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A B S T R A C T   

Early detection and diagnosis are critical factors to control the COVID-19 spreading. A number of deep learning- 
based methodologies have been recently proposed for COVID-19 screening in CT scans as a tool to automate and 
help with the diagnosis. These approaches, however, suffer from at least one of the following problems: (i) they 
treat each CT scan slice independently and (ii) the methods are trained and tested with sets of images from the 
same dataset. Treating the slices independently means that the same patient may appear in the training and test 
sets at the same time which may produce misleading results. It also raises the question of whether the scans from 
the same patient should be evaluated as a group or not. Moreover, using a single dataset raises concerns about 
the generalization of the methods. Different datasets tend to present images of varying quality which may come 
from different types of CT machines reflecting the conditions of the countries and cities from where they come 
from. In order to address these two problems, in this work, we propose an Efficient Deep Learning Technique for 
the screening of COVID-19 with a voting-based approach. In this approach, the images from a given patient are 
classified as group in a voting system. The approach is tested in the two biggest datasets of COVID-19 CT analysis 
with a patient-based split. A cross dataset study is also presented to assess the robustness of the models in a more 
realistic scenario in which data comes from different distributions. The cross-dataset analysis has shown that the 
generalization power of deep learning models is far from acceptable for the task since accuracy drops from 
87.68% to 56.16% on the best evaluation scenario. These results highlighted that the methods that aim at 
COVID-19 detection in CT-images have to improve significantly to be considered as a clinical option and larger 
and more diverse datasets are needed to evaluate the methods in a realistic scenario.   

1. Introduction 

In March 2020, the World Health Organization (WHO) officially 
declared the outbreak of COVID-19, the disease caused by SARS-CoV-2, 
a pandemic. COVID-19 is highly infectious and can potentially evolve to 
fatal acute respiratory distress syndrome (ARDS). Early detection and 
diagnosis is a critical factor to control the COVID-19 spreading. The most 
common screening method to detect it is the reverse-transcription po
lymerase chain reaction (RT-PCR) testing. However, it is a laborious 
method and some studies reported its low sensitivity in early stages [1]. 

Chest scans such as X-rays and Computer tomography (CT) scans 
have been used to identify morphological patterns of lung lesions linked 

to the COVID-19. However, the accuracy of the diagnosis of COVID-19 
by Chest scans strongly depends on experts [2] and Deep learning 
techniques have been studied as a tool to automate and help with the 
diagnosis [3–8]. 

A computed tomography scan, or CT scan, produces detailed images 
of organs, bones, soft tissues and blood vessels. CT images allow phy
sicians to identify internal structures and see their shape, size, density 
and texture. Different from conventional X-Rays, CT scans produce a set 
of slices of a given region of the body without overlaying the different 
body structures. Thus, CT scans give a much more detailed picture of the 
patient’s condition than the conventional X-Rays. This detailed infor
mation can be used to determine whether there is a medical problem as 
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well as the extent and exact location of the problem. For these reasons, a 
number of deep learning based methodologies have been recently pro
posed for COVID-19 screening in CT scans [9–14]. 

The main bottleneck for the realization of a study such as the ones 
cited above is the lack of good quality comprehensive data sets. Possibly 
the first attempt to create such a data set was the so-called COVID-CT 
dataset [15] which consists of images mined from research papers. 
Different versions of this dataset were used in Refs. [9–12]. For its most 
updated version, the highest reported accuracy, F1-score, and AUC were 
86%, 85%, and 94% [9], respectively. More recently, Soares et al. [14] 
made another set of CT scans publicly available. It consists of 2482 CT 
scans taken from hospitals in the city of Sāo Paulo, Brazil. They have 
reported an accuracy, sensitivity, and positive predictive value of 
97.38%, 95.53%, and 99.16%, respectively. 

These two datasets are, to date, the biggest publicly available data
sets. It can be seen that the difference in the best results obtained in each 
of them is significant which raises two questions: (i) Are the discrep
ancies in the results due to the differences in the datasets? (ii) Does a 
model trained in one dataset have good performance when tested with 
the other? This work aims to answer these two questions. 

Another drawback of the best performing techniques is their 
immense number of parameters which directly influence their footprint 
and latency. Improving these two metrics allows the model to be more 
easily embedded in mobile applications and to be less of a burden on the 
server if provided as a web-service receiving an enormous number of 
requests per second. In addition, having a more compact baseline model 
allows the exploitation of higher resolution inputs without making the 
computational cost prohibitively high. Broadly speaking, the computa
tional cost is an important factor in the accessibility and availability of 

the technology to the public. 
Thus, the main goals of this work are: (i) to propose a high-quality 

yet compact deep-learnign model for the screening of COVID-19 in CT 
scans and (ii) to address, for the first time, the aforementioned questions 
regarding the two biggest datasets, and a (iii) proposal of a voting based 
evaluation approach. 

To produce an efficient model we exploit and extend the EfficientNet 
Family of deep artificial neural networks along with a data augmenta
tion process and transfer learning. Following previous evaluation pro
tocols [9,14], state-of-the-art results are presented for the COVID-CT 
dataset (accuracy of 87.60%) and the SARS-CoV-2 CT-scan dataset 
(accuracy of 98.99%). The voting based approach showed promising 
results for the Covid-19 detection in CT images. 

The remainder of this work is organized as follows. Section 2 present 
the details of COVID-CT [15] and SARS-CoV-2 CT-scan [14] datasets. 
The methodology is described in Section 3 and the experiments along 
with the results in Section 4. Finally, Section 5 presents the conclusion of 
this work. 

2. Datasets 

This section describes the two datasets considered in this work. To 
the best of our knowledge, these are the two largest public datasets to 
date. 

2.1. SARS-CoV-2 CT-scan dataset 

The SARS-CoV-2 CT-scan dataset [14] consists of 2482 CT scans from 
120 patients, with 1252 CT scans of 60 patients infected by SARS-CoV-2 

Fig. 1. Examples of CT images that are: positive for COVID-19 (top) and non-COVID-19 (bottom) from SARS-CoV-2 CT-scan dataset.  

Fig. 2. Comparison among different contrast in images.  
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from males (32) and females (28), and 1230 CT scan images of 60 
non-infected patients by SARS-CoV-2 from males (30) and females (30), 
but presenting other pulmonary diseases. Data was collected from hos
pitals of São Paulo, Brazil. 

In this dataset the images consist of digital scans of the printed CT 
exams and they have no standard regarding image size (the dimensions 
of the smallest image in the dataset are 104 × 153 while the largest 
images are 484× 416), Fig. 1 shows some examples. 

This dataset also lacks standardization regarding the contrast of the 
images, as can be seen in Fig. 2. 

For method evaluation, the protocol presented in Ref. [14] proposes 
to randomly divide the dataset in training (80%) and test (20%) parti
tions. The dataset is available at https://www.kaggle.com/plamenedua 
rdo/sarscov2-ctscan-dataset. 

2.2. COVID-CT dataset 

To assemble the COVID-CT dataset [15], CT images of patients 
infected with COVID-19 were collected from scientific articles (pre-
prints) deposited in the medRxiv and biRxiv repositories, from January 

19 to March 25 and also some images were donated by hospitals 
(http://medicalsegmentation.com/covid19/). The PyMuPDF software 
was used to extract images from the manuscripts, in order to maintain 
high quality. Meta data were manually extracted and associated with 
each image: patient age, gender, location, medical history, scan time, 
severity of COVID-19, and medical report. A total of 349 images were 
collected, from 216 patients. 

Regarding healthy and non-covid patients, the authors collected 
images from two other datasets (MedPix dataset, LUNA dataset), from 
the Radiopaedia website and from other articles and texts available at 
PubMed Central (PMC). A total of 463 images were collected from 55 
patients. 

Analogous to the previous dataset, the COVID-CT dataset has defined 
standard for image size and contrast. Fig. 3 shows some examples. It is 
also important to highlight that some images contain textual informa
tion which may interfere with model prediction. See Fig. 4. 

A protocol is proposed for the creation of training, validation, and 
test sets. The COVID-19 images that were donated by hospitals and 
extracted directly from medical equipment (LUNA and Radiopaedia) 
were selected to compose the validation and test sets. The remaining - 

Fig. 3. Examples of CT images that are: positive for COVID-19 (top) and non-COVID-19 (bottom) from COVID-CT dataset.  

Fig. 4. Example of images with textual information.  

Table 1 
Datasets distribution.  

Dataset COVID-19 Non-COVID-19 Issues 

# Patients  # Images  # Patients  # Images  

SARS-CoV-2 CT-scan [14] 60 1252 60 1230 non-standard size of images non-standard contrast of images 
COVID-CT [15] 216 349 55 463 non-standard size of images 

non-standard contrast of images 
textual information on images  
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extracted from scientific articles and manuscripts - were reserved to 
compose the training set. The dataset is available at https://github.com/ 
UCSD-AI4H/COVID-CT. 

2.3. Final regards 

Table 1 summarizes the datasets presented in this section. In the 
table is possible to observe the issues identified in the datasets, and the 
relation between the number of patients and the amount of images of 
each class (COVID and Non-COVID). 

3. Methodology 

In this section, the proposed methodology for COVID-19 screening 
based on CT scans is presented. To this end, we extended an architecture 
of the EffiecientNet family and we trained the models with CT images 
from healthy and SaR-CoV-2 infected patients. The CT images come 
from the datasets described in the previous section and undergo the pre- 
processing procedure described below. 

3.1. Pre-processing 

Pre-processing is a very common process in computer vision appli
cations. Pre-processing techniques can be useful for removing unwanted 
noise, emphasize aspects of the image that can help with the recognition 
task, or even help with the deep learning training phase. 

In this work, a simple pixel intensity normalization in the range of 
[0, 1] is applied. This pre-processing is necessary for model convergence 
during the training phase. 

For convolutional network models, the input images are often resized 
to maintain compatibility with the network architectures. Since Effi
cientNets have a low computational cost in terms of latency and mem
ory, it makes it possible to exploit higher resolution input images. Thus, 
we also investigate the impact of varying the input resolution in the 

quality of the model. In this way, this pre-processing step becomes 
another parameter of the network. 

3.2. EfficientCovidNet 

The EfficientNets are a family of artificial neural networks in which 
the basic building block is the Mobile Inverted Bottleneck Conv Block, 
MBconv [16], as depicted in Fig. 5. 

Table 2 presents a typical EfficientNet architecture, particularly the 
B0 model. The main idea to achieve the EfficientNet architecture was to 
start from one high quality yet compact baseline model presented in 
Table 2 and progressively scale each of its dimensions, in a systematical 
manner, with a fixed set of scaling coefficients. 

An EfficientNet can be defined by three dimensions: (i) depth; (ii) 
width; and (iii) resolution as illustrated in Fig. 6. 

Each dimension is scaled by the parameter φ according to Equation 
(1) where α = 1.2 β = 1.1 and γ = 1.1 are constants obtained experi
mentally by a grid search. Varying φ, one can find other derived net
works. For instance, φ = 1 gives rise to the EfficientNet B1, φ = 2 gives 
rise to the EfficientNet B2, and so on. 

According to Ref. [17], Eq. (1) provides a nice trade-off between 
computational cost and performance. 

depth = αϕ

width = βϕ

resolution = γϕ

s.t. α⋅β2⋅γ2 ≈ 2
α ≥ 1, β ≥ 1, γ ≥ 1

(1) 

In [18], four new blocks are added to the baseline model to improve 
COVID-19 recognition on x-ray images. Here, we proposed modifica
tions aimed at CT images, and six new blocks are added to an Effi
cientNet B0 architecture. These blocks were achieved by a grid search 
and can be seen in Table 3 and Table 4. The considered search space was: 
Layers [1 to 6], Number of Neurons [100 to 1024], Activation Function 
[ReLu, Sigmoid, Swich], Dropout [0–80%], Batch Normalization [yes or 
no]. 

Two searches are carried out. One aiming at a shallower architecture 
(number of layers clipped to 4 - Table 3) and the other deeper (Table 4). 

On top of the model a new fully connected layer (FC) is added to 
adapt the classification task to a new domain. We highlight the following 
operations that compose the blocks: Batch normalization (BN), dropout, 
and swish activation functions. 

The batch normalization operation constrains the output of the layer 
in a specific range, forcing zero mean and standard deviation one. That 
works as a regularization, increasing the stability of the neural network, 
and accelerating the training [19]. 

The Dropout [20] operation also act as a regularization, by inhibiting 
a few neurons and thus emulating a bagged ensemble of multiple neural 
networks, for each mini-batch on training. The dropout parameter de
fines the number of inhibited neurons (0–100 percent of the neurons of 
one layer). 

Despite Rectified Linear Unit (ReLU) is considered the most popular 
activation function, here we explore the swish activation function [21]. 

Fig. 5. MBConv Block [16]. DWConv stands for depthwise conv, k3x3/k5x5 
defines the kernel size, BN is batch normalization, HxWxF represents the tensor 
shape (height, width, depth), and x1/2/3/4 is the multiplier for number of 
repeated layers. 

Table 2 
EfficientNet baseline network: B0 architecture.  

Stage Operator Resolution #channels #layers 

1 Conv3x3 224x224 32 1 
2 MBConv1,k3x3 112x112 16 1 
3 MBConv6,k3x3 112x112 24 2 
4 MBConv6,k5x5 56x56 40 2 
5 MBConv6,k3x3 28x28 80 3 
6 MBConv6,k5x5 14x14 112 3 
7 MBConv6,k5x5 14x14 192 4 
8 MBConv6,k3x3 7x7 320 1 
9 Conv1x1/Pooling/FC 7x7 1, 280  1  
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ReLu can be formally defined as f(x) = max(0, x), while the swish 
function is defined by the equation: 

f (x)= x⋅(1 + exp− x)
− 1
. (2) 

The swish activation produces a smooth curve during the minimi
zation loss process and contrary to that, the ReLu produces an abrupt 
change. Also, the swish function does not zero out small negative values. 
We believe those factors may be relevant for capturing patterns under
lying the data [21]. 

3.3. Training 

Due to its complexity, Deep learning models require a large number 
of instances to avoid overfitting. However, for the majority of real-life 
problems, data is not abundant. In fact, few are the situations where 
there is an abundance of data, such as the ImageNet [22] dataset. To 
overcome this issue, one could rely on two techniques: data augmen
tation and transfer learning. In this work, we made use of both tech
niques and we describe below. 

3.3.1. Data augmentation 
Data augmentation consists of increasing the training samples by 

transforming the images without losing semantic information. In this 
work, we applied three transformations to the training samples: rota
tion, horizontal flip, and scaling. Fig. 7 presents an example of the 
applied data augmentation. Such transformations preserve the images 
and would not prevent a physician from interpreting the images. 

3.3.2. Transfer learning 
Starting from a pre-trained neural network and re-training it to fit 

other datasets or other domains is called transfer learning [23]. Per
forming a fine-tune from a pre-trained network can enable the use of 
deep architectures when there is little training data, as the network has 
already learned filters in other domains/problems that can be reused 
[24]. In the present work, we have few images to carry out the training, 
especially of the COVID-19 class. Thus, transfer learning becomes 
imperative. 

Our models inherit several layers from EfficientNet (See Table 2) and 
the new layers are randomly initialized with zero mean. EfficientNets 
were originally trained for the Imagenet dataset [22]. Thus, we follow 
the steps to transfer leanring from one domain to another:  

1. Copy the weights from one EfficientNet model to the new model;  
2. Modify the architecture of the new model, including new layers on 

top;  
3. Random initialize the new layers;  
4. Define which layers will pass through the learning process and which 

one will be frozen; and  
5. Perform the learning process, by updating the weights according to 

the loss function and optimization algorithm. 

Here, the weights are updated with Adam Optimizer with a 
maximum learning rate of 10− 4. We schedule the learning rate to 
decrease by a factor of 10 in the event of stagnation. The number of 
epochs is fixed at 10. 

3.4. Evaluation metrics 

Five metrics are used here to evaluate models: accuracy (Acc), 
COVID-19 sensitivity (SeC), COVID-19 positive prediction (+ PC), F1- 
score (F1), and Area Under the Receiver Operating Curve (AUC), i.e., 

Acc =
TP + TN

TP + FP + TN + FN

SeC =
TP

TP + FN

+PC =
TP

TP + FP

F1 = 2 ∗
+PC ∗ SeC

+PC + SeC

(3)  

wherein TP, TN, FN, and FP stand for the COVID-19 samples correctly 
classified, non-COVID-19 samples correctly classified, the COVID-19 
samples classified as non-COVID-19, the non-COVID-19 classified as 
COVID-19. 

To comparison with the literature, we also report the result in terms 
of Area Under the Receiver Operating Curve (AUC). The Receiver 
Operating Curve is a plot of true positive rate (A.K.A. sensitivity = SeC) 
versus false positive rate (FPR). The FPR is define by Equation (4). 

Fig. 6. Efficient net compound scaling on three parameters (Adapted from Ref. [17]).  

Table 3 
Smaller architecture - example of achieved blocks on the SARS-CoV-2 CT-scan 
dataset - EfficientNet-CT model. (NC = Number of Classes).  

Stage Operator Resolution #channels #layers 

1–9 EfficientNet B3 300x300 32 1 
10 BN/Dropout 7x7 1280 1 
11 FC/BN/Swich/Dropout 1 512 1 
12 FC/BN/Swich 1 128 1 
13 FC/Softmax 1 NC 1  

Table 4 
Deeper architecture - example of achieved blocks on the SARS-CoV-2 CT-scan 
dataset - EfficientNet-CT model. (NC = Number of Classes).  

Stage Operator Resolution #channels #layers 

1–9 EfficientNet B0 custom input 32 1 
10 BN/Dropout 7x7 1280 1 
11 FC/BN/Swich/Dropout 1 2048 1 
11 FC/BN/Swich/Dropout 1 1024 1 
12 FC/BN/Swich 1 512 1 
13 FC/Softmax 1 NC 1  
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FPRC =
FPC

TNC + FPC
(4) 

Higher the AUC, better the model is at distinguishing among image 
categories. 

4. Experiments and discussion 

Experiments were carried on an Intel(R) Core(TM) i7-5820K CPU 
3.30 GHz, 64 GB Ram, one Titan X Pascal with 12 GB, and the Tensor
Flow/Keras framework for Python. The source code and pre-trained 
models are available in https://github.com/ufopcsilab/Efficien 
tCovidNet. In the following subsections, we present the three experi
mental setups explored in this work. The training model start with a 
learning rate of 0.001 with the Adam Optimizer for 20 epochs using the 
categorical cross-entropy loss. 

In a first setup, in Section 4.1, we investigate the discrepancy 
regarding the results reported by the methods considered state-of-the-art 
for the two studied datasets. The best approach for the COVID-CT 
dataset reports 86.0% of accuracy [9]. For the SARS-CoV-2 CT-scan 
dataset, the state-of-the-art method achieves 97.38% of accuracy [14]. 
However, the SARS-CoV-2 CT-scan dataset has significantly more im
ages than the COVID-CT dataset and the same number of patients (in
dividuals). To assess whether this difference is due to the evaluation 
protocol, we perform two experiments. We investigate the impact of 
selecting samples/images for training and test sets at random and in a 
second step, we evaluate the impact of performing the selection guided 
by individuals, that is, ensuring that there are no samples from the same 
individual simultaneously in the training and test sets. 

In a second setup, in Section 4.2, we investigate a very important 
aspect, which is the generalization power of a model. A model is only 
useful if it can also generalize to data from other distributions or other 
datasets. In this regard, we evaluate how the model, trained with the 
SARS-CoV-2 CT-scan dataset, behaves when it is faced with images from 
another dataset, the COVID-CT Dataset. We follow the data-split pro
tocol proposed in Ref. [15]. 

Finally, for the third setup, we explore our EfficientCovidNet model 
only with the COVID-CT Dataset, considering the protocol proposed in 
Refs. [15]. This setup aims to expand the comparison of the proposed 
approach with the literature since this dataset is the most popular to 
date. Here we also explore the impact of varying the size of the input 
images. 

4.1. Setup 1 : 5-fold evaluation on a large dataset 

To evaluate the performance of the proposed approach, we tested the 
protocol proposed by Soares et al. [14] and three different scenarios 
using a 5-fold cross-validation: (i) “Random”, (ii) “Slices”, and (iii) 
“Voting”. The “Random” evaluation divide the data into training and 
test sets randomly. The “Slice” evaluation consider all the CT images 
independent of each other but consider the patient division, that is, we 
prevent samples from one individual simultaneously in the training and 
test sets. In this manner, the model will always be evaluated with 
samples from unknown individuals. Finally, the “Voting” evaluation 
consider all images of an individual and a voting scheme to achieve a 
diagnosis per individual instead of by instance or image. Considering 
that several CT images are acquired in a single exam for a single indi
vidual, we believe that the disease patterns will not be present on all 
instances. Thus, an evaluation using a voting scheme, considering all 
possible instances of one individual, could increase the chances of 
success. 

4.1.1. Results 
Following the protocol proposed in Refs. [14] the data were divided 

into training, validation and test. The proposed approach in this work 
enhanced all metrics on test set as shown in Table 5. 

Despite the outstanding results presented in Table 5, we believe that 
such results are overestimated. Upon this fact, we introduce a 5-fold 
classification and some changes in the original protocol as described 
and with the results presented in Table 6. 

The “Random” evaluation presents better results when compared to 
the two other approaches (“Slice” and “Voting”). One of the reasons is 
due to data from the same patient/individual in both training and test 
sets, which leads to an overestimated result. Upon this fact, our hy
pothesis is that an approach tends to learn the patterns related to the 
individuals instead the COVID patterns. 

In the “Slice” evaluation, the samples are classified as an isolated 
instance, such as the “Random” one but ensuring that all samples of an 
individual are exclusively present only on one data partition: training or 

Table 5 
Classification protocol proposed in Ref. [14].  

Approach Acc (%)  SeC (%)  +PC (%)  

Soares et al. [14] 97.38 95.53 99.16 
Proposed Approach 98.99 98.80 99.20  

Fig. 7. Data augmentation applied using the Augmentor python package. The transformations applied to the images are: rotation (0–15◦ clockwise or anticlockwise), 
20% Zoom or horizontal flipping. All or none changes may be applied/combined according to a probability. (Figure created by the authors). 
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test set. A downgrade is observed which clearly shows an overestimation 
from the “Random” evaluation. 

On the opposite to the “Slice” evaluation, the “Voting” one considers 
all images of an individual to decide whether the individual is infected 
or not. It is worth to emphasize that the same model is used in both 
approaches, that is, the model trained by image (only one “ slice ” of the 
lung). 

Due to the nature of CT scans, we believe the disease patterns will not 
manifest in all slices (instance/images) of an individual CT exam, and 
results of “Slice” and “Voting” evaluation reflect that. We believe this 
can generate false positives/false negatives and therefore impact the 
figures of approaches (See Table 6. Besides, this problem can be seen as a 
multiple instance learning (MIL) problem [25] and that a MIL-based 
approach can be a promising path for future work. 

Comparing the results of both Tables 5 and 6, we believe the pres
ence of samples from the same individual in training and test tends to 
lead an overestimation of an approach. To circumvent this issue, it is 
necessary to ensure the division of the dataset considering the individ
ual, and the use of a cross-dataset approach. 

4.2. Setup 2: cross-dataset evaluation 

For this experiment, we investigate the impact of learning a model in 
one data distribution and evaluate on another one. This scenario is 
closer to reality since it is almost impossible to train a model with images 
acquired from all available sensors, environments and individuals. 

On this setup, the SARS-CoV-2 CT-scan dataset [14] is used only for 
training/validation, and none image of this dataset is present on the test 
set. For the test set, we use the dataset presented in Ref. [15], the 
COVID-CT, since it is a dataset used by several authors in the literature. 
We follow the protocol proposed in Ref. [15] to split the COVID-CT in 
train and test sets, however, we highlight that for training the model 
only images from the SARS-CoV-2 CT-scan dataset is used. We also 
evaluated other test configurations, such as using the COVID-CT training 
partition as a test and also combining both partitions from the COVID-CT 
dataset as a larger test set (See Table 7). We also test the opposite sce
nario, in which we use all images from the COVID-CT dataset [15] for 
training and all images of SARS-CoV-2 CT-scan dataset [14] to test. 

4.2.1. Results 
As one can see, the model performance is drastically reduced when 

we compare cross-dataset evaluation against an intra dataset one. We 
believe that the reason for this behavior is due to data acquisition di
versity. Images from different datasets can be acquired by different 

equipment, different image sensors, and thus, change relevant features 
on the images impairing recognition. The model could learn how to 
identify portions and patterns of one image that may indicate the 
presence (or absence) of COVID-19, although, those patterns may no 
appear in a different dataset. 

Training on COVID-CT [15] and testing in SARS-CoV-2 CT-scan 
dataset [14] presents even worse results since COVID-CT training set is 
smaller. 

We believe such test should be mandatory for all methods aiming at 
COVID-19 recognition with CT images, since it is the one that most re
sembles a real test. 

4.3. Setup 3: impact of input resolution 

In this setup, we evaluate the protocol presented in Ref. [15] only on 
COVID-CT dataset. Zhao et al. [15] proposes to divide the COVID-CT 
dataset into three sets: training, validation, and testing. We also 
applied data augmentation by rotating (max 0.15◦ for each side), 

Table 6 
5-fold classification by slicing and with voting.  

Approach Acc (%)  SeC (%)  +PC (%)  

Random 98.5 ± 0.4  98.6 ± 0.6  98.4 ± 0.6  
Slice 86.6 ± 10.1  94.8 ± 4.5  79.7 ± 20.9  
Voting 89.6 ± 5.1  92.0 ± 10.0  77.5 ± 23.3   

Table 7 
Cross-dataset results.  

Training dataset Test dataset Acc 
(%)  

SeC 

(%)  
+PC 

(%)  

SARS-CoV-2 CT-scan 
dataset [14] 

COVID-CT [15] (Train) 59.12 64.14 54.95 

SARS-CoV-2 CT-scan 
dataset [14] 

COVID-CT [15] (Test) 56.16 53.06 54.74 

SARS-CoV-2 CT-scan 
dataset [14] 

COVID-CT [15] (Train 
+ Test) 

58.31 61.03 54.90 

COVID-CT [15] (Train 
+ Test) 

SARS-CoV-2 CT-scan 
dataset [14] 

45.25 54.39 46.36  

Table 8 
Custom input using the EfficientNet-B0 as the base network.  

Depth Input size Acc (%)  SeC (%)  +PC (%)  F1 (%)  

EfficientNet-B3 300x300 77.34 69.39 80.95 74.72 
Architecture 1 224x224 79.31 70.41 84.15 76.70 

300x300 76.85 69.39 80.00 74.32 
350x350 80.79 79.59 80.41 80.00 
400x400 83.25 80.61 84.04 82.29 
450x450 83.25 81.63 83.33 82.47 
500x500 83.74 83.67 82.83 83.25 

Architecture 2 224x224 83.74 77.55 87.36 82.16 
300x300 81.28 79.59 81.25 80.41 
350x350 86.21 81.63 88.89 85.10 
400x400 80.30 74.49 82.95 78.49 
450x450 77.34 75.51 77.08 76.29 
500x500 87.68 79.59 93.98 86.19  

Fig. 8. ROC curve of the proposed approach.  

Table 9 
Comparison with literature. # - Evaluated with a different test set: only 105 
images (47 COVID and 58 NonCovid).  

Approach Acc  F1  AUC  

#Amyar et al. [12] 86.0 – 93.0 
#Mobiny et al. [10] 87.6 87.1 96.1 
Polsinelli et al. [11] 83.0 83.3 – 
He et al. [9] 86.0 85.0 94.0 
Proposed approach 87.6 86.19 90.5  
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randomly zooming (80% of the are) with 20% of chance and horizontal 
flipping with a probability of 50%. We stress that the data augmentation 
is applied only for training data. The final number of training images 
totalized 2968 images (1442 of COVID and 1408 of NonCOVID). Using 
the protocol in Refs. [15], the test set consists of 203 images (98 of 
COVID and 105 of NonCOVID). 

4.3.1. Results 
In Table 8, we report the results of the proposed approach using the 

protocol described in Ref. [15]. One may observe that the experiments 
with the same approach used in Setups 1 and 2 (EfficientNet-B3) has a 
worse performance when compared with the ones available in the 
literature. 

Aiming to reduce the incidence of overfitting during training of 
“Architecture 1”, we propose a deeper network. In most of the cases, 
when the deeper network is used (see “Architecture 2” in Table 8), 
rather than a Architecture 1 one (see “Architecture 1” in Table 8), a gain 
is observed on all reported figures. 

The best model is the one with the Architecture 2 with input size of 
500x500 (source available at https://github.com/ufopcsilab/Efficien 
tCovidNet). The ROC curve of the model is presented in Fig. 8. 

We present in Table 9 a comparison of the best proposed approach 
against the ones available in the literature. Despite the results presented 
by Amyar et al. [12] and Mobiny et al. [10], both evaluated their 
approach with only 105 images (47 COVID and 58 NonCovid) and, 
therefore, they cannot be directly compared to the present work. Thus, 
the best results previously obtained in this setup were presented in Refs. 
[9]. Although the work proposed here overcomes it in terms of accuracy 
and F1-score on COVID-CT dataset using a significantly smaller model (3 
× smaller). The base model proposed in Ref. [9] needs 14,149,480 pa
rameters while the one proposed here only 4,779,038 parameters. The 
training loss curves for the best model can be seen in Fig. 9. 

5. Conclusion 

In this work, a model for the detection of COVID-19 patterns in CT 
images, namely EffiecintCovidNet, is proposed along with a voting 
based approach and a cross-dataset analysis. The proposed model pre
sents comparable results to the state-of-the-art methods and the highest 
accuracy to date on both datasets. Also, it is three times smaller (with 
4.78 million parameters against 14.15 million of He et al. [9]) and has a 
latency of 0.010 s. This model could enable the use on devices with low 
computational power, such as smartphones and tablets or even facilitate 
integration with the Radiology PACS. 

Our model was evaluated on three setups and with the two largest 

public datasets, including a cross-dataset analysis. To the best of our 
knowledge, this is the first work to carry out such analysis for the present 
task and we believe that this is a major contribution of our work. The 
cross-dataset approach is of paramount importance for the methods 
aiming to detect COVID-19 in CT images since the approach resembles a 
real scenario and unveils the limitations of the methods (for instance, 
the accuracy drops from 87.68% to 56.16% in this scenario for the 
COVID-CT test set). Our analysis suggests that the methods that aim 
COVID-19 detection in CT images have to improve significantly to be 
considered as a clinical option. The proposed voting-base approach fa
vors the detection of false positives and false negatives and thus con
tributes to improving accuracy. 

In this study, we show the potential of Deep Learning models for the 
task of COVID-19 detection on CT images. We also emphasize that larger 
and more diverse datasets are needed in order to evaluate the methods in 
a more realistic manner. As a future research path, we intend to build a 
very large CT image datasets from several Brazilian centers, in order to 
try to cover a larger spectrum of equipment (sensors), ethnic groups and 
acquisition processes and thus, properly validate our method. 
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