Use este identificador para citar ou linkar para este item: http://www.repositorio.ufop.br/handle/123456789/4235
Título: Uma abordagem ao problema de sequenciamento em uma máquina com penalidades por antecipação e atraso da produção por meio de algoritmos evolutivos.
Autor(es): Ramos, Renato da Silva
Oliveira, Fernando Bernardes de
Palavras-chave: Algoritmos genéticos
Problemas de sequenciamento
Problemas de programação da produção
Data do documento: 2011
Referência: RAMOS, R. da S.; OLIVEIRA, F. B. de. Uma abordagem ao problema de sequenciamento em uma máquina com penalidades por antecipação e atraso da produção por meio de algoritmos evolutivos. Conexão Ciência, Formiga, v. 6, n. 2, p. 21-37, 2011. Disponível em: <http://periodicos.uniformg.edu.br:21011/periodicos/index.php/testeconexaociencia/article/view/85>. Acesso em: 08 jan. 2015.
Resumo: O problema de sequenciamento em uma máquina com penalidades por antecipação e atraso da produção (PSUMAA), objeto de estudo deste artigo, baseado em um trabalho monográfico, faz parte dos problemas de programação da produção. Esse tipo de problema é amplamente aplicável em empresas que trabalham com produção sob encomenda e que sempre necessitam se adaptar às atividades executadas durante o processo produtivo das necessidades dos clientes. Para o problema abordado, considerou-se como restrição as datas para entrega da produção e tempo de preparação da máquina dependente da sequência. É proposto o desenvolvimento de um algoritmo evolutivo com características híbridas para solucionar este problema. Os resultados obtidos pelo algoritmo proposto são comparados com o que foi atingido pelo algoritmo genético clássico, bem como com a literatura. Para o algoritmo evolutivo híbrido, foram implementados três operadores de cruzamento (LOX, OX de 1 ponto e OX de 2 pontos), sendo que o operador OX de 2 pontos apresentou melhor desempenho em relação aos demais. Em comparação ao algoritmo genético clássico, houve considerável melhora nos resultados encontrados pelo algoritmo evolutivo híbrido desenvolvido, atingindo melhora superior a 74% para alguns casos de teste. Em relação à literatura, os resultados obtidos apresentaram melhora superior a 25% para os casos de teste com 20 e 25 tarefas, considerando 10.000 gerações para o algoritmo evolutivo. ______________________________________________________________________________________________
ABSTRACT: The machine scheduling problem for minimizing earliness and tardiness penalties (PSUMAA), object of survey of this article, based on a monographic, is a part of the problems of production scheduling. This kind of problems is widely applicable in companies which work with production under order and that always need to adapt to the activities performed during the productive process to the needs of the clients. For the problems in subject, it was considered the dates for the delivery of production and time of preparation of the machine depending on the sequence. It is proposed the development of an algorithm evolutionary with hybrid features to resolve this problem. The results obtained by the proposed algorithm are compared with the one that was achieved by classic genetic algorithm, as well as the literature. For the hybrid evolutionary algorithm, three operators were of crossover (LOX, OX if 1 point and OX of 2 points), being that the operator OX of 2 points presented a better performance compared the others. In comparison with the classical genetic algorithm, there was a considerable improvement in the results fount by the evolutionary algorithm hybrid developed, achieving a better improvement to 74% for some cases of test. As for the literature, the results obtained presented a better improvement to 25%, for the cases of test with 20 and 25 tasks, considering 10.000 generations for the evolutionary algorithm.
URI: http://www.repositorio.ufop.br/handle/123456789/4235
ISSN: 1980-7058
Licença: Disponível sob Licença Creative Commons Atribuição-SemDerivações-SemDerivados 3.0 Brasil, que permite copiar, distribuir e transmitir o trabalho, desde que seja citado o autor e licenciante. Não permite o uso para fins comerciais nem a adaptação. Fonte: Conexão Ciência <http://periodicos.uniformg.edu.br:21011/periodicos/index.php/testeconexaociencia/index>. Acesso em: 08 jan. 2015.
Aparece nas coleções:DECEA - Artigos publicados em periódicos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_AbordagemProblemaSequenciamento.pdf487,33 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.