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Magmatic garnet, together with epidote, is a rare mineral association in cordilleran-I-type granitoids and of spe-
cial petrogenetic significance. The metaluminous to slightly peraluminous (ASI = 0.97–1.07) Galiléia batholith
(Brazil) is a large (ca. 30,000 km2), Neoproterozoic (ca. 632–570 Ma) weakly foliated calc-alkaline granitoid
body, characterized by the widespread occurrence of garnet (grossular 25–43 mol%) and epidote (pistacite
9.3–22.7 mol%). Field, petrographic and mineral chemical evidence indicates that garnet, epidote, biotite as
well as white mica crystals (low-Si phengite), are magmatic. There is no difference in bulk rock major and
trace element composition between the Galiléia granitoids and other garnet-free cordilleran-type granitoids
worldwide. This evidence strongly suggests that the origin of the uncommon garnet+ epidote parageneses is re-
lated to the conditions of magma crystallization, such as pressure, temperature and water content. Comparison
between themineral assemblages andmineral compositions from this study and those recorded in crystallization
experiments on metaluminous calc-alkaline magmas, as well as within garnet-bearing metaluminous volcanic
rocks and granitoids, indicates that the supersolidus coexistence of grossular-rich garnet, epidote and white
mica is consistent withmagma crystallization at pressures greater than 0.8 GPa (above 25 kmdepth) and at tem-
peratures below 700 °C, i.e. near the water saturated solidus. Furthermore, resorption textures around garnet
(plagioclase ± quartz coronas) and epidote suggest that these minerals have been partially consumed prior to
complete crystallization. These findings demonstrate that at 630 Ma the crust underneath the Araçuaí Orogen
was already at least 25–30 km thick and relatively cool. However, this contrasts with the marked high heat
flow registered from the neighbour Carlos Chagas Batholith located 50 km to the east. In fact such granitoids re-
cord granulite-facies metamorphism at the same pressure and time (ca. 570 Ma) of Galiléia granitoids crystalli-
zation. Thus, a more suitable geodynamic scenario is required in order to explain these two contrasting thermal
regimes within the same orogen. Eventually, field, petrographic and mineral chemical analogies with similar
garnet-bearing granitoids located in the fore-arc settings of the British Columbia subduction zone, possibly
imply that the Galiléia granitoids represent “rare” garnet- and epidote-bearing metaluminous Cordilleran-I-
type granites which can only form in a fore-arc setting.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Garnet is a common minor component of peraluminous granites
formed via partial melting of Al-rich metasedimentary rocks (i.e. S-type
granites). In these rocks, garnet has been shown to be commonly
peritectic, produced by biotite incongruent melting of the metapelitic
source of the S-typemagma, or due to partialmelting ofmetasedimentary
country rock which the magma intruded (Erdmann et al., 2009; Lackey
oup, Departamento deGeologia,
ampus Universitário Morro do
E

C

et al., 2012; Melo et al., 2017). Furthermore, garnet has also been pro-
posed to represent entrained crystals from the source, that were not in-
volved in the anatectic process (i.e. a resistate crystal, Vernon, 2007) or
a xenocryst incorporated from the wall rock during the ascent and em-
placement of the granitic body (Clarke, 2007). On the other hand, many
studies have shown that garnet in S-type granites can also be magmatic
in origin (e.g. Allan and Clarke, 1981; Barnes et al., 2012; Dalquist et al.,
2007; Harrison, 1988; Lackey et al., 2012; Miller and Stoddard, 1981;
Villaros et al., 2009). In addition, when subjected to metamorphism at
suitable conditions, granites may develop metamorphic garnet. A good
example is reported by Vielzeuf and Schmidt (2001), where Hercynian
granitoids subjected to high pressure metamorphism during Alpine oro-
genesis developed garnet aureoles around biotite and plagioclase.
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In metaluminous cordilleran-type granites as well as in
metaluminous volcanic rocks, garnet is extremely rare and few natural
occurrences have been reported in the literature (e.g. Bach et al.,
2012; Barnes and Allen, 2006; Dawes and Evans, 1991; Day et al.,
1992; Evans and Vance, 1987; Harangi et al., 2001; Samadi et al.,
2014). Crystallization experiments (e.g. Alonso-Perez et al., 2009;
Green, 1972, 1977, 1992; Green and Ringwood, 1968; Schmidt, 1993;
Schmidt and Thompson, 1996) onmetaluminous andesitic and tonalitic
to granodioritic compositions show that garnet is stabilized at high
pressures and at low temperatures, inmagmas that arewater-rich (typ-
ically in the range of 5–10 wt.% H2O). The rare occurrence of garnet in
such compositions in the plutonic record suggests that these conditions
are rarely achieved (or preserved) in nature. Metaluminous granites
and volcanic rocks with dacitic–rhyolitic composition can also be char-
acterized by another uncommon magmatic mineral: epidote (Brandon
et al., 1996; Schmidt, 1993; Schmidt and Poli, 2004; Schmidt and
Thompson, 1996; Zen and Hammarstrom, 1984a, 1984b). More than a
decade ago, Schmidt and Poli (2004) reported 19 occurrences world-
wide. Since then an increasing number of scientific works reported its
presence in other cordilleran-type granitic plutons and batholiths. As
with garnet, epidote can be eithermetamorphic ormagmatic.Magmatic
epidote is commonly interpreted to indicate crystallization at
moderate- to high-pressures (N0.6 GPa), with water saturation of the
magma (≥10wt.% of H2O) (Schmidt and Thompson, 1996). Experimen-
tal evidence (Holdaway, 1972; Liou, 1973; Schmidt and Poli, 2004;
Schmidt and Thompson, 1996) indicates that epidote stability is depen-
dent on melt composition and ƒO2 state, with crystallization being
favoured in metaluminous granodioritic to tonalitic compositions in a
relatively oxidized environment (i.e. NNO oxygen buffer). In addition,
epidote appears to crystallize together with garnet only above approxi-
mately 1.2 GPa (Schmidt and Thompson, 1996).We combined informa-
tion on occurrences of magmatic garnet (Samadi et al., 2014) and
epidote (Schmidt and Poli, 2004) inmetaluminous intrusives and volca-
nic rocks worldwide and there appear to be only few localities where
magmatic garnet and epidote have crystallized together. These include:
the garnet–epidote bearing dikes cropping out in the Front Range,
Colorado (Dawes and Evans, 1991; Evans and Vance, 1987); the
Dehnow pluton, north east Iran (Samadi et al., 2014); the Bushy
Point Granites, south eastern Alaska (Arth et al., 1988; Zen and
Hammarstrom, 1984a, 1984b); the Jinshan Intrusion associated with
the Dabie Orogenic belt, China (e.g. Xu et al., 2013) and the subject of
this study, the 30,000 km2 Neoproterozoic Cordilleran-type Galiléia
Batholith, located within the Araçuaí Orogen, Brazil (Mondou et al.,
2012; Nalini, 1997; Nalini et al., 2000, 2005, 2008; Vauchez et al.,
2007). Garnet and epidote-bearing assemblages have been reported
throughout the Galiléia batholith but the origin of both minerals
has not been accurately constrained. Detailed field and petrographic
investigations coupled with mineral chemistry, whole rock
geochemistry and comparison with the assemblages and mineral
compositions produced in high pressure experiments, are used
here to shed light on the origin of garnet and epidote in the Galiléia
batholith.

2. Geological background

2.1. General background of the Araçuaí Orogenic Belt

The Araçuaí Orogenic Belt, together with its African counterpart (the
West Congolian Belt), was formed during the Brasiliano/Pan-African
orogeny (ca. 640–520Ma; e.g. Alkmimet al., 2006). This orogen, located
in south-eastern Brazil (Fig. 1a), lies between theAtlantic Ocean and the
São Francisco Craton. Different tectono-stratigraphic schemes have
been proposed to describe the architecture of this orogen. Pedrosa-
Soares et al. (2001) and Pedrosa-Soares and Wiedemann-Leonardos
(2000) proposed its subdivision into external, internal and northern do-
mains, while Mondou et al. (2012) and Vauchez et al. (2007) adopted
another subdivision (Fig. 1b) defining a Western Domain (or Western
Mylonitic Unit), a Central Domain (or Central Plutonic Unit) and an
Eastern Domain (or Anatectic Unit). Each domain is separated through
major thrust zones (Fig. 1b; e.g. Vauchez et al., 2007). The Western
Domain, which has been thrust over the eastern São Francisco Craton
(mostly made up of gneiss and Al-quartzites), consists of high-
temperature (~750 °C) and relatively low-pressure (~0.6 GPa)
metasedimentary mylonites crosscut by abundant syn-kinematic
garnet–cordierite-bearing leucocratic veins (570–580 Ma, LA-ICP-
MS U–Pb zircon andmonazite ages; Petitgirard et al., 2009). The Cen-
tral Domain is mainly represented by Neoproterozoic (ca.
632–570 Ma) I-type granitoids which intrude the Paleoproterozoic
basement (ca. 2.2–2.0 Ga) represented by the Pocrane gneiss
Complex, and by the arc-related Rio Doce metasediments (Fig. 1c)
(Gonçalves et al., 2014 and reference therein). According to
Pedrosa-Soares et al. (2001) and Pedrosa-Soares et al. (2011) the
granitoids and themetasediments are grouped together into the gra-
nitic 1 (G1) supersuite and are thought to be related to the pre-
collisional stages of the Brasiliano orogeny that build up the Araçuaí
orogen (Pedrosa-Soares et al., 2001). The Eastern Domain is
subdivided into the Nova Venecia complex composed of migmatites,
granulites and granites (e.g. Richter et al., 2015) and into the Carlos
Chagas batholith characterized by peraluminous S-type granitoids
(e.g. Melo et al., 2017). These rocks, according mainly to their
location, ages and geochemistry (Pedrosa-Soares et al., 2001), are
subdivided in syn-collisional (G2, 585–560 Ma), late collisional
(G3; 560–530 Ma) and post-collisional (G4–G5, 530–480 Ma)
supersuites. Small igneous bodies belonging to the G2, G4 and G5
supersuites, intrude into the Central Domain.
2.2. The Galiléia Batholith

The granitoids of the G1 supersuite (Fig. 1b, c) consist of
orthopyroxene-rich (i.e. charnockites) and orthopyroxene-free granites
and granodiorites, the latter forming the so-called Galiléia Batholith and
displaying variable amounts of mafic microgranular enclaves (MME)
(e.g. Gonçalves et al., 2014). The batholith extends roughly north–
south for ca. 600 km, almost the entire length of the Araçuaí orogen,
covering an area of approximately 30,000 km2 (Fig. 1a) (Gonçalves
et al., 2014; Pedrosa-Soaeres et al., 2011; Pedrosa-Soares et al., 2001;
Vauchez et al., 2007). Based on field evidence, mineral textural studies
and geochemical features, Gonçalves et al. (2014) have recently further
subdivided the Galiléia batholith into a suite of enclave-rich tonalite–
granodiorite rocks and a suite of enclave-poor tonalitic to granitic
rocks. These two suites, appear to occur throughout thewhole batholith
(Fig. 1b and c). Geochemically, the opx-free granitoids resemble
medium- to high-K metaluminous Cordilleran-type granitoids, and are
interpreted as being produced during the Rio Doce arc-related
magmatism; they are suggested to be derived from the partial melting
of the Paleoproterozoic basement due to underplating ofmantle derived
magmas (e.g. Gonçalves et al., 2014). However, assimilation of host
rocks, fractional crystallization during the ascent of mantle-derived
magmas, ormixingbetweenmantle derivedmagmawith felsicmagmas
of crustal origin have also been proposed as possible processes that
might have shaped the Galiléia igneous rocks (e.g. Gonçalves et al.,
2014).

Recently, Tedeschi et al. (2016) presented newages for thewhole G1
granitoid suite and reviewed the age information available from previ-
ous studies. The entire age spectrum demonstrates that the G1 granit-
oids have magmatic zircon crystals indicating intrusion between 632
and 570Ma. Tedeschi et al. (2016) identify three main intervals of crys-
tallization ages: 632–605 Ma, 600–590 Ma and 585–570 Ma (Fig. 13 in
Tedeschi et al., 2016), which have been suggested to represent three
mainperiods of granitogenesis thus corresponding to threemain phases
of construction of the Rio Doce arc.
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2.3. The Rio Doce metasedimentary host rocks

The Rio Doce metasediments are poorly studied. In the studied area
an unpublished work (Vieira, 2007) has proposed that these rocks
underwent medium pressure amphibolite facies metamorphism with
pressure estimates from empirical geobarometry on garnet-bearing
rocks of approximately 0.5 GPa. The study was conducted on areas
far from the contact with the Galiléia granitoids. Cunningham et al.
(1996) and Nalini et al. (2008) report that the Galiléia granitoids have
both intrusive and tectonic contacts with the Rio Doce metasediments.
Mondou et al. (2012) suggested also that intrusion was contemporane-
ous with pervasive deformation in the Rio Doce metasediments.
3. Results

This study focuses on the granites belonging to the enclave-rich unit
in the central part of the Galiléia batholith (Fig. 1b and c), previously in-
vestigated by Gonçalves et al. (2014), Mondou et al. (2012), Nalini
(1997), Nalini et al. (2000, 2005, 2008) and Vauchez et al. (2007). The
study area covers ca. 4000 km2. In this paper we use the name
Galiléia granitoids to refer to the enclave-rich granitoids of the
Galiléia batholith. A description of the analytical methods used as
well as the complete dataset comprehensive of bothmineral chemis-
try data and whole rock compositions are presented in the Online
Supplementary Material.

Image of Fig. 1
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3.1. Field relationships

The studied rocks consist of medium-grained tonalites, granodio-
rites, and subordinate granites (Fig. 2), that are either equigranular or
porphyritic, with the latter texture reflecting the presence of feldspar
crystals (≥1 cm) larger than the respective matrix minerals. Less com-
monly, coarse- and fine-grained examples of tonalite and granodiorite
also occur. The granitoids are typically weakly deformed showing a foli-
ation that is defined by the orientation of biotite and amphibole crystals
andmarked by the long axis of stretched mafic enclaves (Fig. 2a and b).
The foliation has a dip ranging from 50° to 80° towards NE or SW (see
also Nalini et al., 2008). Some outcrops display evidence for the coexis-
tence of slightly different varieties of granite, one more melanocratic
and the other more leucocratic (Fig. 2c). Based on petrographic and
field observations, major rock-forming minerals are plagioclase
a

c

e

Fig. 2. Field features of the Galiléia granitoids. Typical appearance of a: (a) garnet-bearing encla
(c) coexistence of a melanocratic and leucocratic granitic magmas as indicated by the red arrow
4 m in width; (f) stretched enclaves. Note the bridge structure, possibly due to deformation in
hammer are 60 and 32 cm in length, respectively.
(32–42 vol.%), quartz (15–33 vol.%) and K-feldspar (1.5–14 vol.%). Bio-
tite, amphibole and garnet are the main mafic minerals (see also
Gonçalves et al., 2014), with biotite being the most abundant, forming
up to 19 vol.%. Hornblende is not ubiquitous and occurs in ca. 80%
of the outcrops, sometimes forming crystals of up to 1 cm in size and
making up 3–18 vol.% of the rock. Garnet forms a minor component of
the rocks up to 2 vol.%. A detailed description of the procedure used
for the vol.% estimation is given in Section 3.1.1. Accessory minerals
are epidote, allanite, titanite, apatite, zircon, pyrite and pyrrhotite,
while oxide minerals such as magnetite and ilmenite are rare.

Tonalites and granodiorites are characterized by different amounts
of mafic microgranular enclaves (MME) (Fig. 2a, b, and d). MMEs can
be lobate, stretched, lenticular, and sometimes showing bridge struc-
tures (Fig. 2a, b, e and f, respectively). In agreement with Nalini et al.
(2008) the enclaves are generally stretched along a N30–60°W
b

d

gf

ve-rich granitoids, (b) garnet-free granitoid containing widespread MMEs (≥7 MME/m2),
s, (d) MME-free garnet-bearing granite; (e) rounded composite enclave reaching almost
sub-magmatic state; (g) stretched enclaves swarm in a composite dyke. Brown and blue

Image of Fig. 2
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direction and exhibit variable aspect ratios (length/width = 2:1 to ca.
10:1). The most stretched enclaves occur in outcrops where the granit-
oids are both strongly and weakly deformed (Fig. 2a and b, respective-
ly). The stretched mafic enclaves in the weakly deformed granites (i.e.
Fig. 2b) have aspect ratios that are inconsistent with the weak fabrics
in the matrix around the enclaves, confirming that they represent a
strong magmatic state lineation produced by magma flow (e.g.
Paterson et al., 1998). In the least deformed outcrops, MMEs have also
variable sizes reaching occasionally up to 4 m in length (Fig. 2e), while
in other areas they are small (b2 cm) and can easily be misinterpreted
as biotite clots. In order to quantify their abundance, MME counting
(MME/m2, Fig. 3a) was performed using an area of 5 × 5 m, for a total
of 30 outcrops. Where possible, more than one area was analysed for
each outcrop. In the counting procedure, only those MMEs that were
at least for three-quarters of their area inside the grid were counted.
Garnet/m2
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e

c

a

Fig. 3. Garnet and mafic enclave counting. MME (a) and garnet (b); counts for 30 outcrops. Th
garnets (later converted in m2). The lowest garnet counts (Grt/m2 b 50) represent 0 vol.%, w
Fig. 1c and this counting procedure covered all the entire area, that is ca. 4000 km2; (c) Avera
SiO2 content; in (f) the Grt/m2 is plotted against the CaO (see the text for more explanation)
elsewhere.
MME counts range between 0 and 7 MME/m2, with values between
1.70 and 3.30 MME/m2 being typical (Fig. 2a, c, d).
3.1.1. Garnet abundance and distribution
Garnet is widespread in the Galiléia Batholith and garnet counting

(garnet crystals/m2, Fig. 3b)was performed in order to describe the var-
iation in the number of macroscopically visible crystals per m2; a grid
area of 10 × 20 cm was used. Counting was conducted for 30 outcrops.
In this case, up to five areas were counted per each outcrop, with
the grids randomly distributed on the surface of the outcrop and
separated by distances of more than 1 m in order to avoid counting
bias. Within individual outcrop the garnet crystal/m2 counts do not
vary significantly. Consequently, the average values calculated are
assumed to be representative for each outcrop.
Garnet/m2

7

6

5

4

3

2
0 500 1000 1500 2000 2500

MME/m2

75
73
71
69
67
65
63
61
59
57
55

0 2 3 4 5 6 81 7

19.00°S

41.20°W

> 2300

1300-2300

300-1300

50-300

< 50

Garnet/m2

d

b

f

e grids used for counting were 25 m2 (5 × 5 m) for MMEs and 200 cm2 (10 × 20 cm) for
hile the highest reach almost 2 vol.% of the outcrop. Note that the area is the same as in
ge garnet vs. MME counts; (d) and (e) MME/m2 and Grt/m2 are plotted against granitoid
. Note that for some of the samples here plotted, the chemical analyses will be reported

Image of Fig. 3
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The number of garnet crystals perm2 varies from 0 to amaximum of
2500. This equates to a variation from 0 up to ca. 2 vol.%. Nevertheless,
most of the batholith has a garnet crystal abundance between 300 and
1300 crystals/m2. There is no relationship between garnet abundance
and degree of rock deformation. Moreover, there is no relationship be-
tween the abundance of garnet crystals and proximity to contacts
with the country rocks (Fig. 3b), nor with the presence of country rock
xenoliths. Additionally, there is also no relationship between the num-
ber of garnet crystals and the abundance of mafic enclaves (Fig. 3c) or
with the geochemistry of the rocks. In fact the MME and garnet abun-
dance results in a scattered behaviour when compared with bulk rock
SiO2 and CaO concentrations (Fig. 3d, e and f). Garnet is found mostly
in granodiorites with the exception of the only tonalite sampled. Garnet
ranges in size from 1 to 6mmwith an average of less than 2mm(Figs. 4
and 5). Crystals typically have a dark red core surrounded by an orange
rim. In the field, garnet exhibits a range of habits that occur with differ-
ent associations, irrespective of the degree ofmatrix deformation. These
are: 1) anhedral to subhedral crystals mantled by or included in sub-
hedral feldspars in porphyriticweakly deformed to non-deformed gran-
itoids (Fig. 4a and b, respectively); 2) skeletal crystals showing evidence
of resorption associated with plagioclase and biotite in textures that
suggest that these minerals have replaced garnet (Fig. 4c) and
3) euhedral garnets in amphibole-bearing granitoids (Fig. 4d). More-
over garnet appears to also have been transferred from the granite to
the MMEs during mingling between the felsic and intermediate to
mafic magmas. This occurred directly as dispersed single crystals as
well as after being included in subhedral feldspar (Fig. 4e).

3.2. Petrography

The Galiléia granitoids display four different ferromagnesian
mineral associations which are reported in order of abundance:
1) biotite + garnet (Bt + Grt), 2) biotite + amphibole + garnet
(Bt + Amp + Grt), 3) biotite + amphibole (Bt + Amp), and 4) biotite
(Bt), with epidote ubiquitous in all these rocks.
a b

d

Fig. 4.Garnet field relationships. Garnets are indicatedwith arrows. Sizes are between 1 and 6m
deformed granites; (b) subhedral radial garnet included in feldspar with evident biotite inclusio
biotite; (d) euhedral garnet in amphibole bearing weakly deformed granite; (e) MME contain
stretched character of the enclave hosted in weakly deformed granite; (f) garnet-free MME in
2.5 cm, respectively.
3.2.1. Major and minor rock-forming phases
Biotite (Figs. 5 and 6) varies in colour from dark brown to reddish,

with euhedral and subeuhedral habitus, rarely exceeding 2mm; apatite,
zircon and epidote are common inclusions. Biotite is also found as inclu-
sionswithin garnet, amphibole and plagioclase. The colour of biotite in-
clusions is identical to the matrix biotite and these crystals are always
smaller than 1mm. In theMMEs, biotite always appears to be in textural
equilibrium with the other minerals, and as in the granites, biotite
defines the foliation.

The rocks contain several different types of plagioclase. The most
common type is represented by subhedral crystals that vary in size
from less than 1 mm up to 5 mm (Figs. 4, 5 and 6). These crystals are
slightly zoned and showundulose extinction. Plagioclase (±quartz) co-
ronas around garnet, as well as plagioclase inclusions within garnet,
share these characteristics. Plagioclase also occurs as larger (10 to
15 mm) crystals that have euhedral to subhedral An-rich cores
surrounded by more sodic rims (Fig. 6j); these crystals are also found
within the MMEs (Fig. 6k). Cracked and zoned epidote can be found
as inclusionswithin the plagioclase (Fig. 6c). The presence of plagioclase
showing intragranular fracturesfilled by latemagmaticminerals such as
quartz andK-feldspar is also recognized. This possibly representsmicro-
fractures developed in the presence of late stage melt (Fig. 6l). Alkali-
feldspars occur either as larger (0.5 to 5 mm) perthitic microcline or
smaller interstitial (0.2–0.7 mm) crystals, showing undulate extinction
and weak deformation, respectively. They are also included in garnets.

Amphibole is present in the granitoids as well as within MMEs, and
always occurs with lower modal abundance than biotite. Amphiboles
are euhedral to subhedral with sizes comprising between ca. 0.1
and 0.8mm, although larger amphibole (N1 cm) also occurs. Inclusions
in amphibole comprise biotite, plagioclase, apatite, zircon, titanite,
ilmenite, primary sulphides, quartz and occasional epidote. Amphi-
bole in the mafic enclaves displays a slightly more resorbed aspect
relative to that in the granite, resulting in subhedral to anhedral
habitus. Their colour and size are however comparable to those of
the granitoids.
c

e f

mwith an average of 3mm; (a) anhedral garnet included in subhedral feldspar inweakly
n; (c) garnet in net disequilibrium and texturally associated with plagioclase feldspar and
ing garnets occurring both as single crystals and included in subhedral feldspar; note the
garnet-bearing granites. The match head is 5 mm while grey and yellow coins are 2 and
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Garnet crystals are commonly cracked and as already evidenced
from field observations, they exhibit different textures. Following their
shapes, garnet crystals have been subdivided in two types: anhedral/
skeletal and subhedral/euhedral. Except for a single rock (Fig. 5a–d),
all the samples contain only one garnet type. It is noteworthy that no
correlation between crystal shape and mineral assemblage of the gran-
itoid has been observed (i.e. amphibole-bearing or amphibole-free
granitoids) (cf. Fig. 5a–g). Additionally, and regardless of their shape,
garnet crystals may or not contain inclusions. A subset of subhedral
crystal garnets exhibit weakly to pronounced resorbed rims without
any recrystallization or surrounding pressure shadow texture (Fig. 5a–
g). Garnet is commonly mantled by plagioclase ± quartz coronas,
which occasionally are surrounded by an external biotite corona,
which in some cases pseudomorphs the original crystal, suggesting
complex garnet replacement reactions (Fig. 5b, c). Inclusion assem-
blages within garnets comprise mostly quartz (30–36%), plagioclase
(19–20%), titanite (15–16%), epidote (10–12%) and biotite (9–11%).
Whitemica, apatite, zircon, and in rare cases amphibole, K-feldspar, pri-
mary sulphides and zoisite are also recognized (10–12%). The inclusions
are randomly distributedwithin the garnet crystals and,with the excep-
tion of zoisite (Fig. 6f), the inclusion assemblage corresponds to the
mineral association constituting the matrix of the granitoids (Figs. 5
and 7a, b). Garnet within the mafic enclaves displays spongy-like tex-
tures resulting from intense resorption of both rims and cores
(Fig. 5h), thus suggesting that garnet crystals originally formed in the
granite were transferred into the enclave. In this latter, in a more
mafic and probably hotter magma, garnet was in strong disequilibrium
(Fig. 5i). The few well-preserved garnet crystals within the MMEs host
abundant inclusions of biotite, plagioclase, titanite, epidote and quartz
(Figs. 5h, i and 7c), with these inclusionsmatching themineralogical as-
semblage of the hosting granitoid rather than that of theMME. In partic-
ular, the amphibole crystals that form a significant fraction of theMMEs
are never observed as inclusions in the garnets.

3.2.2. Main accessory phases
Epidote crystals are small (≤1 mm), with euhedral to subhedral

shapes (Fig. 6a, b and c). In the granitoids and in the MMEs epidote ap-
pears in the matrix and as inclusions in biotite, plagioclase, garnet and
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only rarely in amphibole. In the matrix, epidote rims surrounding
allanite cores are generally zoned, and are located between amphibole,
plagioclase andbiotite and/or plagioclase and biotite (Fig. 6a, b and c, re-
spectively). Epidote, like garnet, shows resorption textures, especially
when in contact with plagioclase (Fig. 6a, b). Epidote inclusions
(≤0.1 mm) (Fig. 6b top left) occasionally display allanite cores, and
whenhosted in biotite or hornblende, they usually show subhedral hab-
itus. In plagioclase, epidotes are raggedwith corroded, curvilinear sharp
rims and cracks, which are not observed in the surrounding plagioclase
(Fig. 6d and e). The latter features have been previously reported by
Chang and Andronicos (2009) and Zen and Hammarstrom (1984a,
1984b)whose proposed contrasting interpretation. The epidote crystals
are only rarely in between biotite and quartz in the Bt-free garnet
granodiorite.

White mica is widespread within Bt + Grt bearing rocks. It is ob-
served with a subhedral magmatic habitus forming crystals of up to
ca. 1 mm in size (Fig. 6g) and as inclusions in garnet (Fig. 6f). Relatively
large crystals of white mica are commonly associated with biotite
(Fig. 6g) while small crystals (b0.3 mm) are often included in garnet
or being armoured by it. This is evident by the sharp contact between
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Table 1
Summaryof the grossular, pyrope, almandine and spessartine content inmol% ofmagmat-
ic garnets in metaluminous to slightly peraluminous natural granitoids and experimental
melts.

Garnet Grossular Pyrope Almandine Spessartine

Galiléia granitoidsa 24.1–43.4 1.9–6.9 40.1–58.5 9.4–18.8
Bushy Point Granitoidsb 33–46 2–6 41–52 10–11
Experimental garnetsc 20.4–31.5 13.5–35.2 40.7–58.5 0.7–6.8
Worldwide natural garnetsd 11.8–28.4 1.5–43.8 37.1–72.7 1.4–19.5

a This study.
b Zen and Hammarstrom (1984a).
c Alonso-Perez et al. (2009); Green (1992); Schmidt (1993); Schmidt and Thompson

(1996).
d Bach et al. (2012); Barnes and Allen (2006); Day et al. (1992); Dawes and Evans

(1991); Harangi et al. (2001); Owen and Marr (1990); Samadi et al. (2014).
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these two minerals (Fig. 6h and f). Sericite, formed as a partial replace-
ment after some plagioclase crystals, and very minor replacement after
minerals by chlorite, are the only secondary minerals recognized in the
rocks.

3.3. Mineral chemistry

All garnets represent almandine–grossular–spessartine solid solu-
tions with ubiquitously low pyrope content (b7 mol%). Grossular
(XGrs) and spessartine (XSps) contents are relatively high, ranging from
24.1 to 43.4 (with 85% N 35mol%) and from9.4 to 18.8mol%, respective-
ly (Table 1 and Table OSM1). The significance of this is discussed in
Section 4.2. Inmore detail, garnets belonging to the Bt+Grt assemblage
have compositions within the range Alm41.7–58.5Grs24.1–40.1Sps9.4–18.8-
Prp1.9–6.9.Within the Bt+Amp+Grt granitoids andMMEs, the crystals
display a more restricted range of compositions, that is Alm40.1–43.5-

Grs37.3–43.4Sps13.8–17.2Prp2.7–3.7 and Alm40.9–45.7Grs37.4–42.0Sps9.6–18.5-
Prp2.4–3.6, respectively. The great majority (ca. 95%) of the analysed
garnets despite having different textures are unzoned (Fig. 7a and 1a
in OSM2). In a few caseswhere garnets have been found having grossu-
lar reverse bell-shape-like profiles (Figs. 7b and 1b in OSM 2), the
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grossular content increases from core to rim from ca. 25 mol% up to al-
most 40 mol%. Pyrope and spessartine patterns appear broadly flat.
Other zonation is seen in garnet hosted in the MMEs where, a decrease
in XSps from core to rim, from 17.42 to 9.57 mol% is associated by an in-
crease in XGrs and XAlm (from 37.68 to 41.55 mol% and from 41.76 to
44.76 mol%, respectively) (Fig. 7c). It is important to note that the XPrp

in all the garnets is constantly low, andMg# always b0.10. These obser-
vations are in agreement with Nalini (1997) who performed the firsts
and only mineral chemistry analyses of garnets from the Galiléia.

Analyses of epidotes from the matrix of the granitoids and MMEs
show pistacite contents [Ps = (Fe3+/Fe3+ + Al) ∗ 100] in the range of
14.6–22.7 mol% and 13.9–17.8 mol%, respectively (Fig. 8a and
Table OSM3). The Ps content of epidote inclusions within garnets, bio-
tite, plagioclase and amphibole from the granites (9.3–22.2 mol%) and
from the MMEs (11.6–17.3 mol%) is slightly wider but overall similar
to that of the epidote in the relevant rockmatrix. Rare zoisite inclusions
in garnet have FeOTotal below 2 wt.% and Ps = 3.8–4.2 mol%.
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Biotite in Bt + Grt granitoids (Fig. 8b and Table OSM4) exhibits
higher Fe# [Fe/(Fe + Mg); 0.63–0.70] than biotite in other assem-
blages and MMEs, which display Fe# ~ 0.58–0.62. The TiO2 contents
of biotites do not show any significant difference between the differ-
ent granitoid assemblages and the MMEs, ranging from 1.47 to
3.04 wt.%. The composition of biotite inclusions in garnets is similar
to that of biotite in the matrix. Biotite inclusions in garnets from
the MMEs have a very narrow range of Fe# and higher titanium con-
tents (1.90–3.00 wt.%) with respect to those in the MMEs matrix
(1.10–2.03 wt.%).

Primary white mica crystals have Si contents (3.14–3.22 a.p.f.u.)
similar to some low-Si phengites in metamorphosed granitoids
(Fig. 8c and Table OSM4) (Evans and Patrik, 1987), although AlTot
(2.62–2.53 a.p.f.u.) and Mg + FeTot (0.26–0.37 a.p.f.u.) differ slightly
(Fig. 8d). These crystals are also similar in composition to primarymus-
covite fromperaluminous granitoids (Huang et al., 2015; Liu et al., 2014;
Miller et al., 1981), but are compositionally distinct from sericitic
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products (low Si and higher AlTot) within plagioclase crystals from gran-
itoids and MMEs.

Using Locock's (2014) amphibole spread sheet classification after
the IMA 2012 report of Hawthorne et al. (2012) (Table OSM5), amphi-
boles are classified as follows: amphiboles from Bt + Amp-granitoids
are unzoned and compositionally similar to the ferro-hornblende
cores of the amphiboles from Bt + Amp-Grt-granitoids, which instead
have rims classified as ferro-pargasite, as is the case for the core of the
rare amphibole inclusion in garnet (Fig. 8e). There is a marked variation
in Mg# and Al2O3 content between the cores and the respective rims of
amphiboles from the Bt + Amp+ Grt assemblage (Fig. 8e). Mg# in the
cores varies between 0.50 and 0.39, while Mg# from the rims have a
lower and more restricted range of values (0.36–0.41). As described
byAlonso-Perez et al. (2009), this decrease inMg# is related to decreas-
ing temperature during magma crystallization. In contrast, Al2O3 is de-
pleted in the cores (7.68–12.58 wt.%) compared with the respective
rims (11.41–14.02 wt.%). The composition of amphibole cores and
rims is identical in the MMEs, with a lower Mg# and Al2O3 content
than amphibole in the granites. Note that the mineralogy of these
rocks renders them unsuitable for the application of the Al in horn-
blende geobarometer, e.g. Hammarstrom and Zen (1986) and Mutch
et al. (2016).
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Euhedral and subhedral plagioclase crystals together with plagio-
clase coronas over garnet and inclusions in garnets share the same nor-
mal zonation, with labradorite cores and andesine rims (An60 to An36;
Fig. 8f and Table OSM6). The texturally distinct cores from 10 to
15 mm sized plagioclase found in the Galiléia granites as well as in
mafic enclaves have very highAn contents (fromAn83 toAn89), differing
completely from their rims (An35 to An47).

3.4. Whole rock geochemistry

Whole rock compositions from Galiléia igneous rocks and mafic en-
claves have been previously analysed by Gonçalves et al. (2014), Nalini
(1997) and Nalini et al. (2005). Ourmajor and trace element data agree
(Table OSM7) with those reported by these authors (Fig. 9). The granit-
oids here studied are granodiorites with only one tonalite (Fig. 9a). K2O
content (1.76–3.8 wt.%) shows a positive correlation with SiO2

(62.21–72.04 wt.%) (Fig. 9b) and as expected for I-type granites (e.g.
Clemens et al., 2011; Farina et al., 2012), A/CNK (0.97–1.07) and CaO
(2.82–6.09 wt.%) are negatively and positively correlated with
FeOTot +MgO (2.96–8.29 wt.%) (Fig. 9c and d, respectively). A negative
correlation is also seen with respect to MnO (0.04–0.17 wt.%) (Fig. 9e).
Overall, major and trace element composition of the Galiléia granitoids,
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match well with those of Cordilleran-type granites worldwide (Fig. 9).
Garnet-bearing enclaves have Mg# values ranging between 0.36 and
0.40, whereas the only garnet-free enclave which was analysed and
classified as a gabbro displays the highest Mg# (0.46), FeOTot + MgO
(13.07 wt.%) and ∑HREE (10.07 ppm).

4. Discussion

The widespread occurrence of garnet and epidote is the most strik-
ing and petrologically interesting characteristic of the Galiléia Batholith.
To our knowledge, only one previous study reports magmatic garnet
compositions matching those described in this study, that is the Bushy
Point granites in south eastern Alaska (Zen and Hammarstrom, 1984a)
(Table 1).

4.1. Magmatic garnet, epidote and white mica in the Galiléia batholith

Several lines of field, petrographic and chemical evidence indicate
that the garnet crystals in the Galiléia granitoids are magmatic. Firstly,
garnet crystals occur in weakly deformed granitoids showing no evi-
dence of metamorphism. Garnet abundance does not correlate with
the degree of deformation in the granite and garnet crystals occur as in-
clusions in large euhedral alkali-feldspar crystals in granites showing
porphyritic textures (Fig. 4a). Secondly, garnet abundance does not in-
crease in the proximity of the contact with the Rio Docemetasediments
and garnet crystals in the batholith have different compositions from
garnet in themetapelites, the former being higher in CaO (Fig. 10). Fur-
ther simple chemical arguments confirm that garnets in the Galiléia
granitoids are neither entrained from the country rocks nor inherited
from the source. In fact, the inclusion of 1 to 5 vol.% of source rock garnet
in a typical cordilleran-type granite would discernibly increase both the
FeOTot + MgO and∑HREE of the rock as illustrated in Fig. 9e; this be-
haviour is not observed for the garnet-bearing samples of the Galiléia
batholith. Moreover, the abundance of garnet does not correlate with
the SiO2 and CaO content of the granitoids and their presence is report-
ed from the least (SiO2 = 58.8 wt.%), to the most evolved (SiO2 =
72.2 wt.%) garnet-bearing Galiléia granitoid. Furthermore, the garnet-
bearing Galiléia granitoids are geochemically identical to many other
garnet-free Cordilleran-type granites worldwide.

Finally, the minerals hosted as inclusions within the garnet crystals
are the same, both in terms of assemblage and composition, as those
constituting thematrix of the granitoids. It is alsoworth noting that gar-
net occurrence and/or abundance are not related to the abundance of
MMEs in the outcrop, suggesting that garnet did not form in the
0

2

4

6

8

10

12

14

16

18

MnO (wt.%)

Grt in S-type 
granitoids Grt in metapelites

Grt in I/M-type 
granitoids

Low P

High P
Bt+Grt
Bt+Amp
+Grt

MME

Galiléia garnets

rim
core
rim
core

core
rim

0 2 4 6 8 10

C
aO

 (
w

t.%
)

Fig. 10.CaO againstMnOwt.% (afterHarangi et al., 2001 andSamadi et al., 2014).Note that
the upper limit of the area representing the CaO rich-garnets has not been defined, yet.
Here and in Fig. 11 only the more representative (core and rim) analyses for the Galiléia
garnets are reported.
enclaves as also confirmed by the disequilibrium features acquired by
garnet crystals hosted in the enclaves.

Collectively, this evidence demonstrates that garnet in the studied
rocks is magmatic. Therefore, we conclude that the presence/absence
of this garnet depends on variables other than the rock composition.

In the Galiléia batholith there are two other coexistingminor phases
that appear to bemagmatic andmay be important in understanding the
conditions of magma crystallization: epidote and white mica. In agree-
ment with textural observations on magmatic epidotes reported by
Schmidt and Poli (2004), Schmidt and Thompson (1996) and Zen and
Hammarstrom (1984b), the presence of epidote crystals rimming
allanite cores, and their common occurrence in the interstitial sites be-
tween the rock forming minerals (amphibole, plagioclase and biotite)
point towards amagmatic origin for epidote (e.g. Nalini, 1997). Further-
more, the Ps content of matrix epidote crystals (14.6–22.7mol%) is very
similar to epidote inclusions hosted within rock-forming phases (Ps =
9.3–22.2mol%), supporting amagmatic origin for both textural varieties
of epidote. Based on textural observation we exclude that epidotes
(Ps = 9.3–17.4 mol%) included in plagioclase (Fig. 6c) are derived
from the alteration of thismineral. In fact, epidote inclusions are ragged,
cracked, and commonly zoned showing corroded and/or resorbed rims.
Following Chang and Andronicos (2009) and Dawes and Evans (1991),
we interpret these inclusions as early magmatic crystals followed by re-
sorption before plagioclase overgrowth during successive magmatic
stages. Epidote crystals within the MMEs share similar textural and
compositional (Ps = 11.8–17.3 mol%) features with those in the gran-
ites, thus they are also interpreted as being magmatic. Finally, despite
the fact that the occurrence of white mica overgrowing magmatic bio-
tite and plagioclase could suggest a secondary origin, the presence of
white mica as inclusion in the garnet points towards a magmatic origin.
Its primary origin is also supported by its chemical compositionwhich is
similar to other low-Si phengites andprimarymuscovites from the liter-
ature, but quite different from sericitic products (i.e. late secondary
white mica) (Fig. 8c, d).

4.2. Pressure–temperature conditions

4.2.1. Pressure of crystallization
Crystallization experiments and studies on natural metaluminous

igneous rocks have shown that garnet with CaO contents above 4 wt.%
(and in general with Grs N 10 mol%) records crystallization at pressures
above approximately N0.8 GPa (Alonso-Perez et al., 2009; Bach et al.,
2012; Barnes and Allen, 2006; Dawes and Evans, 1991; Day et al.,
1992; Green, 1972, 1977, 1992; Green and Ringwood, 1968, Green,
1972; Harangi et al., 2001; Samadi et al., 2014 and others). Schmidt
and Thompson (1996) investigated garnet stability within a granodio-
rite and established that the garnet-in reaction is located at a pressure
as high as 1.3 GPa and around 800 °C. Garnet stability within granitoid
magmas varies as a function of composition as well as pressure and
temperature (see also Vielzeuf and Schmidt, 2001). Although no crystal-
lization experiments have produced garnet with grossular contents as
high as those observed in the Galiléia garnets (Table 1), similarities be-
tween experimental and natural rock studies are in good agreement in
indicating that the presence of grossular-rich magmatic garnet within
the Galiléia granitoids can be regarded as evidence of crystallization at
a pressure above at least 0.8 GPa.

This conclusion is also supported by the occurrence of phengitic
white mica and epidote in the Galiléia granitoids. According to
Schmidt and Poli (2004) and Schmidt and Thompson (1996), the ap-
pearance of epidote in the crystallization sequence of a cooling
magma is pressure dependent. These authors demonstrated that epi-
dote is stable above 0.6 GPa, and that its temperature of first crystalliza-
tion in a cooling magma increases with increasing pressure. In the
Galiléia granitoids, epidote is found as a common inclusion in biotite
and plagioclase, as a rare inclusion in garnet, and in thematrix between
amphibole, plagioclase and biotite. Based on the experiments of

Image of Fig. 10


1.3

1.2

1.1

1.0

0.9

0.8
100 2 4 6 8 12 14

Starting marterials
AP09
S93

ST96
G92

FeOTot + MgO (wt.%)

Fig. 12. A/CNK vs FeOTot + MgO diagram. Comparison between Galiléia granitoids,
Cordilleran-type granites and staring materials used in high pressure crystallization
experiments. AP09: Alonso-Perez et al. (2009); G92: Green (1992); S93: Schmidt
(1993); ST96: Schmidt and Thompson (1996). Other symbols are as in Fig. 9.

94 F. Narduzzi et al. / Lithos 282–283 (2017) 82–97
Schmidt and Thompson (1996), this textural information is consistent
with pressure conditions in the range of 0.8–1.0 GPa. Thus the experi-
ments of Alonso-Perez et al. (2009), Green (1992), and Schmidt and
Thompson (1996), constrain the stability of garnet + epidote within
the Galiléia granitoids to pressures between ca. 0.8 and 1.0 GPa, corre-
sponding to depths of approximately 25–30 km in the lower crust.

4.2.2. The geochemical diversity of the Galiléia garnets
The most striking characteristic of the Galiléia magmatic garnets is

their extremely high grossular and spessartine contents reaching
45 mol% and 20 mol%, respectively and constantly low pyrope content
(b7mol%). (Figs. 10 and 11).We compared the chemistry of these crys-
tals with: 1) garnet from crystallization experiments at high pressure
(N0.8 GPa) usingmetaluminous to weakly peraluminous startingmate-
rials that were similar in composition to the Galiléia granitoids
(Alonso-Perez et al., 2009; Green, 1992; Schmidt, 1993; Schmidt and
Thompson, 1996) (Fig. 12), and 2) magmatic garnet from
natural metaluminous to weakly peraluminous felsic igneous rocks
(Bach et al., 2012; Barnes and Allen, 2006; Dawes and Evans, 1991;
Day et al., 1992; Harangi et al., 2001; Owen and Marr, 1990;
Samadi et al., 2014; Zen and Hammarstrom, 1984a). We observe
that the Galiléia garnets are more grossular-rich and pyrope-poor
(Grs24.1–43.4Prp1.9–6.9Alm40.1–58.5Sps9.4–18.8) than both experimental
(Gro20.4–31.5Prp13.5–35.2Alm40.7–58.5Sps0.7–6.8) and natural crystals
(Gro11.8–28.4Prp1.5–43.8 Alm37.1–72.7 Sps1.4–19.5) (Table 1). However, the
Galiléia garnets are compositionally identical to the magmatic garnet
crystals (Grs33–46Prp6–6Alm41–52Sps10–11) from the metaluminous
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behaviour, being negatively correlated with temperature (Fig. 11a, b
and c). These relationships might account for the low pyrope content
exhibited by the Galiléia garnet, but data retrieved from experimental
studies do not explain the origin of the high spessartine and especially
high grossular content observed in the garnet of the Galiléia batholith.
The only experiments that seem to suggest a negative correlation be-
tween the grossular content and temperature are those performed by
Alonso-Perez et al. (2009) at 1.2 GPa. These authors observed an in-
crease of grossular content from 20.7 to 31.5 mol% as a consequence
of a decrease in temperature from 1000 to 850 °C and to an increase
of the water content of the melt from 5.4 to 11.0 wt.%. Nevertheless,
any clear correlation is observed considering the spessartine content.

A possible explanation for the high grossular content of the Galiléia
garnetmight come from Schmidt and Thompson (1996). They observed
that in metaluminous granitic systems, quartz and epidote start crystal-
lizing at temperature around 655 and 700 °C, respectively, with epidote
stable inwater saturatedmelts (≥10wt.%). Thus the high grossular con-
tent of garnet crystals togetherwith their epidote and quartz inclusions,
might suggest that these garnets were produced by a process of dissolu-
tion and recrystallization in which garnet was continuously reacting
and re-equilibratingwith amelt thatwas evolving towards low temper-
ature (b650–700 °C) and highwater contents (N10wt.%). The same ex-
planation could also apply for the spessartine content, which increases
as the magma evolves (Miller and Stoddard, 1981).

4.3. Geotectonic implications: a new tectonicmodel for the Araçauí Orogen?

It is worth remarking that garnet is widespread in the Galiléia bath-
olith characterizing outcrops that are in many cases more than 10 km
apart. This simple observation indicates that similar high-pressure con-
ditions were attained in the whole batholith.

Since little is known about the P–T–t history of the host Rio Doce
metasediments, any attempts to understand its relationships with the
Galiléia granitoids remain quite speculative. Nevertheless, some obser-
vations can be made.

So far it has been highlighted that the Galiléia granitoids record high
pressure (N0.8 GPa) crystallization and emplacement in the lower crust.
This implies that since 630 Ma the crust underneath this portion of the
Araçuaí Orogen was already at least 25–30 km thick and relatively cool.
This is in contrast with the hot thermal regime registered from the
neighbour Carlos Chagas Batholith, located 50 km to the east, within
the eastern domain (Fig. 1b; Melo et al., 2017). In fact, this batholith re-
cords granulite-facies metamorphism (0.9–1.0 GPa and 790–820 °C) at
570 Ma, age at which: 1) the Galiléia granitoids were already crystal-
lized (632–570 Ma; Tedeschi et al., 2016) and 2) the Araçuaí Orogen
was experiencing syn-collisional tectonics (Pedrosa-Soaeres et al.,
2011). Overall, this would imply that the Galiléia high pressure granit-
oids should also record granulite-facies metamorphism. Instead, these
rocks are weakly deformed and do not show any evidence of metamor-
phic overprinting. This has two possible and different tectonic implica-
tions: either the Galiléia granitoids at 570 Ma were already exhumed
at shallower crustal levels, which prevented them from undergoing
granulite facies metamorphism, or alternatively these garnet-bearing
granitoids and the Carlos Chagas batholith belonged to different litho-
spheric domains joined together after 570 Ma. The last hypothesis is
supported by the presence of a poorly-studied major thrust separating
the central and eastern domains (see black bold dotted line in Fig. 1b;
e.g. Vauchez et al., 2007).

Eventually, the same field, petrographic and chemical features so far
reported for the garnet-bearing Galiléia granitoids have been also de-
scribed for the garnet-bearing Bushy point granites (Zen and
Hammarstrom, 1984a). Noteworthy these granitoids are located pre-
sumably within the accretionary prism and/or fore-arc settings of the
north-coastal British Columbia subduction zone, south eastern Alaska.
In such settings, high pressure, low temperature (Brown, 2006) and
water-rich magmas are readily achievable. Notably, some of these
conditions are those suggested by this work. It is then possible that
both the garnet-bearing Galiléia and Bush Point granitoids represent
“rare” garnet- and epidote-bearing metaluminous Cordilleran-I-type
granites which can only form in a fore-arc setting.

5. Conclusions, remarks and open questions

The presence of magmatic garnet crystals together with the pres-
ence of magmatic epidotes indicates a high-pressure crystallization en-
vironment probably between 0.8 and 1.0 GPa, corresponding to depths
of approximately 25–30 km. These findings would also imply that at
630 Ma the crust below the Araçuaí orogen was already over-
thickened and cool. High grossular and spessartine content in garnet to-
gether with its epidote and quartz inclusions might be due to reaction
between the crystal and the evolving granitic magma towards low tem-
perature and highwater content. Some resorption textures also indicate
that these minerals were consumed before complete crystallization.
Eventually, what has been highlighted throughout this work has
opened new challenging questions like: 1) why no experiments so far
were able to reproduce the composition of the Galiléia garnets?
2) How much water was present in the melt from which the
grossular- and spessartine-rich Galiléia garnets crystallized? 3) How
much melt (vol.%) was still present during garnet crystallization at
high-pressure and temperature of ca. 650–700 °C? And eventually, de-
spite there is a clear connection between the garnet-bearing Galiléia
granitoids and the fore-arc related garnet-bearing Bushy Point and,
4) what is the most reliable geodynamic scenario for having within
the same orogenic system, at the same pressure condition and at the
same geological time, two contrasting thermal regimes? More studies
must be done in order to answer to all of the above questions.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.lithos.2017.02.017.
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