of
time and presented at once to the system because it is known that
they belong to the same subject. Fig. 3 shows the results achieved
when the dependent classification (using majority voting scheme)
is employed (red” curves) compared to the independent evaluation
of each sample (blue curves). The dependent classification ap-
proach achieves higher recognition rates in the vast majority of
the results (except in the top-left plot when the frequency is
30 Hz with 8 training and testing samples). In addition, the results
indicate that after a certain number of testing samples, the accu-
racy does not improve (32 samples), which means that the subject
would need to stay no more than 30 s to be identified with high
accuracy.

Scalability of the biometric system. The results shown in Fig. 4
evaluate the scalability of the system as a function of the number
of subjects, comparing the dependent classification (majority vot-
ing scheme) to the independent classification. As intuitively ex-
pected, in general, the accuracy reduces when more subjects are
considered. However, for 60 Hz, when the dependent classification
is considered, the reduction with the addition of new subjects is
slower and even with 180 subjects, the accuracy is still promising
(>99%). In particular, for 360 Hz both measures of accuracy does
not have significant changes when the number of subjects is
increased.

2 For interpretation of color in Figs. 2-4, the reader is referred to the web version of
this article.

Frequency sampling comparison. It is also important to evaluate
the impact in accuracy when the sampling frequency is reduced.
Comparing column-wise the results shown in Fig. 3, we can see
that, in general, the accuracy increases with the frequency. How-
ever, we can also say that the results obtained for ECG signal when
sampled in 60 Hz are very close (or equivalent) to the ones in
360 Hz, when 64 or 128 training samples are used. Moreover, the
dependent classification accuracy measure shows values higher
than 95% when the frequency is sampled in 30 Hz, trained with
64 or 128 samples, and tested with more than 16 samples. These
results, therefore, demonstrate the viability and reliability of per-
forming subject identification using low frequency sampled ECG
(30 Hz and 60 Hz).

4. Conclusions

In this work, we investigated several aspects of the subject
identification problem based on ECG signal sampled in multiple
frequencies. However, promising results were presented when
using low frequencies for discriminating the subjects. In our exper-
iments, the identification accuracy obtained for 180 subjects using
the ECG signal sampled in 30 Hz and 60 Hz is greater than 95% and
near to, respectively. Such results might allow new researches on
heart-signal based biometry applications based on techniques such
as Eulerian Video Magnification (Wu et al., 2012) using videos cap-
tured in 30 Hz. A second important result is the one obtained with
the majority voting scheme, referred to as dependent classification,
providing high accuracy when several samples for a subject are
classified at once.
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