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Abstract

This paper deals with the problem of estimating cut results for faceted gemstones. The proposed approach applies artificial neural
networks for a faceted gemstones analysis tool that could be further developed for incorporation in a computer-aided-design (CAD)
context. Basic concepts concerning gemstone processing are introduced and the design of computational tools using neural networks
is discussed. The model presented proposes two criteria to assess the efficiency of lapidary designs for rock crystal quartz: brilliance
and yield. Closing the article, 62 different lapidary models were used to train and test the neural network tool.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The minerals qualified as gemstones are remarkable and
attractive in consequence of special characteristics like
color, brilliance, transparency, hardness, durability and
rarity. Its beauty, essentially associated with their optical
features, has made these precious stones very attractive
for diverse applications related to adornment objects and
its rarity has assigned high exchange value to them. Man’s
fascination with gemstones dates from prehistoric times
and since the beginning of civilization, examples of efforts
to improve the optical properties of some gemstones are
found, aiming at enhancing its beauty and, consequently,
its exchange value [1].

One of the most important ways to aggregate value to
the gemstones is lapidary, the general denomination of
the cutting and polishing processes applied to solid materi-
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als. In the field related to this work, lapidary techniques are
still being developed in terms of producing even more
sophisticated models, seeking to control color saturation,
to maximize the return of incident light from the observer
perspective, to obtain interesting distortion effects of light
rays inside the gem, to reduce wastage in the raw material
cutting, or simply to allow the setting of the gemstone on
the jewel assembly [2,3].

This article presents a study of the application of artifi-
cial neural networks (ANN) on efficiency in parameters
estimation and evaluation of lapidary design results consid-
ering the technique of faceting. Application of ANN-based
tools on materials science and engineering is becoming an
interesting issue for design, characterization and evaluation
problems. For instance, some useful ANN applications on
materials science can be found in [5,4,6]. The results or effi-
ciency of such lapidary designs can be measured in terms of
optical performance and weight retention. The optical per-
formance of gemstones can be judged primarily for its bril-
liance, defined as the portion of incident light that returns
to an observer after traveling through different paths inside
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the gem. The weight retention, here called yield, is the
weight ratio between the raw material and the final faceted
gem obtained after the cutting and polishing tasks [7–9].
Computational tools based on artificial neural networks
have been applied to different kinds of problems where it
is necessary to extract knowledge from strongly nonlinear
and complex systems, being the case of the relationship
between the geometry of three-dimensional faceted gem
and its brilliance and yield results.

This study’s subject relevance can be observed in some
recent related works concerning these two main gems prop-
erties. For instance, an interesting hybrid artificial intelli-
gence approach for the yield improvement is described in
[10]. A computational tool for quality grading, based on
Fig. 1. Nomenclature of

Fig. 2. Top view of typical gemstones: (a) round, (b) oval, (c) navette or m
octagonal or emerald cut.

Fig. 3. Light refraction and total internal reflection phenomena on t
rule-based knowledge representation, fuzzy logic and
genetic algorithms, provides better understanding of lapid-
ary possibilities and therefore can contribute to wastage
reduction when real faceting actually takes place. Another
innovative work presents a detailed study of optical effects
inside a polyhedral faceted gem, modeling the complex
behavior of light in such materials, and proposes an effi-
cient computer graphics algorithm for rendering faceted
gemstones and obtaining a photo-realistic graphic repre-
sentation of optical effects such as color and brightness
[11].

The international jewellery industry is the final destina-
tion of most part of faceted gems, turning about 14 billion
dollars per year on the international trade (estimative of
a faceted gemstone.

arquise, (d) pear, (e) cushion, (f) square, (g) rectangular or baguette, (h)

wo different materials interface, with different refraction indexes.
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Brazilian Institute of Precious Gemstones and Metals –
IBGM [12]). Developing countries such as Brazil, the major
producer of rough gemstones, could improve economical
turnovers with better utilization of available mineral
resources. It can be verified in the European jewellery
report of the Centre for the Promotion of Imports from
Developing Countries – CBI [13]. The lapidary taken as
an industrial design process shows ways to aggregate value
to mineral production and to improve this relevant sector.
The Brazilian case of under-exploitation of its actual eco-
nomic potential constitutes the main motivation for this
study [14].
Fig. 4. Light ray path inside section of faceted gem.
2. Lapidary

The lapidary as procedure to process minerals for
adornment purpose has its origins, according to historians,
on the region of Iraq in 5th AC century. The early lapidary
designs were obtained by polishing natural faces of crystals
and pebbles found on alluvium deposits. Later appears the
cabochon model, consisting of domed polished gemstones
without facets, with smooth, rounded edges. Around the
13th DC century, better optical results are obtained with
faceted lapidary models, produced using flat discs sprayed
with powdered diamond and corundum to create small cuts
Fig. 5. A lapidary model diagram
by abrasion. The shapes became prismatic to enhance the
already known significant effects like brilliance and light
dispersion. In the 20th century, lapidary designs for the
diamond industry begin to be described by well-defined
parameters, and started the ongoing research about the
improvement of these models.

The basic nomenclature of a faceted model is shown in
Fig. 1. The model parameters are related to dimension pro-
portions between the indicated elements. The cutting mod-
els can present diverse characteristics in terms of shape.
Fig. 2 shows some typical geometry shapes.

Analyzing the interaction of the light with a transparent
gem, it is possible to remark the main physical phenomena
(standard round brilliant).
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in terms of geometric optics. When an incident light ray
reaches the gem surface, part of it is reflected and the other
part is transmitted or refracted across the air–gem inter-
face. The refracted fraction of the ray travels inside the
gem and so it repeats this phenomenon when it reaches
another gem–air interface, at an internal surface this time.
Fig. 3 illustrates this optical phenomenon, where it is
shown that there exists a certain angle value that delimi-
tates the occurrence of refraction; this angle value is called
critical angle. The Snell law gives the relation between the
incident angle and refraction angle:

c
v
¼ n ¼ sin i

sin r
ð1Þ

where c is light velocity in the air, v is the light velocity in-
side the gem, n is the refraction index of the gem material,
sin(i) is the sinus of incident angle, and sin(r) is the sinus of
refraction angle.

Together with table size, the angles formed by the gem
crown and the pavilion, with reference to the horizon plan
(the girdle), define the geometry and are determinant of the
brilliance criterion value, considering the refraction index
of the specific gem material. Fig. 4 shows one incident
angle being totally reflected back to observer eye after
incising at an angle equal to pavilion angle a and being
reflected at an angle v. The pavilion angles of a gemstone
Table 1
Design parameters of studied lapidary models (first part)

Model Facets T/W T/L

1 2–6–3 Triangle 52 0.516 0.490
2 3 Corner triangle 46 0.595 0.573
3 6 Star 79 0.474 0.457
4 8 Round 57 0.490 0.490
5 9 By check round 33 0.268 0.268
6 Acorn tri 70 0.532 0.496
7 Beginner check 27 0.267 0.267
8 Brilliant marquise 59 0.753 0.537
9 Bzzz 101 0.482 0.482

10 China check 25 0.442 0.442
11 Circus tent 105 0.392 0.392
12 Crazy triangle 18 0.000 0.000
13 Cross point 49 0.468 0.468
14 Cross 47 0.544 0.409
15 Cut corner crazy tri 24 0.000 0.000
16 d Qtz round 97 0.461 0.461
17 Dagger bottom 41 0.393 0.393
18 Double cross square 73 0.594 0.594
19 Easy tri 31 0.536 0.535
20 Fancy 59 0.568 0.473
21 Fanned triangle 52 0.303 0.295
22 Frosted star 79 0.533 0.514
23 Harlequin square 41 0.400 0.400
24 Hopes square 53 0.505 0.505
25 Keely cisor 37 0.833 0.626
26 Light star 169 0.472 0.472
27 Malt squared 53 0.463 0.463
28 Mask rectangle 61 0.900 0.642
29 Mock emerald 33 0.884 0.708
30 North star 137 0.459 0.459
31 np Point 67 0.542 0.534
should therefore be larger than the critical angle for each
refraction index.

The brilliance, an essential property for a gem evalua-
tion, is defined as the fraction of the incident light that
returns to an external observer positioned frontally to the
crown, after successive internal reflections.

Another main feature of a gem-cutting model is the
yield, i.e., the weight ratio between uncut rough stone
and finished faceted gem. In general, the raw material is
presented to the lapidary processing in strongly irregular
and diverse shapes. Consequently, for comparative crite-
rion, a convention is established as a percent volume of
the faceted gem inside a cube of the smallest size that
may contain this gem.

3. Description of the model

A cutting model can be defined through a diagram with
the description of all geometric parameters, dimension
ratios, quantity of facets, and necessary angles for each
facet. Fig. 5 shows an example of a cutting diagram for a
round standard brilliant generated by GemCAD software.
This specialized software provides an estimation of bril-
liance and material utilization for the models considered
in this article. Its estimation procedure is based on inverse
ray tracing considering the geometry and refraction index
P/W C/W H/W Yield Brilliance

0.380 0.188 0.588 0.187 75.4
0.418 0.188 0.626 0.230 79.2
0.462 0.209 0.691 0.254 72.0
0.435 0.168 0.623 0.226 78.5
0.435 0.209 0.664 0.224 92.8
0.457 0.166 0.643 0.223 74.0
0.435 0.191 0.646 0.216 90.2
0.437 0.141 0.598 0.243 84.6
0.481 0.175 0.676 0.251 70.0
0.435 0.169 0.624 0.285 82.6
0.440 0.259 0.719 0.241 70.0
0.426 0.123 0.569 0.145 76.1
0.445 0.212 0.677 0.246 70.7
0.511 0.248 0.779 0.428 70.6
0.453 0.190 0.663 0.188 80.7
0.549 0.228 0.797 0.316 72.6
0.483 0.214 0.718 0.315 74.4
0.529 0.212 0.761 0.363 75.0
0.399 0.175 0.593 0.187 83.7
0.479 0.226 0.726 0.373 82.8
0.392 0.213 0.625 0.211 88.3
0.459 0.182 0.661 0.251 60.0
0.488 0.208 0.717 0.319 70.0
0.460 0.226 0.706 0.279 75.0
0.466 0.131 0.618 0.440 84.0
0.449 0.192 0.661 0.226 63.5
0.479 0.232 0.731 0.306 72.6
0.596 0.259 0.875 0.545 70.0
0.499 0.143 0.662 0.409 82.7
0.437 0.181 0.638 0.215 75.0
0.430 0.227 0.677 0.253 73.6
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of a specific gem-cutting model. Although considered fairly
simple, compared to very sophisticated models such as
described in [7,11], its results show similar relations
between proportional variations and brilliance in macro-
analysis. To provide the models for the study, designs for
quartz were collected at [15], a commercial website that
presented an organized and easily accessible collection.
The GemCAD outputs for brilliance and yield will be used
to evaluate the results obtained by the proposed neural
network based tool.

According to this study assumptions concerning the fac-
eted gemstone evaluation, two properties are preponderant:
brilliance and yield. The gem design parameters, supposedly
determinant of these evaluation aspects, can be enumerated:
(i) total number of gem facets F; (ii) dimension ratio between
table and width T/W; (iii) dimension ratio between table
and length T/L; (iv) dimension ratio between pavilion and
width P/W; (v) dimension ratio between crown and width
C/W; (vi) dimension ratio between total height (crown
height + girdle thickness + pavilion depth) and width H/
W [7,16]. Remark: for round models like this one showed
in Fig. 5, W = L and, consequently, T/W = T/L. Tables 1
and 2 present the design parameters values for the studied
gem models.

Even if not exhaustive, given the diversity of faceting
possibilities, the lapidary diagrams studied comprise vari-
Table 2
Design parameters of studied lapidary models (second part)

Model Facets T/W T/L

32 op Blade 77 0.482 0.482
33 Point square check 24 0.000 0.000
34 Astor star 49 0.472 0.472
35 Diagonal 1.5 15 0.856 0.571
36 Glass triangle 67 0.433 0.432
37 Diamond perception 25 0.347 0.261
38 Prop 25 0.351 0.351
39 Quartz shield 44 0.507 0.507
40 z Diamonds 13 0.892 0.595
41 Scot plaid 97 0.511 0.442
42 Simply x’ed 25 0.541 0.541
43 Spin v 37 0.458 0.397
44 Starred 71 0.471 0.471
45 Step up 49 0.493 0.493
46 Straight pedals 55 0.566 0.490
47 Strip o 59 0.614 0.512
48 Wink 51 0.768 0.578
49 Squeezed square 20 0.000 0.000
50 Square ziggie 14 0.000 0.000
51 Mock check squares 17 0.807 0.807
52 Two spin star 30 0.000 0.000
53 Glider 12 0.913 0.489
54 Huntress 43 0.457 0.443
55 Kiss 12 0.000 0.000
56 Low boy 45 0.713 0.713
57 Spike 19 0.305 0.305
58 Spiro 46 0.384 0.357
59 Tess’s pentagram 23 0.820 0.640
60 Triga light house 58 0.509 0.492
61 Thorn 17 0.840 0.674
62 Zip 15 0.656 0.656
ous shapes and geometric features to ensure a representa-
tive faceted gemstones assortment. Some examples of the
considered models are shown in Fig. 6.

4. Parameters estimation

The proposed tool for faceted gemstones evaluation is
based on artificial neural networks, which are intrinsically
parallel and distributed computation systems inspired on
the biological brain functions. These systems associate
input and output data through artificial neuron units, or
nodes, each of which performs a linear combination of
the received signals and sends the result to an activation
function used to simulate the firing process of a biological
neuron. They are organized in layers from which they con-
nect to each of the neurons in the subsequent layer, thus
leading to a neural network. Weights values are assigned
to the connections among the neurons in the different lay-
ers. A general scheme of a feed-forward ANN is presented
in Fig. 7 in which the signals propagate from the input to
the output without any kind of signal feedback.

A mathematical model of the artificial neuron function
was initially proposed by neuro-physiologist Warren
McCulloch and mathematician Walter Pitts, in 1943 [18].
In this model, the neuron output is activated by the linear
combination of the inputs (cf. Fig. 8). It can be considered
P/W C/W H/W Yield Brilliance

0.437 0.150 0.607 0.202 82.1
0.435 0.225 0.679 0.292 88.5
0.537 0.202 0.759 0.339 89.2
0.500 0.338 0.858 0.767 89.4
0.447 0.198 0.666 0.202 80.0
0.361 0.141 0.522 0.167 84.6
0.458 0.173 0.651 0.256 93.2
0.426 0.191 0.637 0.232 82.8
0.500 0.254 0.774 0.651 90.7
0.469 0.202 0.691 0.271 69.2
0.488 0.207 0.714 0.324 70.0
0.475 0.276 0.771 0.297 65.0
0.428 0.176 0.624 0.199 89.8
0.452 0.153 0.625 0.249 80.0
0.501 0.243 0.764 0.306 76.0
0.485 0.236 0.741 0.343 74.0
0.485 0.215 0.720 0.353 78.2
0.458 0.144 0.622 0.241 94.6
0.466 0.144 0.630 0.336 86.4
0.466 0.239 0.726 0.372 90.3
0.450 0.164 0.635 0.215 92.8
0.431 0.127 0.578 0.257 81.3
0.447 0.164 0.631 0.222 87.9
0.459 0.230 0.709 0.174 88.6
0.454 0.129 0.604 0.202 75.8
0.307 0.106 0.434 0.092 93.1
0.441 0.193 0.654 0.239 86.9
0.396 0.175 0.591 0.256 82.6
0.420 0.194 0.633 0.204 80.2
0.383 0.130 0.532 0.179 91.2
0.462 0.099 0.581 0.220 89.4



Fig. 6. Some lapidary models studied in this work.

Fig. 7. Scheme of a simple feed-forward ANN.
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as a transfer function producing the output value as a func-
tion of the weighted inputs. Different mathematical func-
tions may be used for the neuron activation.

The main concern in artificial neural networks is the
assignment of appropriate weights to the connections. In
1958, based on the works of McCulloch and Pitts and of
neuro-physiologist Donald Hebb, who first postulated a
learning paradigm for the biological neurons, Frank
Rosenblatt proposed a learning algorithm called the per-
ceptron neural network, which in its simplest architecture
is composed of a McCulloch and Pitts neuron with several
inputs. This algorithm gradually finds the appropriate
weights by presenting input–output pairs to the network,
that is, the procedure searches for the extraction of
input–output relation. When the training procedure is
accomplished for an appropriate choice of training data
set, the ANN is able to estimate output variables for
unknown input data. However, it may only solve classifica-
tion problems of linearly separated classes.



Fig. 8. A mathematical model of a computational neuron.
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Several subsequent connected layers of perceptrons lead
to the multilayer perceptron architecture as in Fig. 7. That
is, in addition to the input and output layers, the multilayer
architecture may have a number of intermediate layers,
called hidden layers. The use of nonlinear activation func-
tions in the neurons required the development of a different
learning strategy to approach nonlinear problems. A train-
ing procedure for the multilayer perceptron was proposed
by Rumelhart in 1986, based on the back-propagation of
the error signals computed at the neural network outputs.
The algorithm consists of estimating the local gradient of
each neuron in each layer to proportionally adjust the
weights.

In the learning process, input and output data are orga-
nized in vectors. The number of neurons in the input and
output layers depend on the input and output vectors
dimensions, respectively. The estimation of the number of
hidden neurons, however, is an unsolved issue and usually
Fig. 9. Lapidary models used fo
it is achieved by experimenting different neural network
architectures and choosing the one that solves the problem
requiring less computation resources.

In this training algorithm, when a new input vector i is
chosen from the training data and it is presented to the
neural network input, an output vector oa results and it is
compared to the desired (and known) output vector od. A
possible description of the network error may be given by
the squared difference:

e ¼ ðod � oaÞT � ðod � oaÞ ð2Þ
The error is a measure of how close the ANN result is

from the desired value for a particular input. The purpose
of the backpropagation algorithm is to minimize the sum
of squared errors for the entire training data (the mean
square error – mse). This problem can be described by
the minimization of an objective function:

mse ¼ 1

N

XN

n¼1

en ¼
1

N

XN

n¼1

ðodðnÞ � oaðnÞÞT � ðodðnÞ � oaðnÞÞ ð3Þ

The backpropagation algorithm is an interactive resolu-
tion approach for this optimization problem. The numeri-
cal resolution may require many cycles of presenting the
training data and controlling the objective function
decrease until it reaches a target value. Many computa-
tional packages of numerical calculus offer toolboxes
implementing different training algorithms based on differ-
ent optimization strategies.

The main step of the algorithm is the weight adjustment
process performed after calculation of the local gradient of
the neuron k, as it is described in [18]. A weight wki from
the ith input to neuron k is updated as

wki ¼ wki þ g� dk � yi ð4Þ
r testing the trained ANN.



Table 3
Results of training and tests procedure: mean and maximum error, and
training performance index

Training
and test

Mean estimation
error (%)

Max estimation
error (%)

Performance
index

1 4.78 9.35 1.92
2 6.45 12.21 1.49
3 6.24 9.73 1.32
4 5.32 12.97 1.44
5 4.58 7.82 1.79
6 5.86 11.61 1.78
7 3.80 7.82 1.65
8 4.61 8.99 2.06
9 4.37 8.52 1.17

10 3.39 7.91 1.76
11 3.95 6.86 2.00
12 5.05 8.61 1.66
13 3.55 8.61 1.57
14 5.80 13.44 1.31
15 3.99 9.02 2.20
16 5.14 11.04 1.31
17 3.41 8.83 1.86
18 4.67 9.37 1.70
19 3.67 8.74 1.17
20 4.66 10.78 1.35
21 4.70 11.52 1.11
22 5.71 12.30 1.23
23 5.48 9.86 1.32
24 5.13 9.64 1.92
25 4.96 13.76 1.61
26 5.57 9.72 1.74
27 4.13 10.21 1.40
28 6.68 12.82 1.73
29 6.44 10.80 1.61
30 3.88 9.37 1.40
31 3.35 8.60 1.85
32 5.06 9.48 1.98
33 5.34 10.87 1.84
34 4.47 10.86 1.83
35 4.66 11.49 2.67
36 5.46 11.82 1.57
37 5.19 12.95 1.46
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where g is the learning rate; dk is the local gradient of neu-
ron k; and yi is the input flowing through weight wki.

The design of ANN architecture for a specific applica-
tion requires the choice of the network type choice, the
number of layers, the input and output variables, and the
mathematical activation function of each neuron. Further-
more, it is necessary to collect relevant data relative to the
problem. In this paper, an ANN based solution is pursued
for the problem of lapidary design. The considered data for
the rock crystal quartz is composed by the 62 faceting dia-
grams set discussed in Section 2.

In the network training procedure, the faceting diagrams
were divided in two groups: a training group with 59 mod-
els, and a second group with three models for testing the
resulting network. The models of testing group were cho-
sen arbitrarily: numbers 4, 13 and 58, see Fig. 9. The input
vectors were normalized and scaled (values between 0 and
1), and the number of neurons for each layer was defined
by considering practical hints based on several ANN appli-
cations described in [18].

The proposed neural network architecture was designed
as a multilayer perceptron composed by an input layer with
6 nodes, one hidden layer with 12 nodes, and the output
layer with 2 nodes corresponding to the brilliance and yield
attributes. The activation function was chosen as the logis-
tic function with output in the closed interval (0, 1) [17–19].
This function is monotonically increasing and smooth,
which are essential features for the backpropagation
algorithm:

y ¼ 1

1þ e�x
ð5Þ

Other ANN parameters are the learning rate and the
target error. In the present implementation an adaptive
learning rate approach was chosen while the target error
was established as 10�3, based on the project choices.
38 4.36 9.01 2.23
39 2.95 7.67 1.40
40 4.39 10.00 1.38
41 3.95 10.21 1.38
42 5.47 8.49 1.40
43 4.22 8.94 2.11
44 4.55 8.03 1.96
45 3.33 7.49 1.84

Table 4
Known and estimated values for brilliance and yield (models 4, 13 and 58),
and respective errors

Model Brilliance
(known)

Brilliance
(estimated)

Error
(%)

Yield
(known)

Yield
(estimated)

Error
(%)

4 Eight
round

78.5 74.7 4.81 0.226 0.233 3.15

13 Cross
point

70.7 71.4 0.98 0.246 0.266 8.03

58 Spiro 86.9 92.6 6.56 0.239 0.230 3.77
5. Results

The training process was followed by the test, where the
trained ANN-based tool was applied to analyze the testing
data set, composed of models numbers 4 (eight round), 13

(cross point), and 58 (spiro). This procedure was repeated
several times because the training algorithm uses random
numbers generator to initialize the network state (the
values of biases and connections’ weights). Table 3 shows
the results for 45 training and test procedure: the error
average for the six estimated parameters values (brilliance
and yield of three models), the maximum value between
the six parameters errors, and final value of the training
performance index after 5000 epochs. For these 45 repeti-
tions, the average values of mean and maximum errors
obtained are 4.62% and 9.74%, respectively.

The details of one of these training and test procedures,
the results of each parameter estimation and its known val-
ues (brilliance and yield) for the three test group models,
and the respective errors can be seen in Table 4, and the
variation of the training performance error (the mean
square error – mse) during 5000 epochs (presentation of
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Fig. 10. Evolution of the performance index (mean square error of the ANN) during the training procedure.

Table 5
Generalization method: known and estimated values for brilliance and
yield (models 4, 13 and 58), and respective errors

Model Brilliance
(known)

Brilliance
(estimated)

Error
(%)

Yield
(known)

Yield
(estimated)

Error
(%)

4 Eight
round

78.5 75.6 3.65 0.226 0.233 3.03

13 Cross
point

70.7 71.3 0.86 0.246 0.274 11.40

58 Spiro 86.9 86.5 0.49 0.239 0.227 4.84
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the training data set) is shown in Fig. 10. Observe that the
mse reach a value about 10�3. At the end of this learning
procedure, the connections weight were obtained, repre-
senting the extracted knowledge of the studied problem.

For the following tests, a different strategy is considered:
the called regularization method. This training strategy is
applied to make the most of a limited supply of studied
problem data, and the main goal is to improve the ANN
generalization. The main training procedure difference con-
cerns the performance function (usually the sum of squares
of the network errors). The optimal performance function
is obtained by adding a term that takes in account the
mean of the sum of squares of the network weights and
biases.

msereg ¼ cmseþ ð1� cÞmsw ð6Þ
where c is the performance ratio, and

msw ¼ 1

n

Xn

j¼1

w2
j ð7Þ

This training performance function allows the network to
have smaller weights and biases, and the network re-
sponse becomes smoother and less likely to overfit. An
automated regularization, that can determine the optimal
regularization parameters, based on Bayes’ theorem, is
proposed in [20]. In this automated procedure, the weights
and biases of the network are considered as random vari-
ables with specified distributions. The parameters are re-
lated to the unknown variances associated with these
distributions, and they can be estimated using statistical
techniques.
The results of the training and test procedure using reg-
ularization can be seen in Table 5. These results present a
strong convergence and repetition (without the results fluc-
tuations seen in the precedent used strategy). The architec-
ture considered here presents the input layer with six
neurons, one hidden layer with six neurons, and the output
layer with two neurons. This ANN structure was obtained
using pruning methods [18,19]. For these tests, the average
values of mean and maximum errors obtained are 4.05%
and 11.40%.

These results show that the ANN-based computational
tool was capable of extracting knowledge from the predic-
tion problem concerning evaluation parameters of faceting
diagrams. The refinement of this CAD tool depends mainly
of amassing a more representative and diversified sample of
lapidary gemstone models, including an exhaustive array of
shapes and proportions.

Considering the diversity of geometric possibilities of
lapidary models, the limitations of the models data set used
in the work, the physical characteristics of the problem, the
important complexity of the relationship between the input
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(F, T/W, T/L, P/W, C/W, H/W) and the output (brilliance
and yield) data, the obtained results show the proposed
ANN architecture may be considered as a promising com-
putational tool for lapidary development.

If additional data is made available, the proposed ANN
based system can be easily retrained to capture additional
features from the data, thus enhancing its classification
performance.
6. Conclusion

This paper presented a general study of the problem of
gem lapidary as a combination of physical and geometric
effects influencing the evaluated beauty of faceted gems,
through the light-material interactions, the material prop-
erties, and the polyhedral shapes. Considering the specific
case of solid crystal quartz, an ANN-based design tool
was proposed for the prediction of important evaluation
properties (brilliance and yield).

The training and test procedures confirmed the work
hypothesis about the exploitable adequacy of this class of
artificial intelligence instrument, and it opens interesting
possibilities for CAD tools development in the search for
faceted gems design improvements, concerning an eco-
nomic domain of indubitable relevance, specially for devel-
oping countries with important minerals resources, as the
case of Brazil.
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