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In this paper we propose improved Benders decomposition schemes for solving a remanufacturing supply
chain design problem (RSCP). We introduce a set of valid inequalities in order to improve the quality of
the lower bound and also to accelerate the convergence of the classical Benders algorithm. We also derive
quasi Pareto-optimal cuts for improving convergence and propose a Benders decomposition scheme to
solve our RSCP problem. Computational experiments for randomly generated networks of up to 700
sourcing sites, 100 candidate sites for locating reprocessing facilities, and 50 reclamation facilities are
presented. In general, according to our computational results, the Benders decomposition scheme based
on the quasi Pareto-optimal cuts outperforms the classical algorithm with valid inequalities.
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1. Introduction

Adopting a friendly sustainable management approach implies
a number of changes for companies from the strategic level up to
the operational point of view, affecting their employees and
impacting their business processes and technology. In this regard,
Simchi-Levi, Kaminsky, and Simchi-Levi (2007) point out, ‘‘the
strategic level deals with decisions that have a long-lasting effect
on the firm. These include decisions regarding the number, loca-
tion and capacities of warehouses and manufacturing plants, or
the flow of material through the logistics network.’’

The problem of locating facilities and allocating customers is
not new to the operations research community and involves the
key aspects of supply chain design (Daskin, Snyder, & Berger,
2005). This problem is one of ‘‘the most comprehensive strategic
decision problems that need to be optimized for long-term effi-
cient operation of the whole supply chain’’ (Altiparmak, Gen, Lin,
& Paksoy, 2006). As observed by Farahani and Hekmatfar (2009),
some small changes to classical facility location models can make
the problems much harder to solve.

In the last few years, mathematical modeling and solution
methods for the efficient management of return flows (and/or inte-
grated with forward flows) have been studied in the context of re-
verse logistics, closed-loop supply chains, and sustainable supply
chains.
Fleischmann, Krikke, Dekker, and Flapper (2000) discussed new
issues that arise in the context of reverse logistics, and they
reviewed the mathematical models proposed in the literature.
Fleischmann, Beullens, Bloemhof-Ruwaard, and Va (2001) pro-
posed a generic recovery network model based on the elementary
characteristics of return networks identified in Fleischmann et al.
(2000). Zhou and Wang (2008) proposed a generic mixed integer
model for the design of a reverse distribution network including
repairing and remanufacturing options simultaneously.

Regarding reverse logistics networks in connection with loca-
tion problems, Bloemhof-Ruwaard, Salomon, and Van Wassenhove
(1996) presented a two-level distribution and waste disposal prob-
lem, in which demand for products is met by plants while the
waste generated by production is correctly disposed of at waste
disposal units. Barros, Dekker, and Scholten (1998) described a net-
work for recycling sand from construction waste and proposed a
two-level location model to solve the location problem of two
types of intermediate facilities.

Regarding remanufacturing location models, Krikke, Van
Harten, and Schuur (1999) described a small reverse logistics net-
work for the returns, processing, and recovery of discarded copiers.
They presented a mixed integer linear programming (MILP) model
based on a multi-level uncapacitated warehouse location model.
The model was used to determine the locations and capacities of
the recovery facilities as well as the transportation links connect-
ing various locations. In Jayaraman, Patterson, and Rolland
(2003), a 0–1 MILP model for a product recall distribution problem
is proposed. They analyzed a particular case in which the customer
returns the product to a retail store, and the product is sent to a
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refurbishing site which will rework the product or properly dis-
pose it. The reverse supply chain is composed of origination, collec-
tion, and refurbishing sites. With the objective to minimize fixed
and distribution costs, the model has to decide which collection
sites and which refurbishing sites to open, subject to a limit on
the number of collection sites and refurbishing sites that can be
opened.

Several authors have studied different aspects of closed-loop
supply chain problems. See, for example, Jayaraman, Guide, and
Srivastava (1999), Fleischmann (2003), Barbosa-Povoa, Salema,
and Novais (2007), Guide and Van Wassenhove (2009) and Neto,
Walther, Bloemhof-Ruwaard, Van Nunen, and Spengler (2010).
Sahyouni, Savaskan, and Daskin (2007) presented three generic
facility location MIP models for integrated decision making in the
design of forward and reverse logistics networks. The formulations
are based on the well-known uncapacitated fixed-charge location
model, and they include the location of used product collection
centers and the assignment of product return flows to these cen-
ters. Lu and Bostel (2007) presented a two-level location problem
with three types of facilities to be located in a reverse logistics sys-
tem. They proposed a 0–1 MILP model which simultaneously con-
siders ‘‘forward’’ and ‘‘reverse’’ flows and their mutual interactions.
The model has to decide the number and locations of three differ-
ent types of facilities: producers, remanufacturing centers, and
intermediate centers.

In summary, reverse logistics models are chronologically dis-
cussed by Bloemhof-Ruwaard et al. (1996), Barros et al. (1998),
Krikke et al. (1999), Fleischmann et al. (2000, 2001), Shih (2001),
Sodhi and Reimer (2001), Jayaraman et al. (2003), Le Blanc, Fleuren,
and Krikke (2004), Listes� and Dekker (2005), and more recently
Zhou and Wang (2008), Salema, Barbosa-Povoa, and Novais
(2010), Gomes, Barbosa-Povoa, and Novais (2011) and Alumur,
Nickel, Saldanha-da-Gama, and Verter (2012). Almost all of this re-
search proposed MILP models. Listes� and Dekker proposed a sto-
chastic MILP and Alumur et al. studied the dynamic factors that
affect location decisions. The majority of solution methods are
based on standard commercial packages.

In this paper, the problem of designing a reverse supply chain
network is addressed, and a Benders decomposition-based algo-
rithm is proposed for solving it. The problem is a NP-hard combi-
natorial optimization problem. The MILP model follows some
previously published work by, for example, Jayaraman et al.
(2003), Salema et al. (2010) and Li (2011), but in this paper we de-
velop a more efficient algorithm for solving it. For randomly gener-
ated test instances of the problem, we analyze the performance of
the algorithms in term of computational times and quality of the
solution obtained.

This paper makes three primary contributions. First, it proposes
a Benders decomposition algorithm for solving large-scale reverse
network design problems. We test two sets of valid inequalities to
strengthen the Relaxed Master Problem in order to improve the
quality of the lower bound. Second, we derive quasi Pareto-optimal
cuts as another strategy to accelerate convergence, and third, we
propose a primal based Benders decomposition algorithm for solv-
ing the problem. Computational results are conducted on large-
scale networks of up to 700 sourcing facilities, 100 candidate sites
for locating reprocessing facilities, and 50 reclamation facilities
(700 � 100 � 50). To the best of our knowledge, for this kind of
problems, these are the largest problems explored and solved so
far.

The remainder of this paper is organized as follows. In the sec-
ond section, we formulate the mathematical model for the prob-
lem. In the third section, the Benders decomposition-based
algorithms for solving the problem are proposed. In the fourth sec-
tion, we present some strategies for accelerating the convergence
of the Benders algorithms. In the fifth section, the computational
experiments performed with the algorithms are presented. The last
section contains our conclusions.

2. Model for designing a reverse supply chain network

The problem can be categorized as a single product, static,
three-echelon, capacitated location model with known demand.
The reverse supply chain network consists of three types of mem-
bers: sourcing facilities (origination sites like a retail store), collec-
tion sites, and reclamation facilities. At the customer levels, there
are product demands and used products ready to be recovered
(for example, cell phones). We suppose that customers return
products to origination sites like a retail store. At the second layer
of the supply chain network, there are reprocessing centers (collec-
tion sites) used only in the reverse channel, and they are responsi-
ble for activities such as cleaning, disassembly, checking, and
sorting, before the returned products are sent back to reclamation
facilities. At the third layer, reclamation facilities accept the
checked returns from intermediate facilities and they are responsi-
ble for the process of reclamation. In this paper, we address the
backward flow of returns coming from sourcing facilities and going
to reclamation facilities through reprocessing facilities properly lo-
cated at pre-defined sites. In such a supply chain network, the ‘‘re-
verse’’ flow moves from customers through collection sites to
reclamation facilities and is formed by used products. On the other
hand, the ‘‘forward’’ flow moves from reclamation facilities directly
to new products at points of sale.

2.1. RSCP model

In this model, it is assumed that new product demands and
available quantities of used products are known and determinis-
tic. All returned (used) products are first shipped back to collec-
tion facilities where some of them will be discarded for various
reasons, including poor quality. The checked return-products will
then be sent back to reclamation facilities, where some of them
may still be discarded. We introduce the following inputs and
sets:
I
 the set of sourcing facilities at the first layer, indexed by i

J
 the set of reclamation nodes at the third layer indexed by

j

K
 the set of candidate reprocessing facility locations at the

mid layer, indexed by k

ai
 supply quantity at source location i 2 I

bj
 demand quantity at reclamation location j 2 J

fk
 fixed cost of locating a mid layer reprocessing facility at

candidate site k 2 K

gk
 management cost at a mid layer reprocessing facility at

candidate site k 2 K

cik
 is the unit cost of delivering products at k 2 K from a

source facility located in i 2 I

dkj
 is the unit cost of supplying demand j 2 J from a mid layer

facility located in k 2 K

mk
 capacity at reprocessing facility location k 2 K

We consider the following decision variables:

wk
 1 if we locate a reprocessing facility at candidate site

k 2 K, 0 otherwise

xik
 flow from source facility i 2 I to reprocessing facility

located at k 2 K

ykj
 flow from reprocessing facility located at k 2 K to facility

j 2 J
Following the model proposed by Li (2011), the reverse supply
chain design problem (RSCP) is defined by:



Fig. 1. Reverse supply chain network.
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Minimize
X
k2K

fkwk þ
X
i2I

X
k2K

ðcik þ gkÞxik þ
X
k2K

X
j2J

dkjykj ð1Þ
X
i2I

xik 6 mkwk 8k 2 K ð2Þ
X
k2K

xik 6 ai 8i 2 I ð3Þ
X
k2K

ykj P bj 8j 2 J ð4Þ
X
i2I

xik ¼
X

jJ

ykj 8k 2 K ð5Þ

xik; ykj P 0; 8i 2 I;8j 2 J;8k 2 K ð6Þ
wk 2 f0;1g 8k 2 K ð7Þ

The objective function (1) minimizes the sum of the installation
reprocessing facility costs plus management costs at the reprocess-
ing facilities plus delivery costs from sourcing facilities to repro-
cessing facilities and from these to reclamation facilities.
Constraints (2) ensure that all of the products that arrive at repro-
cessing site k 2 K must be less than its capacity and that this facility
must be opened. Constraints (3) guarantee that up to a volume of ai

return products available at i are going backward to facility k 2 K.
Constraints (4) warrant that the demand at facility j 2 J must be sat-
isfied by reprocessing facilities. Constraints (5) ensure that all the
return products arriving to facility k are also delivered to reclama-
tion facilities. Constraints (6) are the standard nonnegative con-
straints. Constraints (7) are the standard binary constraints. This
model has O(n2) continuous variables where n = max{|I|, |J|, |K|}
and |K| are binary variables. The number of constraints is O(n).

Fig. 1 shows a reverse supply chain network consisting of 6
groups of customers, 8 candidate sites for locating reprocessing
facilities (with three facilities opened), and two reclamation
facilities.
3. Benders decomposition

Benders decomposition is a classical decomposition technique
(Benders, 1962) which is advisable for solving hard mixed integer
programming problems with integer variables and coupling con-
straints. Benders decomposition technique involves decomposing
the overall formulation into a Master problem and a (Benders) sub-
problem, and then solving them iteratively by utilizing the solution
of one in the other. The Benders Master problem with only integer
variables and an auxiliary variable is a relaxation of the primary
problem. The auxiliary variable is introduced to facilitate the inter-
action between the Master problem and the subproblem. In a min-
imization problem, an optimal solution of the Benders Master
problem provides a lower bound on the original problem and the
values of the integer variables are passed through the subproblem
for solving a new subproblem. By fixing the integer variables, the
primary problem with only continuous variables becomes a Bend-
ers subproblem that can be solved easily. By solving the subprob-
lem, the values of its dual variables and a valid upper bound for the
primary problem (in the case of minimization) are obtained, and, in
this case, by utilizing its objective value along with the cost com-
ponents implied by the Master problem solution. The bounds are
updated, and if the stopping criterion is not met, a Benders cut
using the dual subproblem solution is generated. This new cut is
appended to the Master problem, and the Benders decomposition
algorithm is iterated continuously until a stopping criterion is
met. To establish a stopping criteria, we employ a small percentage
gap between the best upper and lower bounds and a maximum
number of Benders cycles reached; whatever is achieved first ends
the algorithm.

There are a number of publications to support the fact that the
Benders algorithm has not been uniformly successful in all applica-
tions; it has some deficiencies. Geoffrion and Graves (1974), among
others, have noted that reformulating a mixed integer program can
have a profound effect upon the efficiency of the algorithm. For the
particular case of a network design problem (Magnanti & Wong,
1981), it has been observed that a straightforward implementation
of the Benders algorithm often converged very slowly, requiring
the solution of a large number of Relaxed Master Problems. The
main issues associated with slow convergence of Benders algo-
rithms are (a) the solution of Relaxed Master Problems and Bend-
ers subproblems, and (b) the quality of the cuts produced in each
iteration. To overcome these issues, accelerating techniques have
been studied by a number of authors, among them: McDaniel
and Devine (1977), Magnanti and Wong (1981), Côté and Laughton
(1984), Papadakos (2008), Rei, Cordeau, Gendreau, and Soriano
(2008), Saharidis, Minoux, and Ierapetritou (2010), Sherali and
Lunday (2011) and Tang, Jiang, and Saharidis (2012). In a seminal
paper, Magnanti and Wong (1981) proposed generating more than
one cut in each iteration to accelerate the Benders algorithm, using
what they refer to as Pareto-optimal cuts. A cut is defined as Par-
eto-optimal if no other cut dominates it. The authors propose to
add, in each iteration of the algorithm, two types of cuts: the opti-
mality or feasibility cut produced by the classical Benders proce-
dure, and also the Pareto-optimal cuts. The results obtained by
their approach showed a significant improvement in the algorithm
convergence.

In the context of facility location problems, the Benders decom-
position algorithm has been successfully applied by many
researchers. Among them, Geoffrion and Graves (1974) employed
the Benders decomposition algorithm to solve the two-stage distri-
bution system design problem. Dogan and Goetschalckx (1999)
studied the integrated design problem of a multi-period produc-
tion–distribution system. Cordeau, Pasin, and Solomon (2006)
solved an integrated model for a logistics network design problem,
and Wentges (1996) used Pareto-optimal cuts and a procedure to
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strengthen Benders cuts to speed up the Benders decomposition
algorithm for a discrete capacitated facility location problem.

In this paper, we will use Benders decomposition algorithms to
solve a reverse supply chain design problem. We derive a series of
valid inequalities (VI) to add to the Benders Master problem to re-
strict its solution space. We enter these VIs into a classical Benders
decomposition algorithm to solve the problem. We also propose a
Pareto-optimal cut strategy to generate cuts and we test it in order
to accelerate the convergence and to evaluate the impact on the
quality of the bounds obtained. Regarding the Pareto-optimal
strategy, we propose to use a primal–dual Benders decomposition
algorithm to generate quasi Pareto-optimal cuts and to solve the
problem. The algorithms are compared in terms of speed of conver-
gence and quality of the bounds generated.

3.1. Decomposition scheme

Consider the special structure of our formulation that facilitates
a decomposition approach. Notice that the integer variables, w, and
the flows variables, x and y, are related decisions and that con-
straint (2) is a coupling constraint. We observe that by fixing the
number and location of facilities, i.e., for fixed w values, we get a
linear program that can be solved efficiently. Utilizing this struc-
ture, in our Benders decomposition based solution algorithm, the
Master problem includes the binary integer location decisions
and the subproblem determines the flows of return products from
the sourcing sites to reclamation facilities throughout reprocessing
facilities already opened.

To simplify, consider the following mixed integer linear pro-
gramming Principal Problem (PP), where the vector y contains a
number of facility location variables which are considered compli-
cated variables, while vector x contains a number of return flows
positive variables.

(PP)

Minimize cT
1xþ cT

2y ð8Þ
Subject to Axþ By 6 b ð9Þ

x P 0 ð10Þ
y 2 f0;1g ð11Þ

Applying Benders decomposition to this problem, the decision
variables are partitioned into two sets: x and y, and the principal
problem is decomposed into the Relaxed Master Problem (RMP)
and a series of Benders subproblems (BSP).

Fixing integer variables y ¼ €y in PP, the general form of the
Benders subproblem is as follows:

(BSP)

Minimize cT
1x ð12Þ

Subject to Ax 6 b� B€y ð13Þ
x P 0 ð14Þ

The dual problem of BSP (D-BSP) can be written as
(D-BSP)

Maximize ðb� B€yÞT u ð15Þ
Subject to AT u 6 cT

1 ð16Þ
u 6 0 ð17Þ

And the general form of the Master Problem (MP) is as follows:
(MP)

Minimize cT
1xþ z ð18Þ

Subject to ðb� B€yÞTðupÞ 6 z ð19Þ
ðb� B€yÞTðuqÞ 6 0 ð20Þ
y 2 f0;1g ð21Þ
where up and uq are vectors of extreme points and extreme rays,
respectively, of the polyhedron formed by constraints (16) and
(17), and z is an auxiliary continuous variable. The main drawback
of MP is that the dimension of vectors up and uq is usually extremely
large. To overcome this limitation, the Benders algorithm proposes
to generate constraints (19) and (20) iteratively, as we will explain
later in this paper.

Following the Benders decomposition scheme described above,
for our RSCP problem, we obtain the following problems:

3.2. Subproblem

By fixing binary (facility location) variables wk ¼ €wk, the primal
Benders subproblem (PBS) in our RSCP problem is as follows:

(PBS)

Minimize
X
i2I

X
k2K

ðcik þ gkÞxik þ
X
k2K

X
j2J

dkjykj ð22Þ

Subject to
X
i2I

xik 6 mk €wk 8k 2 K ð23Þ
X
k2K

xik 6 ai 8i 2 I ð24Þ
X
k2K

ykj P bj 8j 2 J ð25Þ
X
i2I

xik P
X
j2J

ykj 8k 2 K ð26Þ

xik; ykj P 0; 8i 2 I;8j 2 J;8k 2 K ð27Þ

Notice that, without loss of generality, constraint (26) replaces
constraint (5), considering that,X
i2I

ai P
X
j2J

bj ð28Þ

Defining dual variables uk associated with constraint (23), si associ-
ated with constraint (24), associated with constraint (25), and qk

associated with constraint (26), we can write the dual of the PBS
problem (DBS) as follows:

(DBS)

Maximize
X
j2J

bjrj �
X
k2K

mk €wkuk þ
X
i2I

aisi

 !
ð29Þ

Subject to qk � si � uk P 0; 8i 2 I;8k 2 K ð30Þ
qk � rj P 0; 8j 2 J;8k 2 K ð31Þ
qk; rj; si;uk P 0; 8i 2 I;8j 2 J;8k 2 K ð32Þ

By duality theory, if the PBS problem is infeasible for the fixed val-
ues €wk, then the DBS problem has a bounded solution which is an
extreme point of the polyhedron X constituted by (30)–(32), and
thus an optimality Benders cut is deduced, taking the form in
(33). If the PBS problem is infeasible, the DBS problem has an un-
bounded solution, an extreme ray of the polyhedron can be identi-
fied, and a feasibility Benders cut will be generated taking the form
in (34).

Let PX and QX be the sets of all the extreme points and extreme
rays of polyhedron X, respectively; z an auxiliary variable, then the
optimality and feasibility Benders cuts are as follows:

z P
X
j2J

bjr
p
j �

X
k2K

mk €wkup
k þ

X
i2I

ais
p
i

 !
ð33Þ

and

0 P
X
j2J

bjr
Q
j �

X
k2K

mk €wkuQ
k þ

X
i2I

ais
Q
i

 !
ð34Þ

where rp
j ; s

p
i andup

kPX and rQ
j ; s

Q
i and uQ

k QX.



Fig. 2. Pseudo-code for a classical Benders decomposition algorithm.
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3.3. Relaxed Master Problem

Based on the cuts of type (33) and (34) described above, the Re-
laxed Master Problem (RMP) in our RSCP can be written as follows:

(RMP)

Minimize
X
k2K

fkwk þ z ð35Þ

Subject to

z P
X
j2J

bjr
p
j �

X
k2K

mk €wkup
k þ

X
i2I

ais
p
i

 !
ð36Þ

0 P
X
j2J

bjr
Q
j �

X
k2K

mk €wkuQ
k þ

X
i2I

ais
Q
i

 !
ð37Þ

wk 2 f0; 1g 8k 2 K ð38Þ

The optimality Benders cuts (36) can strengthen the lower
bound obtained from the RMP problem while the feasibility Bend-
ers cuts (37) make the lower bound valid for the RSCP primary
problem.

3.4. Benders decomposition algorithm

In Fig. 2 we show the pseudo-code of a classical Benders decom-
position algorithm. We use this scheme jointly with the valid
inequalities described in the next section.

4. Strategies for accelerating Benders decomposition algorithm

4.1. Valid inequalities

We derive a series of valid inequalities to strengthen the Master
problem and to improve the lower bound provided by the Benders
decomposition algorithm. As described earlier in this paper, one of
the reasons for slow convergence of the Benders decomposition
algorithm is that the lower bound provided by the RMP problem
could be relatively weak.

According to the structure of our problem, we developed the
following valid inequality (VI) to narrow the solution space of
the RMP:

(1) Forcing to open at less than one facility – wcon
Tragantalerngsak, Holt, and Rönnqvist (2000) proposed to im-
prove the relaxation of a related capacitated location problem by
introducing a constraint of the following type:X
k2K

wk P 1 ð39Þ

Constraint (39) forces the selection of at least one facility to be open.
(2) Feasibility – facilities servicing the demand – wcon1

X
k2K

mk €wk P
X
j2J

bj ð40Þ

Constraint (40) ensures that opened reprocessing facilities have en-
ough capacity to service all the demand for returned products at
reclamation facilities.

4.2. Generation of Pareto-optimal cuts

The BSP problem has a network structure; hence, it typically has
multiple dual solutions as an alternative for the optimality cut
computed by (36). We would like to generate a cut that dominates
others’ cuts in the vicinity of the optimal solution. According to
Magnanti and Wong (1981), a Pareto-optimal cut can be obtained
by solving the following problem:

(PO-BSP)

Maximize ðb� ByþÞT u ð41Þ
Subject to AT u 6 cT

1 ð42Þ
ðb� B€yÞT u 6 ðb� B€yÞT u� ð43Þ
u 6 0 ð44Þ

where ðb� B€yÞT u� is the optimal objective value of the dual sub-
problem (D-BSP) and y+ is a core point of the solution space of the
Relaxed Master problem (RMP).

For our problem, we use the following two facts for deriving
Pareto-optimal cuts:

� any extreme point or any extreme ray of the dual subproblem
gives a valid Benders cut (Benders, 1962);
� it is not necessary to use a core point of the solution space of the

Master problem to produce a Pareto cut (Papadakos, 2008).

Then, the following auxiliary problem can produce Pareto-opti-
mal cuts:

(APO)

Maximize ðb� By�ÞT u ð45Þ
Subject to AT u 6 cT

1 ð46Þ
ðb� B€yÞT 6 cT

1x� ð47Þ
u 6 0 ð48Þ

where cT
1x� is the optimal objective value of the primal subproblem

(BSP) and y- is the linear relaxation solution of the Master problem.
Fig. 3 depicts the pseudo-code of a classical Benders decompo-

sition algorithm considering the procedure for generating
Pareto-optimal cuts (Cordeau et al., 2006; Magnanti & Wong,
1981; Papadakos, 2008). Observe that it includes the auxiliary
problem solution for obtaining the Pareto-optimal cuts, after
solving the DSP problem. That is because it used the optimal solu-
tion of the DSP for generating the optimality cut to be included in
the Master problem. As explained before, the core point is obtained
by getting the LP solution of the Master problem.

5. Computational experiments

In this section we describe computational experiments using
the proposed Benders decomposition methods for solving



Fig. 3. Pseudo-code for a classical Benders decomposition algorithm with Pareto-optimal cuts.

Fig. 4. Upper and lower bounds provided by the different Benders algorithms for
problem instance 9.
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large-scale reverse supply chain design problems. We first describe
the characteristics of the test problems and some implementation
details, and then we demonstrate the computational efficiencies
achieved by each of the Benders decomposition methods in terms
of computing times, quality of the lower and upper bounds, and
the number of Benders cycles.

To evaluate the impact of employing the different proposed va-
lid inequalities (VI), we solve each instance with our Benders algo-
rithm, given in Fig. 1, both with and without the proposed VI. The
effects of the different types of cuts on the performance of the
Benders decomposition algorithm are compared and the computa-
tional results are reported. The Benders decomposition algorithms
are coded in GAMS and tested on the computer with CPU of
2.3 GHz and 4.0 GB RAM. Whenever Benders decomposition algo-
rithms are needed to solve the Master problem and Benders sub-
problems, CPLEX (version 12.3) with default settings is used as
an optimization solver.

The Benders decomposition algorithms stopped when one of
the following criteria was reached:

(i) the optimality gap (100 � (zub–zlb)/zlb) was below a threshold
value e = 0.009;

(ii) the maximum number of iterations (Benders cycles) was hit:
we set it to 50.

For the alternative types of VI and Pareto-optimal cuts, the pro-
gression of zub and zlb values over the iterations is depicted in Fig. 4.
For space limitation, we plot the results for a problem instance of
600 � 100 � 40. We can observe that the use of proposed VI of type
wcon1 is effective in speeding up convergence and that the quality
of both the upper and lower bounds is affected. We also observe
the same effects when using the Pareto optimal cuts. Note that,
in the case of the Pareto-optimal cuts, we developed an alternative
Benders decomposition algorithm based on the solution of a primal
subproblem. Fig. 4 represents what we observe in our numerical
studies with other instances: a similar high performance in conver-
gence with cuts and, in particular, with a VI of type wcon1. We ob-
serve that alternative Benders decomposition algorithms with
Pareto optimal cuts converge very quickly to the best lower bound.
5.1. Data generation

We randomly generated a set of 10 instances ranging from net-
works of 350 sourcing facilities, 100 candidate sites for locating
reprocessing facilities, and 40 reclamation facilities
(350 � 100 � 40) up to 700 � 100 � 40. The size of an instance var-
ies according to the number of sourcing facilities (|I|), the number
of candidate sites for locating reprocessing facilities (|K|), and the
number of reclamation facilities (|J|). The data set for the test prob-
lems is given in Table 1. All the transportation costs were gener-
ated randomly using a uniform distribution with parameters
[1,40]. Management costs (gk) were set to 30 for all problem in-
stances. Fixed costs (fk) for problem instances 6–10 were obtained,
multiplying by 10 the fixed costs of the corresponding reprocessing
facilities of problem instances 1–5. Sourcing units (ai), the capacity
of reprocessing facilities (mk), and the capacity of reclamation facil-
ities (bj) are shown in Table 1.

To illustrate the size differences between the problem instances
of the RSCP model, for problem instances 1–5, Table 2 shows the
number of continuous and binary variables as well as the number
of constraints.

5.2. Results analysis

In Table 3, the lower and upper bounds, gap (%), and number of
Benders cycles are presented for Benders algorithms without any
additional VI and with VI of type wcon. These VI do not produce
any significant impact, neither on the gap nor in the number of
Benders cycles. To illustrate, for problem instance 3, gaps and



Table 1
Data set.

# Instance problems |I| |K| |J| fk ai mk bj

1 350 � 100 � 40 350 100 40 2000 200 800 1750
2 400 � 100 � 40 400 100 40 2000 200 1500 2000
3 500 � 100 � 40 500 100 40 2000 200 1500 2500
4 600 � 100 � 40 600 100 40 2500 300 3000 2500
5 700 � 100 � 40 700 100 40 3000 300 3000 2500
6 350 � 100 � 40 350 100 40 20,000 200 800 1750
7 400 � 100 � 40 400 100 40 20,000 200 1500 2000
8 500 � 100 � 40 500 100 40 20,000 200 1500 2500
9 600 � 100 � 40 600 100 40 25,000 300 3000 2500

10 700 � 100 � 40 700 100 40 30,000 300 3000 2500

Table 2
Size formulation for problem instances 1–5.

Instance Continuous variables Binary variables Number of constraints

1 39,000 100 590
2 44,000 100 640
3 54,000 100 740
4 64,000 100 840
5 74,000 100 940
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Benders cycles are 0.869% and 9 respectively for both algorithms.
When the algorithm hits the maximum number of Benders cycles
(50), gaps provided by the Benders algorithms with cuts wcon is
slightly lesser than those provided without any VI, except for prob-
lem instance 9. This is a consequence of an upper bound slightly
worse than that achieved by the Benders decomposition algorithm
with VI of type wcon. To illustrate, for problem instance 4, the
upper bounds are 3,357,200 and 3,354,300 for the Benders algo-
rithm without any VI and with VI of type wcon, respectively. For
Table 3
Lower bound (zlb), upper bound (zub), gap and number of Benders cycles.

Instances Benders algorithm without any VI

zlb zub Gap (%) Benders cycl

1 2457900 2466000 0.330 5
2 2715200 2737200 0.810 22
3 3371300 3400600 0.869 9
4 3312700 3357200 1.343 50
5 3314000 3344500 0.920 50
6 4041900 4048550 0.165 6
7 3687200 3720100 0.892 9
8 4577300 4609900 0.712 7
9 4077700 4120200 1.042 50

10 4232000 4269000 0.874 9

Table 4
Lower bound (zlb), upper bound (zub), gap and number of Benders cycles.

Instances Benders algorithm – VI wcon1

zlb zub Gap (%) Benders cycl

1 2457900 2465050 0.291 2
2 2715200 2738000 0.840 24
3 3371300 3397800 0.786 10
4 3312700 3355400 1.289 50
5 3314000 3346500 0.981 21
6 4041900 4048500 0.163 2
7 3687200 3716600 0.797 4
8 4577300 4598700 0.468 5
9 4077700 4115300 0.922 50

10 4232000 4267000 0.827 7
problem instance 5, gaps provided by both algorithms are the
same. Regarding lower bounds, both algorithms present the same
values.

In Table 4, the lower and upper bounds, gap (%) and number of
Benders cycles are presented for Benders algorithm with VI of type
wcon1 and for the alternative Benders algorithm with Pareto opti-
mal cuts. The Benders algorithm with VI of type wcon1 presents
good results compared with the alternative Bender algorithm with
Pareto optimal cuts. In some problem instances – for example, 2, 4,
and 8 – gaps achieved by Benders algorithm with VI of type wcon1
are better than those provided by the alternative Benders algo-
rithm. However, gaps are very similar between the two algorithms.
Notice that for those instances, the alternative Benders algorithm
has a smaller number of Benders cycles except for problem in-
stance 4, where both algorithms have the same number. For prob-
lem instances 1, 3, 5, 7, and 9–10, gaps provided by the alternative
Benders algorithm are the best. In particular for problem instance
9, a network of 600 � 100 � 40, the alternative Benders algorithm
required 13 Benders cycles to achieve a gap of 0.866%, while the
Benders algorithm with VI of type wcon1 required 50 Benders cy-
cles – and hit the limit – to get a gap of 0.922%. However, in Table 8,
we can observe that the smaller number of Benders cycles of the
alternative Benders algorithm did not mean smaller computing
times. On the contrary, the alternative Benders algorithm has the
biggest computing times as a consequence of the time spending
in solving the auxiliary problem to generate the Pareto optimal
cuts. As observed by other authors, in our problem, the time spent
to generate the optimal cuts at each iteration does not necessarily
compensate with a reduction in the number of iterations and the
total resolution time of the problem (Mercier & Soumis, 2007).

Table 5 presents a summary of gaps and Benders cycles for the
different Benders algorithms. To illustrate, for problem instance 9,
gaps are 1.042%, 0.922%, 1.084% and 0.866% for the Benders
algorithm without any VI, with VI of type wcon1, wcon and the
Benders algorithm with VI wcon

es zlb zub Gap (%) Benders cycles

2457900 2466000 0.330 5
2715200 2737200 0.810 22
3371300 3400600 0.869 9
3312700 3354300 1.256 50
3314000 3344500 0.920 50
4041900 4048550 0.165 4
3687200 3720100 0.892 7
4577300 4609900 0.712 5
4077600 4121800 1.084 50
4232000 4269000 0.874 8

Benders algorithm with Pareto optimal cuts

es zlb zub Gap (%) Benders cycles

2457900 2464300 0.260 2
2715200 2738600 0.862 22
3371300 3395700 0.724 12
3312700 3369000 1.700 50
3314000 3342000 0.845 22
4041900 4048500 0.163 2
3687200 3715400 0.765 4
4577300 4618300 0.896 4
4077700 4113000 0.866 13
4232000 4258500 0.626 5



Table 5
Summary gap and number of Benders cycles – different Benders decomposition algorithms.

Instances Without any VI VI wcon1 VI wcon Pareto-optimal cuts

Gap (%) Benders cycles Gap (%) Benders cycles Gap (%) Benders cycles Gap (%) Benders cycles

1 0.330 5 0.291 2 0.330 5 0.260 2
2 0.810 22 0.840 24 0.810 22 0.862 22
3 0.869 9 0.786 10 0.869 9 0.724 12
4 1.343 50 1.289 50 1.256 50 1.700 50
5 0.920 50 0.981 21 0.920 50 0.845 22
6 0.165 6 0.163 2 0.165 4 0.163 2
7 0.892 9 0.797 4 0.892 7 0.765 4
8 0.712 7 0.468 5 0.712 5 0.896 4
9 1.042 50 0.922 50 1.084 50 0.866 13

10 0.874 9 0.827 7 0.874 8 0.626 5

Ave 0.796 21.7 0.736 17.5 0.791 21 0.771 14.9
Max 1.343 50 1.289 50 1.256 50 1.700 50
Min 0.165 5 0.163 2 0.165 4 0.163 2

Table 6
Summary of initial and last lower bound – different Benders decomposition algorithms.

# Without any VI VI wcon1 VI wcon Pareto-optimal cuts

Initial Last Initial Last Initial Last Initial Last

1 2355500 2457900 2457900 2457900 2355500 2457900 2457900 2457900
2 2630200 2715200 2715200 2715200 2630200 2715200 2715200 2715200
3 3269800 3371300 3371300 3371300 3269800 3371300 3371300 3371300
4 3227000 3312700 3312700 3312700 3230200 3312700 3312700 3312700
5 3215000 3314000 3314000 3314000 3215000 3314000 3314000 3314000
6 2356300 4041900 4041900 4041900 2373900 4041900 4041900 4041900
7 2631200 3687200 3687200 3687200 2648200 3687200 3687200 3687200
8 3271800 4577300 4577300 4577300 3288800 4577300 4577300 4577300
9 3227700 4077700 4077700 4077700 3252600 4077600 4077700 4077700

10 3215000 4232000 4232000 4232000 3242000 4232000 4232000 4232000

Table 7
Relative difference between the initial and the last lower bound provided by Benders
algorithms.

Instances Without any VI
relative difference (%)

VI wcon relative
difference (%)

1 4.35 4.35
2 3.23 3.23
3 3.10 3.10
4 2.63 2.55
5 3.08 3.08
6 71.54 70.26
7 40.13 39.23
8 39.90 39.18
9 26.33 25.36

10 31.63 30.54

Table 8
Computational times (s) for the Benders algorithms.

Instances Without any VI
time (s)

VI wcon1
time (s)

VI wcon
time (s)

Pareto-optimal
cuts time (s)

1 4.219 1.708 4.156 3.056
2 13.853 14.543 14.096 30.458
3 7.715 8.580 7.739 21.422
4 35.480 30.628 31.646 91.731
5 34.643 34.361 34.552 44.324
6 4.797 1.896 3.244 3.167
7 6.739 3.144 5.110 5.802
8 6.901 4.390 4.851 7.462
9 34.345 30.869 32.033 31.070

10 8.354 5.706 7.276 10.433
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alternative Benders algorithm with Pareto optimal cuts, respec-
tively. For the same instance, the number of Benders cycles is 13
for the alternative Benders algorithm and 50 for all other algo-
rithms. For problem instances 2, 4 and 8, the alternative Benders
algorithm gap is worse than that obtained for the others’ algo-
rithms. In all other cases, alternative Benders algorithms perform
better in term of gaps and Benders cycles, except for the problem
instances mentioned above. The minimum average number of
Benders cycles is obtained by the alternative Benders decomposi-
tion algorithm with Pareto optimal cuts, while the minimum aver-
age gap is obtained by the Benders algorithm with VI of type
wcon1.

Table 6 presents the initial (iLB) and the last lower bounds (zlb)
obtained by each Benders algorithm. Notice that the Benders algo-
rithm with VI of type wcon1 and the alternative Benders algorithm
obtain the best lower bound in the first iteration (Benders cycle) of
the algorithm. Comparing the other two Benders algorithms, we
observe that there is not a significant difference between the lower
bounds provided by them. Table 7 shows the relative difference in
percentage between the initial lower bound (iLB) and the last low-
er bound (100 � [iLB � zlb]/iLB) provided by the Benders algorithm
(without any VI) and the Benders algorithm with VI of type wcon.
This percentage represents an improvement percentage of the low-
er bound over the initial lower bound. Note that the maximum rel-
ative difference is 71.5% and 70.3% for the Benders algorithm and
the Benders algorithm with VI of type wcon, respectively.

Table 8 reports the computational times (in seconds) required
for the different Benders algorithms to obtain an integer solution
within 0.9% of optimality. We observe that, in general, computa-
tional times are mostly well below 91 s. The Benders decomposi-
tion algorithm based on Pareto-optimal cuts presents the highest
computational time. This is true for problem instances 2, 3, 4, 5,
8 and 10. We note that the Benders decomposition algorithm using
wcon1 cuts in general performs well in terms of computational
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times. This algorithm presents the smallest computational time for
problem instances 1, 4, 5, 6, 7, 8, 9 and 10. For problem instances 2
and 3, the Benders decomposition algorithm using wcon1 cuts pre-
sents the worst computational time. For our problem, considering
the quality of the lower and upper bounds obtained by the Benders
decomposition algorithm using wcon1 cuts and the computational
time it spent in obtaining these bounds, the relative performance
of this algorithm is good. Furthermore, as it was observed for other
problems (Saharidis, Boile, & Theofanis, 2011; Tang et al., 2012), a
strong valid inequality, like the wcon1, can help to accelerate the
convergence of the Benders algorithm by providing an improved
lower bound (the best lower bound in seven out of ten, excluding
Benders algorithm with Pareto-optimal cuts) and that can also
eventually compensate the increase in the total resolution time
produced by the poor quality of the optimality cuts generated by
the Benders subproblem (without using Pareto-optimal cuts).
6. Conclusions

In this paper, we analyzed a reverse and sustainable supply
chain network design problem. This is a NP-hard combinatorial
problem and it addresses the design of a supply network that con-
sists of three types of members: sourcing facilities (sources), repro-
cessing facilities, and reclamation facilities. We need to locate
reprocessing facilities in order to minimize the flow cost from
the origination sites to the reclamation facilities through repro-
cessing facilities. We proposed Benders decomposition algorithms
for solving the problem. In order to accelerate the convergence of
the algorithm and to improve the quality of the lower bounds,
we proposed two sets of valid inequalities. One of them proved
to have a significant impact on the quality of the lower bound.
As a second strategy to accelerate convergence of the algorithm,
we derived quasi Pareto-optimal cuts and proposed a primal based
Benders decomposition algorithm for solving the problem. Both
algorithms were compared and, in some problem instances, in
terms of the quality of lower and upper bounds, computational re-
sults provided better performance for the primal based Benders
decomposition algorithm with Pareto-optimal cuts. But in terms
of total resolution time, this algorithm presents the highest values.
As observed by other authors (for example, Mercier and Soumis,
2007; Sherali and Lunday, 2011), the time required to generate
Pareto-optimal cuts does not necessarily offset the total resolution
time. On the other hand, introducing a wcon1 valid inequality into
the Master problem from the first iteration proved to be an effec-
tive way to accelerate convergence; in addition, the first lower
bound obtained by solving the Relaxed Master Problem was signif-
icantly improved. This algorithm presents the smallest computa-
tional time in eight out of ten problem instances. The final gap
provided by this algorithm does not present a significance differ-
ence (less than 0.2%) when compared with the best gap provided
by the Benders algorithm with Pareto-optimal cuts. We can con-
clude that, for this problem, a Benders algorithm with a strong va-
lid inequality presents a good performance in terms of gap and
total resolution time.
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