Use este identificador para citar ou linkar para este item: http://www.repositorio.ufop.br/jspui/handle/123456789/9839
Título: The pollutant organotins leads to respiratory disease by inflammation : a mini-review.
Autor(es): Silva, Albená Nunes da
Dittz, Dalton
Santana, Higor Scardini
Faria, Rodrigo Alves
Freitas, Katia Michelle
Coutinho, Christiane Rabelo
Rodrigues, Livia Carla de Melo
Alves, Leandro Miranda
Silva, Ian Victor
Graceli, Jones Bernardes
Lima, Leandro Ceotto Freitas
Palavras-chave: Airway disease
Organotin compounds
Endocrine-disrupting chemicals
Inflammation
Data do documento: 2018
Referência: SILVA, A. N. da et al. The pollutant organotins leads to respiratory disease by inflammation : a mini-review. Frontiers in Endocrinology, v. 8, p. 1-6, 2018. Disponível em: <https://www.frontiersin.org/articles/10.3389/fendo.2017.00369/full>. Acesso em: 05 abr. 2018.
Resumo: Organotins (OTs) are organometallic pollutants. The OTs are organometallic pollutants that are used in many industrial, agricultural, and domestic products, and it works as powerful biocidal compound against large types of microorganisms such as fungi and bacteria. In addition, OTs are well known to be endocrine-disrupting chemicals, leading abnormalities an “imposex” phenomenon in the female mollusks. There are some studies showing that OTs’ exposure is responsible for neural, endocrine, and reproductive dysfunctions in vitro and in vivo models. However, OTs’ effects over the mammalian immune system are poorly understood, particularly in respiratory diseases. The immune system, as well as their cellular components, performs a pivotal role in the control of the several physiologic functions, and in the maintenance and recovery of homeostasis. Thus, it is becoming important to better understand the association between environmental contaminants, as OTs, and the physiological function of immune system. There are no many scientific works studying the relationship between OTs and respiratory disease, especially about immune system activation. Herein, we reported studies in animal, humans, and in vitro models. We searched studies in PUBMED, LILACS, and Scielo platforms. Studies have reported that OTs exposure was able to suppress T helper 1 (Th1) and exacerbate T helper 2 (Th2) response in the immune system. In addition, OTs’ contact could elevate in the airway inflammatory response, throughout a mechanism associated with the apoptosis of T-regulatory cells and increased oxidative stress response. In addition, OTs induce macrophage recruitment to the tissue, leading to the increased necrosis, which stimulates an inflammatory cytokines secretion exacerbating the local inflammation and tissue function loss. Thus, the main intention of this mini-review is to up to date the main findings involving the inflammatory profile (especially Th1 and Th2 response) in the respiratory tract as a result of OTs’ exposure.
URI: http://www.repositorio.ufop.br/handle/123456789/9839
ISSN: 16642392
Licença: This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). Fonte: o próprio artigo.
Aparece nas coleções:DEEFD - Artigos publicados em periódicos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_PollutantOrganotinLeads.pdf128,76 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.