A equação de Pitágoras módulo primo.

Nenhuma Miniatura disponível
Data
2021
Título da Revista
ISSN da Revista
Título de Volume
Editor
Resumo
As triplas de números inteiros positivos (x, y, z) que satisfazem a equação de Pitágoras x 2 + y 2 = z 2 são chamadas de triplas pitagóricas. Por outro lado, para n ≥ 3, a equação x n + y n = z n é conhecida como equação de Fermat. Nessa dissertação, vamos descrever todas as triplas pitagóricas e mostrar que a equação de Fermat com n = 4 não tem solução. Contudo, o objetivo principal desse trabalho é calcular o número de soluções da equação de Pitágoras módulo um primo p, isto é, x 2 + y 2 ≡ z 2 (mod p). Vamos provar que, embora tomando caminhos distintos para os casos p = 2, p ≡ 1 (mod 4) e p ≡ 3 (mod 4), o número de soluções é sempre p 2 . O principal argumento usado é o símbolo de Legendre. Para isso, vamos obter diversas reduções que simplificam o problema. Vamos também discutir alguns problemas relacionados e mostrar como nossa solução pode ser generalizada.
Descrição
Programa de Pós-Graduação em Matemática em Rede Nacional. Departamento de Matemática, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto.
Palavras-chave
Teorema de Fermat, Teorema de Pitágoras, Adrien Marie Legendre - eléments de géométrie, Equações
Citação
SILVA, Denise Ramos da. A equação de Pitágoras módulo primo. 2021. 25 f. Dissertação (Mestrado Profissional em Matemática em Rede Nacional) – Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, 2021.