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those of artificial profiles, obtained from an immune network model. The statistical entropy
of the experimental profiles is found to exhibit variations similar to those observed in the
Hurst exponent.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In recent decades, theories dealing with the complexity of the immune system have been proposed [1,2]. The focus in
these works is on modeling the immune response. Despite the remarkable specificity of immune receptors to their targets,
there is much evidence that the behavior of the immune system is not restricted to one-to-one antigen-antibody responses.
Collective immune phenomena, such as tolerance, autoimmune diseases, and memory, among others, are far from well
understood [3-9]

The immune system is formed of a huge number of components, with diverse interactions between them. Networks of
interacting elements can be used to model some features of its dynamics. In these models, the elements (representing, for
example, lymphocytes), interact via a set of well defined rules. It is important to note that most of the activity of the system
is elicited not by foreign agents, but by self agents, i.e., molecules native to the organism.

The immune system may be seen as a complex system, that is, one composed of a large number of elements, with specific
interactions. The interactions are often simple, though this need not always be the case. The dynamics of the system as a
whole exhibit features (“emergent properties”) not found in the behavior of each element. Emergent properties and self-
organized behavior are common characteristics of complex systems.

Many complex systems may be characterized by trajectories or, in some cases, fractal, n-dimensional surfaces in a given
space; a key global property of such a surface is its roughness statistics [10,11]. One hopes, by analyzing the roughness, to
classify different regimes of behavior. Analysis of surfaces generated by apparently unrelated processes, may also help to
identify underlying similarities in their governing equations or dynamical rules [12-14].
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To apply this approach to global properties of the immune response, one requires an overall picture of the immune
repertoire. We do this by studying a large set of reactivities against another (large) set of antigens, derived from tissue
extracts. The experimental technique generating information on the set of reactivities is called immunobloting. The results
of this technique is usually analyzed through multiparametric statistical analysis.

One of the problems in describing the immune system as a multiconnected network, is how to deal with its global
connectivity. A bold attempt in this direction was made by the inventors of the Panama blot assay [15,16]. A modified
immunoblot assay, the Panama blot, is not aimed at the detection or quantification of a specific antigen-antibody reaction.
Rather, it permits comparison of patterns of global reactivity of natural serum immunoglobulins with complex antigenic
mixtures. Antigenic extracts consisting of whole organs (brain, liver, muscle, etc.) or whole bacterial cultures (such as
Escherichia coli), have been used to generate these mixtures. The reaction of serum immunoglobulins with these mixtures
results in activity profiles, which are used to compare patterns of different individuals, or the history of a given individual,
rather than to detect or measure individual immunological reactions, as is customary in serology.

Traditionally, those profiles are described by points in a n-dimensional space, where the set of coordinates corresponds to
the rescaled peaks of each profile. The dimensionality of the space is then reduced, using principal component analysis (PCA),
and clusters of similar individuals are identified via statistical analysis. In the present work, we introduce an approach to
study the densitometric profiles, and arrange individuals in groups, based on roughness statistics. We focus on a population
of individuals from a region in which malaria is endemic. The individuals of this population can be classified into several
groups, according to the presence or absence of malaria symptoms, number of malarial manifestations, etc. A control
population, from a malaria-free region, is used to define reference characteristics of the reactivity profiles.

In our approach, the densitometric profile is represented as a function h(x), where the variable x represents position
on the gel (a function of protein molecular weight), and h reflects the reactivity at this position. The functions h(x)
corresponding to each individual are then analyzed, using several techniques: PCA, superparamagnetic clustering, and
analysis of roughness, leading to calculation of the Hurst exponent of the profile. We show that the Hurst exponent,
calculated from single parametric statistical analysis, separates individuals from malaria-endemic and malaria-free regions.
We compare our method with the traditional one and with a clustering technique introduced by Domany et al [17], based
on phase transitions in a Potts model, with many states and distance-dependent interactions. Our method shows better
discrimination than the other two studied. More importantly, the success of profile-based methods highlights the utility of
global analysis of the immune system, and suggests the presence of collective phenomena in this system.

2. Materials and methods

Immune reactivity profiling, via the Panama Blot method, was performed on blood collected from a set of 78 individuals
having similar lifestyles, living in a region of the State of Mato Grosso, Brazil, in which malaria is endemic. Individuals living
in this region are continuously exposed to the malaria parasite. For comparison, blood from a group of 10 individuals residing
in Belo Horizonte (State of Minas Gerais, Brazil), a region in which malaria is not endemic, was also analyzed. The individuals
in the endemic region are classified into groups A-F, according to their history of malaria exposure:

A: those whose blood shows no evidence of the parasite;
B: those that have presented symptoms of malaria, between 1 to 10 times, but were asymptomatic at the time of blood
collection;
C: those that have presented symptoms more than 10 times, but were asymptomatic at the time of blood collection;
D: those symptomatic at the time of blood collection;
E: those with the parasite in their blood, but asymptomatic for the disease at the time of collection.
The individuals from the non-endemic region are characterized as:
F: those never having been exposed to the parasite.

Details about the experimental procedures can be found in Ref. [18].

2.1. Experiment: Panama Blot

Immune profiles were obtained through reactions between a population of immunoglobulins, and an extract containing
a large number of proteins or peptides (protein fragments). In the Panama Blot method, the protein extract is generally
prepared from a cell culture or tissue; in the present case it was prepared from human liver or brain (from cadavers). The
extract is dissolved in a pH-adjusted solution, so that the proteins acquire electric charge, necessary for electrophoresis [19].
The solution is poured over a polyacrylamide gel confined between glass plates, and subject to a constant electric field in
the plane of the plates. The proteins then migrate within the gel, with velocities depending on their molecular weight and
charge.

Once the extract proteins have been separated via electrophoresis, they are transferred, by application of an electric field
perpendicular to the plates, to a nitrocellulose membrane, for subsequent reaction with serum (Fig. 1). The membrane, with
the proteins adsorbed on its surface, is placed on a mold bearing a series of narrow, parallel channels. The channels are then
loaded with serum samples, each from a different individual, and allowed to react with the extract proteins for a period of
four hours.
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Fig. 2. Digitized signal representing the gray scale of a single channel. Large (small) y corresponds to dark (light) color in the channel, while x represents
horizontal position, which depends on molecular weight as described in text.

Following the reaction, the membrane is washed, leaving behind only the immunoglobulins that reacted with the extract.
In order to determine the position and intensity of reactions, the immunoglobulins adsorbed to the membrane are stained.
This is done by allowing proteins with an affinity for IgM, and bearing an attached alkaline phosphatase, to associate with
the adsorbed Ig. Following this, a stain that attaches to the alkaline phosphatase is added, and the sample is incubated
for three to five minutes. (The choice of a marker protein with affinity to IgM is because this Ig class embodies the primary
immune response to the malaria parasite.) Once stained, the positions and intensities of [gM-extract protein reactions in each
channel are evident visually; the channels are scanned for quantitative analysis of the reaction profile. Finally, all extract
proteins are stained using Protogold, as is customarily done in Panama-blot experiments. The light-and-dark pattern to be
analyzed therefore consists of the sum of two signals: (1) local IgM concentration (the alkaline phosphatase stain, which is
dark purple), and (2) local extract-protein concentration (the Protogold stain, which is rose colored). (Note however that
the Protogold signal is essentially the same for each of the channels.)

All the steps described above were performed by the Immunology Group of the ICB/UFMG, cited in Ref. [18].

2.2. Digitization

In order to apply data analysis techniques, we digitize the dark-and-light pattern of each channel, using a scanner
(Hewlett-Packard model Scanjet 8350), with high resolution (2400 d.p.i.) and color depth. This device avoids the distortions
that typically arise in common scanners, due to interpolation and to poor discrimination of light intensities. (The scanner
used in this study has a color depth of 4.6.) The scanner generates a file in which the light intensity of each pixel is given as
a number between 0 and 255, where 0 corresponds to white and 255 to black. The intensities of the pixels corresponding
to a given position in a channel are then averaged (Fig. 2). (Each channel is approximately 100 pixels wide.) This profile,
obtained via digitization, is somewhat noisy, due to agglomeration of proteins on the membrane, and to the intrinsic noise
of the scanner. We therefore smooth the profile by performing a running average over windows of ten pixels.



6140 L.C. Ribeiro et al. / Physica A 387 (2008) 6137-6150

w

10 100
{

Fig. 3. Roughness w(¢) calculated from smoothed profiles.

3. Data analysis

3.1. Hurst exponent

In this analysis, we treat the reactivity profile h; as if it represented the height of a one-dimensional surface, and analyze
it using an approach developed in the study of scaling properties of random surfaces [20,21]. The first step is to calculate
the roughness wy in a window of length ¢, starting at pixel k, defined via

k+0—1

wp = Y (h—hy>, (M

=k

where h is the mean height over the £ points in the window. The mean of w,f over all starting points k defines w?(¢),
characterizing the roughness on a scale £. As is common in analysis of rough interfaces or random signals, we find that for
small ¢, the roughness follows a power law:

w?(0) oc £2H (2)

with H usually referred to as the Hurst exponent. Typical results for the roughness w(¥£) are shown in Fig. 3.

A fractal curve is a profile following the scaling of Eq. (2) over an unlimited range of scales . In practice, power-law
scaling over two or more decades is generally interpreted as evidence of fractal behavior. In the present case, we observe
power-law behavior of w(¢) for £ between about 10 and 100. Although the profile h; should not, therefore, be characterized
as a fractal, we may nevertheless hope to extract useful information from the value of the Hurst exponent.

In particular, we study the values of H found for each group of individuals, classified according to their history of malaria
exposure, as discussed above. The range of Hurst exponent values for the various groups is displayed in Fig. 4. In this set
of studies, the reactivity profiles were obtained using a protein extract derived from human liver. In another set of studies,
using a different set of individuals, a protein extract derived from human brain was used; the results for the Hurst exponent
are shown in Fig. 5.

It is evident, in Figs. 4 and 5 that the Hurst exponent values for individuals never exposed to the malaria parasite, differ
significantly from those of the other groups, in which all individuals have been exposed to the parasite. The exposure to the
parasite in some way modifies the reactivities of the immune system in relation to the proteins present in the extract, in a
manner that manifests itself through an altered value of the Hurst exponent.

In an effort to relate the values of the Hurst exponent with changes in the reactivity profiles, we applied the roughness
analysis for a set of artificial profiles, Ej. The latter are generated by summing a number of Gaussian functions:

h_ZAexp[ U 'U”)]—I—éj (3)

with mean p; and variance 0,.2. The means w; are uniformly distributed over the profile (1 < w; < 4500), while the variances
are uniformly distributed on the interval [0, 120]. The maximum A; of each Gaussian is proportional to its variance, A; = coiz.
The “noise” terms &; are independent Gaussian random variables with zero mean and variance 11, much smaller than the
amplitudes A;. (The noise is included as a test of our smoothing procedure.) The number M of Gaussian terms, the range of
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Fig. 4. Hurst exponent of the profiles obtained using liver extract, separated according to history of malaria exposure. Horizontal bars denote the largest
and the smallest exponent values; boxes indicate the interval containing 75% of the data points. The sample is composed of 7 individuals from group A; 8
from B; 8 from C; 8 from D; 9 from E and 7 from F.
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Fig. 5. Hurst exponent of the profiles obtained using brain extract, as in Fig. 4. The data are composed of 4 individuals from group A; 5 from B; 5 from C;
10 from D; 12 from E and 3 from F.

the variance and the proportionality constant ¢ are chosen to reproduce the characteristics of a typical digitized profile, as
judged by eye (Fig. 6).

To test our smoothing procedure, we calculate (for a set of 50 artificial profiles) the “processed” noise, obtained via the
smoothing and subtraction procedure described above. The probability distribution of this processed noise (represented
by a histogram), is then compared with the original Gaussian distribution. With a proper choice of smoothing interval, the
processed noise distribution shows good agreement with the original one (Fig. 7), allowing us to be confident that only noise
is removed in the smoothing process, leaving the immunological information unchanged.

We calculate the scale-dependent roughness w(£) of smoothed artificial profiles, as was done for the experimental
profiles. The experimental and artificial functions w exhibit the same qualitative features: linear growth for small £ and
saturation at larger scales, £ > ells (Fig. 8).

Varying the interval over which the variances o} are distributed, and the value of coefficient ¢, we find that the saturation
scale £; o< (o;), the mean of the standard deviations of the Gaussians used to construct the profile. (This tendency was verified
in hundreds of generated profiles.) £ is a measure of the typical width of peaks in the profile. Note that the Hurst exponent
is calculated using the data for £ < ¢;.

3.2. Principal components analysis

In immunology, the method known as principal components analysis (PCA) is commonly applied to reactivity profiles
[22]. Starting with a d-dimensional data set, PCA identifies the set of directions (i.e., linear combinations of the d original
components), exhibiting the greatest correlation; the data are then projected onto this space of reduced dimensionality. PCA
facilitates subsequent statistical analysis and/or visualization of the data in a manner that highlights correlations.
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Fig. 6. Three artificial profiles, generated using different average variances: 30 (dotted line), 60 (dashed line) and 90 (continuous line). The curves have
been smoothed via the same procedure as applied to experimental profiles.
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Fig. 7. Comparison of probability distributions of processed (squares) and original noise (circles) variables in artificial profiles.
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Fig. 8. (a) Roughness for profiles with different variances (30, 60 and 90); (b) roughness for profiles with different amplitudes (200, 600 and 900).
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Fig. 9. (a) Projection of points from profiles using liver extract, onto first and second principal axes of the PCA analysis. (b) similar projection of points
from profiles obtained using brain extract. Labels A-F identify the groups as discussed in text. The lines are guides to facilitate visualization of the set of
points belonging to the same group.

Given a set of N observations, represented as d-dimensional vectors, rq, 5, . .., Iy, we form the d x d covariance matrix,
Cov(xq,X1) Cov(xq,X3) ... Cov(Xq,Xq)
Cov(Xy,X1) Cov(xy,X3) ... Cov(Xy,Xq)

) (4)
Cov(Xq4,X1) Cov(xg,X3) ... Cov(Xq,Xq)

Since the covariance matrix is Hermitian, it can be diagonalized. The directions defined by the eigenvectors associated
with the largest eigenvalues then represent the greatest degree of correlation. The “principal components” of the original
vectors are then projected onto this set of directions. (Typically, one projects onto the two or three directions having the
largest eigenvalues.)

To apply PCA to the reactivity profiles, we represent each profile as a point in R, where the ith component corresponds to
the height of ith peak. Thus d is the number of identifiable peaks in the profile; the number of peaks in the experiments using
liver extract was 19, while for brain extract the number was 15. These data points are projected onto the plane associated
with the two largest eigenvalues of the covariance matrix. In this projection (see Fig. 9) the points associated with individuals
from the endemic and non-endemic regions are well separated in both the experiments, using liver and brain extracts.

3.3. Superparamagnetic clustering

The super-paramagnetic clustering (SPC) technique is based on the physical properties of an inhomogeneous ferromagnet
[17,23,24]. Unlike other clustering methods, SPC does not require any assumptions regarding the underlying probability

distribution. In this method, to each data point, r; € R? is assigned a Potts spin variable s; (an integer in the set {1., , , .q}).
In this way we define a g-state Potts model, with Hamiltonian
H=— > Jibss 5)
1<i<j<N

with an interaction J; > 0 between points i and j, whose strength decreases with distance r;; = [r; — 1j|, as specified below.

Blatt, Wiesman and Domany have shown that for typical data sets, this model exhibits three phases: a disordered,
high-temperature phase, a low-temperature, ferromagnetic phase, with a majority of spins sharing the same state, and, at
intermediate temperatures, a superparamagnetic (SP) phase, characterized by an elevated susceptibility. The correlation, in
the superparamagnetic phase, between spins at two different sites determines whether the associated data points are placed
in the same or distinct clusters. To see this, consider the (unlikely) case in which all pairs of data points lie at roughly the same
distance, one from another. (Recall that there is no intrinsic minimum distance.) In this case, each spin interacts essentially
equally with all others, and we expect a transition directly from the ordered to the disordered phase, as temperature is
increased. Consider now a case in which the data points fall in two or more well separated regions, each containing many
data points, such that points in the same region have a separation ~rg, but the distance between distinct regions is >>ry. As
we increase the temperature, the alignment of different regions will be lost, but we expect the alignment within each region
to persist until some higher temperature is reached. This is the superparamagnetic phase: spins belonging to each region
are highly correlated, but the orientations of the various regions are uncorrelated.
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Fig. 10. (a) Susceptibility observed using SPC applied to the brain extract data. (b) Sizes of the three largest groups generated by SPC. During the phase
transition, the largest group splits in two, which persist throughout the super-paramagnetic phase.

The onset of the SP phase is signaled by changes in the susceptibility, x. At very low and very high temperatures, x tends
to zero; the ferromagnetic-superparamagnetic transition is marked by a susceptibility maximum. For temperatures within
the SP phase, susceptibility remains relatively high, as correlated regions function as “super-spins”. We use the spin-spin
correlation function C; = (s;s;), (calculated in the SP phase, in a Monte Carlo simulation using the Swendsen-Wang
algorithm [25]), to partition the spins into clusters. In the super-paramagnetic phase, the correlation between spins
belonging to the same group tends to 1 — % whereas the correlation between spins belonging to different groups is :%
[23]. One this basis, pairs of points (i, j) with high correlation, G; > Cy, are assigned to the same cluster. (Here Gy is some
reasonably large correlation; in the present study we use Co = 0.9) A point j with CG; < Cp for all i # j forms a “cluster of
one.”

To implement SPC, one must define the interactions J;;. While it is in principle possible to allow nonzero interactions
between all pairs of points, in practice it is much more efficient to limit the number of neighbors a given point interacts
with. Following Ref. [17], to define the neighbors of point i, we first determine the set .X; of K points nearest i. Then for each
pointj € X;, we construct the set ;. Points i and j are neighbors if i € X and j € X;. We implement this mutual neighbor
scheme using K = 10, which is sufficient to generate a connected graph, when applied to our data sets.

The interaction J;; between pairs of neighboring points depends on the distance d;; separating them,

1 d;
Ji==exp|——=; (6)
k 2d

where d is the mean distance (over all pairs of neighboring points), and k is the average number of neighbors per point.
(Studies using J;; o exp(—d;j/d) yielded qualitatively similar results.)

We apply the technique of super-paramagnetic clustering, using ¢ = 50 Potts states, in the same d-dimensional space as
the PCA analysis, where each point corresponds to a simplified profile. For the profiles obtained using brain extract (Fig. 10a),
we find evidence of the super-paramagnetic phase in the form of a plateau in the susceptibility. In this phase, the data points
are grouped into two correlated sets, as can be seen in Fig. 10b. In the case of the liver-extract data, we do not observe a SP
phase; the susceptibility (Fig. 11a) does not show the plateau characteristic of this phase. This result appears to reflect the
rather homogeneous distribution of points.

The two groups identified in the brain-extract data are visualized in Fig. 12, for temperature 0.095. The groups identified
in the SPC analysis correspond roughly to those evident on the right- and left-hand sides of the PCA projection in this figure.
The two groups do not however correspond to distinct sets of individuals classified according to the history of malaria
exposure. There is evidence that the two groups identified via PCA and SPC techniques, in the brain-extract data, may be
correlated to history of exposure to hepatitis B [26].

4. Model immune network profiles

Recently we proposed a model of B cell interactions on scale-free and random (Erdés-Renyi) networks [27]. We model
the population dynamics of B cell clones, including a plausible set of effective interactions (which could arise through the
action of T cells), among such clones. Each node of the network corresponds to a distinct B cell clone, or to a species of ligand
(i.e., a molecule that binds to specific B cell receptors). We use this system to generate model immune profiles. (Details
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Fig. 11. (a) Susceptibility observed using SPC applied to the liver extract data. The peak signals a continuous transition between the ferromagnetic and
paramagnetic phases; there is no evidence of a super-paramagnetic phase. (b) Sizes of the two largest groups. During the phase transition, the largest group
(containing most of the sites), splits into many small groups.
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Fig. 12. PCA analysis: Projection of points corresponding to profiles obtained from brain extract onto the plane spanned by the first e second principal
axes. The groups identified via SPC correspond roughly to the clusters of points evident at the left and right.

regarding the model may be found in Ref. [27].) The Hurst exponent of the model profiles, before and after perturbations of
the network, are be compared with the corresponding exponent of the experimental profiles.

The network model is characterized by population variables B; (if site i represents a B cell clone), and L; (if the site
represents a ligand species). Interactions between pairs of B cell clones, and between B cells and ligands, correspond to
links in the network. (There are 4500 sites representing B cell clones and an equal number representing ligand species.)
Interactions between a pair of B cell clones may be either mutually excitatory or mutually inhibitory, leading to clonal
expansion or contraction, respectively. The B cell-ligand interaction is such that presence of the ligand stimulates expansion
of the B cell population, while a B cell clone tends to reduce the quantity of the ligands that stimulate it.

The evolution of the model consists of the following steps:

e 1. Asite is chosen at random. The associated population increases by g, regardless of whether it represents a ligand type
or a B cell clone.
e 2. Another site i is chosen at random. If it is of type B, the corresponding population B; reduced by AB;. (Otherwise there
is no change.)
e 3. A pair of connected sites are chosen at random.
If both are of type L there is no change.
In case one site is of type B (B;, say) and the other of type L (species L;, say), then B; increases by the factor 1 + a(py),
where L is the number of ligands j per B; cell. At the same time L; decreases by y;B;.
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Fig. 13. Model profile generated from simulations on a scale-free network, with ten reactivity peaks, and ten peaks representing the effects of the protogold
stain. Proportionality constant between the clone population and peak height § = 1/30.

If both are of type B and the interaction between them is excitatory, the population of each clone increases by the factor
1 + o (pg) where pp is the concentration of complementary B cell population.

If both are of type B and the interaction between them is suppressive, the population of each clone decreases by the
factor 1 — y,,B.

(The activation function is given by a(x) = 0.3 exp{—[log(x/1000)]?/2}, as discussed in Ref. [27].)

Following the procedure of Ref. [27], once a stationary state is attained, we perturb the system by increasing the
population of ten randomly chosen ligand species. Following the perturbation, the first-line clone populations (i.e., those B
cell clones directly linked to the perturbed ligands) grow, so that the perturbation is suppressed, and the system again relaxes
to a stationary state. The perturbation/recovery protocol is repeated several times. At each stationary state, we generate
artificial reactivity profiles on the basis of the B clone populations.

To explain how the artificial profiles are generated, we return for a moment to the Panama Blot technique. In the
experiment, the quantity of immunoglobulins bound to the protein extract are measured. Recall that the extract is a complex
mixture of proteins, separated by molecular weight in the blot. Therefore, there is no evident correlation between the
position(s) in the blot, at which a given immunoglobulin binds, and its specificity; for practical purposes the position is
random.

Based on this consideration, we generate model profiles hy ; (j is the pixel index), by associating, with certain B cell

clones, a reactivity function fj@ (iis the clone index), that is,

10

) 10 5
=Y 7+ ;fj("). (7)

i=1

The ten “reactive” B cell clones used in generating the profiles are chosen randomly at the start of the simulation, and are
maintained fixed during the model evolution. The functions f® are Gaussians whose height and standard deviation are
proportional to the population B; of the associated clone. This choice is based on the observation that in the real profiles,

higher peaks are also broader. The central position, jg), of each Gaussian, is chosen at random.

In addition to the contributions associated with the B cell clones, further random Gaussian functions f”‘), whose form
and amplitude are fixed, independent of the B cell populations, are added to the profile, to represent contributions due to
the protogold stain, which affects all the extract proteins. We determine the roughness w(¢) and associated Hurst exponent
of the model profiles, as was done for the digitized experimental profiles.

Fig. 13 shows a model profile generated using a scale-free network, prior to any perturbation. (In simulations on a scale-
free network we use parameters y, = 1/25, y, = 1/50, 1 = 1/100.)

Fig. 14 shows the Hurst exponent as a function of the number n of perturbations. The Hurst exponent initially grows with
n, and then tends to saturate. A similar behavior is observed in the Hurst exponent of the experimental profiles, if we order
the groups according to the clinical history of malaria exposure (Fig. 15). Note however that this correspondence is only
qualitative, since we cannot associate a specific number n of infections with each group.

For comparison we generate model profiles using a random (Erdés-Renyi) network, with the same mean number of
connections per site 18.1 as the scale-free network discussed above. (Here the parameter values are y, = 1/25, y, = 1/10
and A = 1/50, as discussed in Ref. [27].) The Hurst exponent follows the same trends as in the scale-free network, though
with a smaller overall variation.
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Fig. 14. Hurst exponent H of model profiles generated via simulation on (a) a scale-free and (b) an Erd6s-Renyi network, as a function of the number n of
perturbations.
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Fig. 15. Box-Plot of Hurst exponent H of profiles from the various groups, ordered by increasing number of malaria infections.
5. Shannon entropy

Another global characteristic of a reactivity profile, experimental or artificial, is its statistical entropy. Following
Shannon’s definition, the entropy associated with a probability distribution p; is defined as S = — ) ;p;Inp; [28]. In
the experimental reactivity profiles, p; represents the probability of grey level i (with i varying from 0 to 255); a similar
discretization into 256 activity levels is performed on the artificial profiles, to define the probability distribution in an
analogous manner. If exposure to a pathogen alters the global reactivity profile, such a change might be expected to affect
the statistical entropy.

Ideally, the reactivity profile of each individual should represent an independent event, uncorrelated with any of the
other profiles. In practice, however, the profiles were performed in batches of about 15 per membrane, so that membrane-
to-membrane differences can create spurious correlations between individual signals. (We note that profiles representing
individuals for all the different groups are present in each membrane, so that the systematic differences observed as a
function of malaria exposure cannot be attributed to inter-membrane differences.)

Fig. 16 shows the entropy of each profile, grouped by membrane. These data reveal that the average entropy, and its
dispersion, vary significantly between the three membranes. (Here we may note that a mere overall difference in gray
level should not affect the entropy, while a difference in dynamic range, or the spread between the darkest and lightest
regions, should change S. Such a difference in dynamic range presumably arises due to differences in gel preparation,
incubation times, and/or processing.) Hence, it is not meaningful to compare entropy values of profiles belonging to different
membranes, without normalizing them. (Note that the Hurst exponent is invariant under linear transformations of the
profile, and so is much less sensitive to variations among membranes.) It is nevertheless useful to compare entropies of
profiles in the same membrane (Table 1); this comparison reveals that the profiles of symptomatic individuals tend to have
smaller entropy values.
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Table 1
Entropy of the profiles, grouped by membrane
Membrane 1 Membrane 2 Membrane 3
Order Group Entropy Order Group Entropy Order Group Entropy
1 B 413 1 D 3.22 1 D 3.92
2 E 413 2 A 3.25 2 D 4.01
3 D 423 3 D 3.38 3 B 4.09
4 D 428 4 D 3.53 4 F 4.09
5 B 4.28 5 A 3.62 5 B 4.15
6 F 4.30 6 F 3.62 6 A 4.18
7 C 4.30 7 B 3.79 7 ¥ 423
8 A 4.33 8 E 3.81 8 A 427
9 A 4.33 9 E 3.99 9 F 431
10 E 434 10 C 4.02 10 E 433
11 A 4.38 11 C 4.07 11 C 4.49
12 B 4.39 12 E 4.23 12 C 4.50
13 C 443 13 B 433 13 E 453
14 F 4.46 14 E 453
15 C 4.55 15 C 4.57
16 E 4.59 16 B 458
17 B 4.67
5 —r—r T - — —
L .
o
a5l ool fre A . .
o 3 ! g e e,
o, =] f o .
o & .l_:. ' . o o g : 5
®. : a F % % . o q
* 4 L .1 t .o i
°.. ‘. .
w1 4+ -} 3 o s . e
: L
35L LA 4
B .E 4
3 L [ [ M B
0 5 10 15 20
Channels

Fig. 16. Entropy S of experimental reactivity profiles, grouped by membrane. Open circles, open squares, and closed circles represent profiles from
membranes 1, 2, and 3, resp.

For each membrane, let s be the number of symptomatics and m the position of the symptomatic with highest entropy
(with m = 1 the position of lowest entropy). In membrane 1, for example, the two symptomatics have the third and fourth
lowest values, so s = 2 while m = 4. For membrane 2,s = 3 and m = 4, whiles = m = 2 in membrane 3. If the distribution
of entropies were random, the probabilities of a given outcome (s, m) in a membrane with n individuals would be given by
the hypergeometric distribution. The associated probabilities are 0.008, p = 0.014, and p = 0, 007 for membranes 1, 2, and
3, respectively. The low probabilities of occurrence (p & 0.01), strongly suggest that the profiles of symptomatic individuals
exhibit lower statistical entropy than non-symptomatics. (Note that this tendency is opposite to that of the Hurst exponent,
which is larger for symptomatics and others inhabiting the endemic region. A larger H corresponds to a higher degree of
correlation in height variables, which in turn corresponds to smaller S, the entropy being maximum for a uniform probability
distribution.)

Using the procedure described above, we calculate the model profile entropy. Figs. 17 and 18 show the entropy as a
function of the number of perturbations for for scale-free, and random networks, respectively. We note an initial growth of
the entropy followed by a tendency toward saturation, i.e., a behavior similar to that of the Hurst exponent. The initial growth
of the entropy can be understood as follows. Before any perturbation, the reactivity profile has a few peaks, superimposed
on a roughly uniform, low-level background. The growth of certain B cell clones following a perturbation has the effect
of amplifying the associated peaks in the profile, and thereby making the distribution p; somewhat more uniform, which
corresponds to a higher entropy. Thus, in the model, entropy and Hurst exponent exhibit a qualitatively similar response to
perturbations.
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Fig. 17. Entropy of model profiles (scale-free network) versus number of perturbations.
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Fig. 18. Entropy of model profiles (Erdos-Renyi network) versus number of perturbations.
6. Conclusions

The possibility of multiple effective interactions between B lymphocyte clones motivates the study of the immune system
as a complex system [27]. Studies of this nature are important for interpreting experiments related to global immune
response, such as the Panama blot technique. Among the many possible global measures of activity, the immune profile
roughness and statistical entropy are analyzed here, and compared with results of simulated profiles, generated using an
immune network model [27].

The roughness wj; is characterized by the Hurst exponent H. (Although the immune profile does not appear to be fractal,
we may nonetheless evaluate the associated Hurst exponent at small scales.) We find that the value of H discriminates, in
a statistically significant manner, between individuals living in regions endemic for malaria, and those from malaria-free
regions. One can argue that several factors might influence the reactivity profiles: age, previous diseases, genetic profile
etc. It is important to cite, from Ref. [18] and references therein, that “reactivity patterns of IgM (. ..) natural antibodies
to autologous tissue proteins appear established early in life, and remain remarkably stable throughout healthy living, but
are capable of characteristic changes in autoimmune and other human diseases. Thus, such patterns are likely to reflect
stabilized states of physiologic activation, shaped by polymorphic genes relevant for the immune system which can be
selected in evolution”. The calculation of Hurst exponent has been used in the characterization of states in many different
biological problems [13,14].

We also find that the statistical entropy of the reactivity profile is highly correlated to malaria exposure, when the
comparison is restricted to the same membrane. (Profiles of symptomatic individuals tend to have a lower entropy.
Membrane-to-membrane variations hamper comparison of profiles on different membranes.) We find that the sorting by
entropy value observed within a given membrane (~15 profiles), has a rather small probability (p ~ 0.01) of occurring
randomly. Unlike the Hurst exponent, which discriminates between individuals from endemic and non-endemic regions,
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entropy discriminates between symptomatics and non-symptomatics, but does not separate individuals by region. More
surprisingly, entropy is smaller for symptomatics than for the rest of the population. This is qualitatively different from
what is observed in our model simulations, in which entropy grows with an increasing number of perturbations.

From our results on the Hurst exponent and statistical entropy, we infer that exposure to the malaria parasite modifies
the state of immunological activity, in a manner that affects reactivity to a set of proteins that are not necessarily related
to those of the parasite. In our view, the relation between H values and history of malaria exposure (and between entropy
and history of malaria exposure), is likely due to one or more of the following factors: (1) the (human) protein extracts used
in the Panama blot may contain some proteins in common with the parasite; (2) exposure to the parasite may elicit cross
reactions to self-proteins; (3) exposure to the parasite may cause global changes in immune reactivity.

Representing each profile as a point in reactivity space (with a dimensionality equal to the number of protein bands in the
extract, when separated by electrophoresis), we determine the plane associated with the highest degree of correlation via
principal components analysis. Points associated with individuals from the two regions (endemic and nonendemic), tend to
fall in distinct areas of this plane. The results of super-paramagnetic clustering are less clear. For the profiles obtained using
the liver extract, there is no separation into distinct groups. By contrast, SPC does separate the set of brain-extract profiles
into two groups, but these groups are not correlated to the history of malaria exposure.

As an aid to interpret the experimental profile results, we study reactivity profiles generated using an immune network
model [27]. As the model is repeatedly perturbed with the same set of ligands, the Hurst exponent of the associated profiles
increases. The increasing of H as a function of the number of perturbations is sublinear. Analogous behavior is observed in
the Hurst exponent of the experimental profiles groups according to the intensity of malaria exposure.
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