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Underground constructions, such as shafts, courtain walls, foundations, pipes and tunnels, use structural
elements that are supported by a geological medium (soil or rock) or are used to support the geological
medium loads. If the geological medium is unable to react under tension, the structural element is sub-
jected to unilateral contact constraints and, during the deformation process, may loose contact with the
surrounding medium at one or more regions. The present work proposes an alternative numerical meth-
odology for the geometrically nonlinear analysis of structural systems under unilateral contact con-
straints. The nonlinear problem involves two different types of variables: the displacement field and
the length and position of the contact regions. In order to solve the resulting algebraic nonlinear equa-
tions with contact constraints and obtain the structural equilibrium configuration, the present work pro-
poses a two-level iteration solution strategy at each load step. The first solves the contact problem as a
linear complementary problem using Lemke’s algorithm. The second updates the displacement field. A
nonlinear beam-column element is used to model the structure, while a bed of springs is used to model
the geological medium. The use of an updated Lagrangian formulation, together with continuation and
optimization techniques minimize the errors along the equilibrium paths and enables one to trace con-
voluted non-linear equilibrium paths with a varying number of contact regions. Special attention is given
to the behavior of curved unidimensional support systems such as arches and rings. The nonlinear behav-
ior of four such support systems is studied. The results clarify the influence of the foundation position
(above or below the structure) and its stiffness on the nonlinear behavior and stability of curved struc-
tures. Comparison of the present results with those found in literature demonstrates the accuracy and
versatility of the proposed numerical strategy in the analysis of structural elements with unilateral con-
tact constraints.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, there has been a growing interest in under-
ground constructions, especially in big cities, where there is a
ground space shortage. Structural elements in these constructions
are supported by a geological medium or are used to support the
geological medium loads (as in the case of walls and roofs). In
many situations, the geological medium is unable to react under
tension, and the structure during the deformation process may
loose contact with the surrounding medium. Foundation struc-
tures, arches, rings and circular or parabolic tunnel roofs are exam-
ples of support systems found in civil engineering where unilateral
ll rights reserved.
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contact may occur. In addition, unilateral contact may occur in
several situations involving pipelines and tubular liners. The uni-
lateral contact may lead to important differences in foundation
reactions and internal stresses in the structure, causing concentra-
tions of high stresses in the contact region, which are overlooked
when traditional bilateral contact foundation models are used in
the design. In this type of problem, the location and size of the con-
tact regions are not known a priori and constitute the main un-
knowns of the structural analysis.

Unilateral contact problems have been actively researched since
the 1970’s (Weitsman, 1970; Stein and Wriggers, 1984; Simo et al.,
1986; Nour-Omid and Wriggers, 1986; Joo and Kwak, 1986;
Belytschko and Neal, 1991; Kodikara and Moore, 1992; Wriggers
and Imhof, 1993; Adan et al., 1994). In most of these works, the
contact problems are reformulated in approximation spaces using
numerical techniques, such as finite element method (FEM). They
generally adopt one of following methodologies to treat the
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contact constraints: (i) transforming the contact problem into a
minimization problem without constraint. This is done by using
the usual formulations of structural mechanics, where an iterative
solution procedure must be used and the convergence is not al-
ways guaranteed; (ii) using mathematical optimization techniques,
where the contact problem solution can be achieved with or with-
out explicit elimination of unilateral constraints. Some of the opti-
mization’s techniques used for the contact problem are linear and
quadratic programming, recursive quadratic programming or,
alternatively, methods for the solution of linear complementary
problems (LCP) such as the Dantzig’s or Lemke’s algorithms (Cottle
and Dantzig, 1968; Lemke, 1968).

In the last few years, several papers have been published deal-
ing mainly with the behavior of beams and plates resting on a ten-
sionless foundation. For example, geotechnical applications where
the soil-structure interaction is highlighted can be found in Mezaini
(2006), Küçükarslan and Banerjee (2005), Maheshwari et al. (2004)
and Silva et al. (2001). Recently, many papers were published con-
cerning the nonlinear dynamic response of beams and thin and
moderately thick plates resting on a Winkler or Pasternak-type
tensionless foundation (Celep et al., 2011; Cos�kun et al., 2011;
Cos�kun, 2010; Hsu, 2009; Yu et al., 2006; Güler and Celep, 2005;
Celep and Güler, 2004). Numerical approximations involving the
buckling and post-buckling behavior of beams and plates under
unilateral contact constraints imposed by elastic foundation ap-
pear in several papers (Tzaros and Mistakidis, 2011; Sapountzakis
and Kampitsis, 2010; Silveira et al., 2008; Muradova and Stavroulakis,
2006; Shen and Li, 2004; Shen and Yu, 2004; Shen and Teng, 2004;
Holanda and Gonçalves, 2003; Silveira and Gonçalves, 2001). Wang
et al. (2005) provide a state of the art review for beams and plates
on elastic foundation, including soil modeling as well as analytical
and numerical possibilities for solving this class of contact
problem.

However, little is known on the behavior of curved structural
elements such as arches and rings under unilateral contact con-
straints. The specific problem of a thin, circular ring under uni-
formly distributed load and radially constrained by a rigid
foundation was studied by Silveira and Gonçalves (2001), Kodikara
and Moore (1992), Simo et al. (1986), Kyriakides and Youn (1984),
Pian and Bucciarelli (1967) and Pian et al. (1967). Buckling resis-
tance of a ring encased in circular rigid cavity under uniform exter-
nal load was also studied by Li and Guice (1995) and Guice and Li
(1994). Based on the finite element method, Lu et al. (1999) calcu-
lated the critical buckling loads for externally constrained non-cir-
cular rings and for infinitely long circular pipes. Later, these
authors also considered a finite length shell under unilateral con-
tact constraint (Lu et al., 2005). Omara et al. (1997) conducted an
analytical investigation as well as experimental work to predict
the buckling pressure of a thin pipe encased in a rigid oval med-
ium. More recently, Shen (2009) and Shen et al. (2010) studied
the postbuckling behavior of functionally graded cylindrical shells
resting on elastic foundation under internal pressure.

Contrary to perfect plates and beams, where the the position of
the foundation (above or below the structural element) does not
influence the results, the present work shows that, when a curved
element is analyzed and a deformable foundation is considered,
the position of the foundation leads to completely different results,
influencing not only the nonlinear equilibrium path but also the
stability of the structure. To the knowledge of the authors, no pa-
per has yet been published on support systems like arch-soil foun-
dation where the arch’s deflection is prevented from the start by
unilateral contact constraints. Sun and Natori (1996), for example,
studied an arch in which the unilateral constraints are reached for
the first time only during the arch’s post-buckling regime. The
strength and the stiffness of steel arch tunnel supports used in coal
mines were analysed numerical and experimentally in Mitri and
Hassani (1990) and Khan et al. (1996), but the unilateral con-
straints were not considered in the analysis. This is a deficiency
in the technical literature, since in many underground construc-
tions; arches and rings have been widely used due to their optimal
behavior under pressure loads. In structural engineering, it is well
known that arches and rings can support and transmit loads
mainly through membrane action. This, coupled with more refined
design methodologies, leads to slender but safer structures.

So, the main objective of the paper is to study the influence of
the geological medium position (above or below the structural ele-
ment), here considered as a tensionless elastic medium, and its
stiffness on the nonlinear equilibrium path and buckling behavior
of some archetypal curved elements, such as arches and rings, and
to propose a numerical methodology for the geometrically nonlin-
ear analysis of structural elements with unilateral contact con-
straints. A geometrically nonlinear beam-column element is used
to model the slender structure while a bed of spring that exhibits
a sign-dependent force-displacement relationship is used to model
the geological medium (Silveira, 1995).

An updated Lagrangian formulation is adopted to follow the
system’s moviment and the influence of friction in the contact area
is ignored. The nonlinear problem involves two different types of
variables: the displacement field and the length and position of
the contact regions. In order to solve the resulting algebraic nonlin-
ear equations with contact constraints and obtain the structural
equilibrium configuration, at each load step, the present work pro-
poses a two-level iteration solution strategy. First, in order to ob-
tain the contact areas between the bodies, the contact
equilibrium problem is linearized and treated directly as an opti-
mization problem subject to inequality constraints. The resulting
linear complementary problem (LCP) is then solved by Lemke’s
algorithm (Lemke, 1968). At the second iteration level, Newton’s
iteration coupled with path-following techniques is employed to
obtain the new contact forces and the nonlinear equilibrium con-
figuration (Crisfield, 1991, 1997; Chan, 1988). At this point, the
nonlinear equilibrium and constraint equations are checked. If they
are satisfied, the optimum solution is obtained; otherwise, the pro-
cedure is repeated and improved contact regions and displace-
ments are identified.

In order to verify the proposed numerical solution strategy, four
examples are presented. The first one shows the local one-way
buckling of confined rings under static distributed loading
(Pian and Bucciarelli, 1967; Kyriakides and Youn, 1984; Stein and
Wriggers, 1984; Li and Kyriakides, 1991; Kodikara and Moore,
1992; Silveira and Gonçalves, 2001). The following two examples
analyze the nonlinear behavior of an arch above and below an elas-
tic foundation (Silveira et al., 2008). The last numerical example
studies an arch contact problem in which the unilateral constraints
are introduced for the first time only during the arch’s post-buckling
regime (Sun and Natori, 1996). These results demonstrate the
accuracy and versatility of the present numerical strategy in the
nonlinear solution of structural elements with unilateral constraints.
2. The structural contact problem

Consider the support system shown in Fig. 1. It consists of an
arch and an elastic tensionless foundation. Assume that both
bodies may undergo large deflections and rotations but with only
small strains that are within the elastic range of the material. As-
sume also that the contact surface is unbonded and frictionless
and the region Sc (Fig. 1c) corresponds to the region where contact
is likely to occur, which is not known a priori. Consider now that
the variables are known for the equilibrium configurations 0, Dt,
2Dt, . . . t, and that the solution for the adjacent configuration
t + Dt is required.
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Fig. 1. Arch under unilateral contact constraints imposed by an elastic foundation.
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Particularly well suited for numerical analysis, the nonlinear
contact problem can be solved through the following minimization
problem (Joo and Kwak, 1986; Silveira, 1995):

Min PðDu;DubÞ ð1Þ

Subject to : �u 6 0; on Sc ð2Þ

with the functional P written as:

P ¼
Z

t V
ðtrþ 1

2
DSÞDedtV þ

Z
tþDt Sc

ðtrb þ
1
2

DrbÞDub dtþDtSc

�
Z

tþDt Sf

tþDtFiDui dtþDtSf ð3Þ

in which Du is the incremental displacements vector of the struc-
ture; Dub is the incremental displacements vector of the elastic
foundation; and Drb is the incremental compressive reaction vector
of the elastic foundation; tr is the Cauchy’s stress vector at refer-
ence configuration t; and DS is the 2nd Piola-Kirchhoff’s stress
increment vector. In addition, in Eq. (3), Deij is the increment of
the Green-Lagrange’s strain vector; and Fi is the external forces vec-
tor, specified on Sf and assumed independent of the bodies’
deformations.

The inequality (2) gives the contact condition – that is, the gap
in the potential contact area – after the increment of the displace-
ments, that must be satisfied on Sc in the configuration t + Dt. Fig. 2
shows the contact’s admissible domains as well as the contact law
considered here.

For a given load increment, the unknown variables in the con-
figuration t + Dt may be obtained by solving the above minimiza-
tion problem. The geometrically and contact nonlinear nature of
this analysis make the problem difficult to solve directly. The fol-
lowing sections demonstrate how these two kinds of nonlinearities
may be treated.
3. Geometrically nonlinear analysis

This section presents the numerical solution process of the geo-
metrically nonlinear problem. The first step is to discretize the
structural-geotechnical problem by using the finite element meth-
od (Fig. 1b). In this context, one can assume that, for a generic
structural element, the incremental displacement field Du within
the element is related to the incremental nodal displacements Dû
by:

Du ¼ HDû ð4Þ

where H is the usual FE interpolation functions matrix.
To evaluate the corresponding incremental strains and stresses,

one can write the Green-Lagrange increment tensor and the 2nd
Piola-Kirchhoff stress increment tensor using the following expres-
sions (Bathe, 1996):

De ¼ ðBL þ BNLÞDû ð5Þ
DS ¼ CDe ð6Þ

where BL is the same strain-displacement matrix as in the linear
infinitesimal strain analysis and it is obtained by appropriately dif-
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ferentiating and combining the rows of H; BNL depends on H and the
incremental displacements; and C is the constitutive matrix.

In many engineering applications, the designer is interested
only in the response of the foundation at the contact area and
not in the stresses and displacements whitin the foundation.
Therefore, it is possible to develop a simple mathematical model
to describe, with a reasonable degree of accuracy, the response of
the foundation at the contact zone. Using the well-known Winkler
model (Kerr, 1964) or the formulation of an elastic half-space
(Cheung, 1977), the following discrete equilibrium equation for a
generic element can be written to describe the elastic foundation’s
behavior:

Drb ¼ CbDub ð7Þ

where Drb and Dub are the incremental elastic foundation reaction
and displacement nodal values, respectively; and, Cb is the constitu-
tive matrix of the elastic foundation. Thus, for a generic elastic foun-
dation element, the incremental displacement field Dub may be
related to its nodal values as:

Dub ¼ BbDûb ð8Þ

where Bb is the matrix containing the interpolation functions that
describe the elastic base deformation.

Using now the previous definitions and assuming that in the
contact area the structure and elastic foundation nodal displace-
ments are identical (i.e., Dûb ¼ Dû) one arrives at the discretized
functional of the contact problem, Eq. (3), in the local form:

�P ¼ 1
2

DûT
Z

t �V
BT

L CBL dt �V Dûþ 1
2

DûT
Z

t �V
ðBT

L CBNL þ BT
NLCBL þ BT

NLCBNLÞdt �V Dû

þ DûT
Z

t �V
BT

L
tr dt �V þ DûT

Z
t �V

BT
NL

tr dt �V

þ 1
2

DûT
Z

tþDt�Sc

BT
bCbBb dtþDt�Sc Dûþ DûT

Z
tþDt �Sc

BT
b

trb dtþDt�Sc

� DûT
Z

0�Sf

HT tþDtF d0�Sf ð9Þ

Taking now the appropriate variations of �P with respect to the
incremental nodal displacements, and adding the contributions of
each finite element, one can write:

½KL þ Ks þ KNL þ Kb�DUþ tFis þ tFib ¼ tþDtR ð10aÞ

or, more concisely:

tþDtFi ¼ ½KL þ Ks þ KNL þ Kb�DUþ tFis þ tFib ð10bÞ

tþDtFiðDU;ScÞ ¼ tþDtR ð10cÞ

where DU contains the global nodal incremental displacements and
t+DtFi is the internal generalised forces vector of the support system
in the load step t + Dt. Eq. (10a) or Eq. (10c) is the equation that
must be satisfied in an incremental process to obtain the system
equilibrium.

In the left side of (10a), KL is the global stiffness matrix for small
displacement, given by:

KL ¼
X

m

Z
t �V

BT
L CBL dt �V ð11Þ

where m is the number of finite elements. The matrix Ks is the ini-
tial stress matrix or geometric matrix given by:

Ks ¼
X

m

Z
t �V

BT
NL

tr dt �V ð12Þ

The matrix KNL is the large displacement matrix, which contains
only linear and quadratic terms in the incremental displacement, i.e.:
KNL ¼
X

m

Z
t �V
ðBT

L CBNL þ BT
NLCBL þ BT

NLCBNLÞdt �V ð13Þ

and Kb is the stiffness matrix of the elastic foundation, which is
written as:

Kb ¼
X
mc

Z
tþDt�Sc

BT
bCbBb dtþDt�Sc ð14Þ

where mc is the number of elements in the contact region.
The vectors tFis and tFib represent, respectivaly, the internal

force vector of the structure and of the elastic foundation in the
equilibrium configuration t. They are typically computed by inte-
grating the generalized stress resultants through the volume of
each element and then summing the elemental contributions as
follows (Bathe, 1996):

tF is ¼
X

m

Z
t �V

BT
L

tr dt �V ð15aÞ

and

tF ib ¼
X
mc

Z
tþDt�Sc

BT
b

trb dtþDt�Sc ð15bÞ

where, again, one considers only the elements in the contact region.
In the right side of (10a), the vector t+DtR is the nodal external

load vector in the step t + Dt and is given by:

tþDtR ¼
X
ms

Z
0�Sf

HT tþDtF d0�Sf ð16Þ

which is assumed to be independent of the structure’s deformation.
In the incremental solution strategy, this vector can be more ade-
quately represented as:

tþDtR ¼ tþDtkRr ð17Þ

where Rr is a fixed load vector, termed reference vector defining the
load direction, and t+Dtk is a scalar load multiplier which define the
intensity of the applied load.

4. Unilateral contact analysis

The support systeḿs analysis taking into account the contact
constraint given by Eq. (2) is defined as a non-linear problem be-
cause the contact region between the bodies, Sc in Eq. (14) and
(15b), is unknown. Several techniques have been used in literature
to enforce the unilateral contact constraints. Here, the basic idea is
to maintain the unilateral constraints in the formulation, retaining
the original philosophy of the problem, by using a mathematical
programming approach.

The equilibrium configuration of a conservative system can be
obtained from its Lagrange function L as follows:

LðDu; Dub;lÞ ¼ UðDu; DubÞ þ VðDu; kÞ �
Z

Sc

ludSc ð18Þ

where U is the internal energy of system, V is the potential of exter-
nal loads and l is a Lagrange multiplier used here to take account of
the contact constraint, Eq. (2), in Eq. (1).

The Lagrange function L described above is modified by: (1) lin-
earizing the system considering CDeDe ffi CDeDe, where De is the
linear part of the Green-Lagrange strain increment tensor; (2)
using the non-discrete form of elastic foundation constitutive rela-
tion, Eq. (7); (3) eliminating Dub and u(=Du � Dub) from the anal-
ysis; and, (4) finally, by knowing that, physically, the Lagrange
multiplier l must be equal to Drb. These steps lead to the following
functional (Silveira, 1995; Ascione and Grimaldi, 1984):
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L ¼ 1
2

Z
t V

CDeDedtV þ 1
2

Z
t V

trDgdtV � 1
2

Z
Sc

DrT
bDbDrb dSc

þ
Z

Sc

DrbDu dSc �
Z

0Sf

DtFDud0Sf ð19Þ

with Db = (Cb)�1.
Thus, using finite elements to model the support system and

adding the contributions of each element, one arrives at the dis-
cretized Lagrange function of the problem in the global form:

�L ¼ 1
2

DUT K DU � 1
2

DRT
b T DRb þ DRT

b ADU � DUT DtR ð20Þ

where DRb is the incremental nodal reaction of the elastic founda-
tion vector and DtR is the incremental nodal load vector; K is the
linearized tangent stiffness (KL + Ks); A is the joining matrix be-
tween the structure and the elastic foundation, which is defined as:

A ¼
X
mc

Z
�Sc

HT
bH d�Sc ð21Þ
Fig. 3. Proposed numerical no
and T is the flexibility matrix of the elastic foundation, which may
be written as:

T ¼
X
mc

Z
�Sc

HT
bDbHb d�Sc ð22Þ

where mc is the number of elements of the contact region.
The first variation of �L leads to the following variational

inequality:

d�L ¼ dDUT ðK DU þ AT DRb � DtRÞ þ dDRT
b ðADU � T DRbÞ

6 0 ð23Þ

whose Kuhn-Tucher optimal conditions are related to the following
Linear Complementarity Problem (LCP) in terms of the structure
displacements and foundation reaction (Silveira, 1995):

KDðUÞ þ ATDRb � DtR ð24Þ

ADU � TDRb 6 0; DRb P 0; ðADU � TDRbÞTDRb ¼ 0 ð25a;b; cÞ
nlinear solution strategy.
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where Eq. (24) is the support system equilibrium equations and Eqs.
(25a,b,c) are the constraints that characterise the unilateral contact
problem. The constraint (25a) represents the condition of impene-
trability between the bodies; (25b) is the positivity condition of
DRb; and (25c) is the complementarity relation between the gap
and DRb.

A dual and more practical and efficient LCP formulation can be
obtained if the stiffness matrix in Eq. (24) is positive definite. In
such a case, it is possible to establish the following relationship be-
tween DU and DRb:
Table 1
Comparison of critical load parameter, Kcr = pR3/EI.

Pian et al.
(1967)

Stein and Wriggers
(1984)

Kodikara and Moore
(1992)

Present
work

Kcr 81.5 79.9 81.7 81.5
DU ¼ K�1ðDtR� ATDRbÞ ð26Þ

Substituting this result in Eq. (20), one arrives at a variational
expression that is function of the nodal values of the base reaction
DRb only, that is:

�P1 ¼ �
1
2

DRT
bMDRb þ DRT

bq� s ð27Þ
Comparison of separation angle / for different load parameter K = pR /EI levels.

K / Pian et al. (1967) / (Present work)

34 (s) 32.9� 32.2�
57 (s) 30.1� 28.4�
81.5 (n) 24.6� 24.7�
62 (u) 23.9� 22.6�
28 (u) 27.2� 26.1�

Obs. s = stable configuration; n = neutral configuration; u = unstable configuration.
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Here M is a symmetric positive definite matrix, q is a vector and
s is a constant, which are defined as follow:

M ¼ AK�1AT þ T; q ¼ AK�1DtR; s ¼ ðDtRT K�1DtRÞ=2 ð28a;b; cÞ

Eq. (27), with the elastic foundation reaction constraint, charac-
terizes the following quadratic programming problem (QPP):

Max �P1ðDRbÞ ð29Þ

Subject to : DRb P 0; on Sc ð30Þ

Again, considering the Kuhn-Tucker conditions of this QPP, one
can derive a LCP similar to that described by Eqs. (24) and (25),
where now,

w ¼ qþMDRb ð31Þ

w P 0; DRb P 0; and wTDRb ¼ 0 ð32; a;bcÞ

and the vector w is the Lagrange multiplier introduced in the anal-
ysis to represent the impenetrability condition between the bodies.
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After the calculation of DRb, DU can be obtained from Eq. (26). The
solution of this LCP can be achieved through mathematical
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programming methods, in particular, pivoting techniques devel-
oped for complementary problems (Cottle and Dantzig, 1968; Lem-
ke, 1968).
5. Numerical solution procedure

This section presents the main characteristics of the numerical
solution strategy adopted for the minimization problem defined
by Eq. (1) and (2), considering the geometric nonlinearity and
the unilateral contact constraints.

In order to obtain nonlinear equilibrium paths, an incremental-
iterative solution strategy is adopted. It is assumed that perfect
convergence was achieved in the previous load steps 0, Dt,
2Dt, . . ., t, i.e., the solution of the previous steps satisfies the equi-
librium equations and all contact constraints. Therefore, consider-
ing the updated Lagrangian formulation, the known displacements,
stresses, and contact region (tSc) obtained at the conclusion of load
step t are used as information to obtain the adjacent equilibrium
configuration t + Dt. A cycle of the incremental-iterative strategy
can be summarized in three steps:

(1) As a starting point, an approximate solution, called a ‘‘tan-
gential incremental solution’’ is used. This approximate
solution involves the selection of the initial increment of
the load and an estimated contact region between the struc-
ture and the elastic foundation. An additional constraint
equation, like the ‘arch-length’ constraint equation
(Crisfield, 1991, 1997) may be used to calculate the initial
load increment and tSc is assumed to be the contact surface
between the bodies. These approximations are employed to
calculate the initial increment of the displacements. This
‘tangential incremental solution’ rarely satisfies both the
equilibrium equations and the contact constraints, so the
following two corrections are used;

(2) The first correction deals with only the non-linearity associ-
ated with the unilateral constraints and is used to correct the
dimension of the contact zone, which was assumed to be
equal to tSc at the previous step. By solving the unilateral
contact problem, described by Eq. (31) and constraint (32),
as a linear complementary problem (LCP), an improved solu-
tion tþDtSini

c for the contact regions is obtained;
(3) The second correction deals with the geometric nonlinearity

of the problem. Here the Newton-Raphson’s method is used



Fig. 11. Arch and elastic foundation deformations for k = 109 (K = PR2/EI; scale factor = 10).
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to solve the discretized equilibrium equations, correcting
the predictor solution. This solution is achieved by using
the improved contact solution obtained in the previous step,
tþDtSini

c , and by coupling path-following techniques (continu-
ation methods) and the Newton-Raphson method. The min-
imum residual displacement method developed by Chan
(1988) is used to allow limit points to be passed and, conse-
quently, to identify snap buckling phenomena. After the con-
verge of the Newton iterative procedure, a new contact
region tþDtSnew

c is obtained and compared with the previous
solution, tþDtSini

c . If the convergence criterion for the contact
zone is not satisfied, a new incremental solution is obtained
and the correction procedure is repeated until the conver-
gence criteria are satisfied.
The numerical solution procedure developed here, and sum-
marised above, is better detailed in Fig. 3.

6. Numerical examples

The nonlinear beam-column element developed by Alves
(1995), and later improved by Galvão (2000), is adopted to model
the structures analyzed in this section. The first three examples in-
volve structures subjected from the start to unilateral contact con-
straints; the last problem analyzes an arch where the inequality
constraints are only imposed in the arch’s post-buckling regime.
In the proposed numerical solution strategy, the convergence fac-
tors n = 10�3 and fc = 10�1 are adopted and consistent units are
used in all examples.
6.1. Circular ring in rigid confinement

The first example used to test the present numerical methodol-
ogy is illustrated in Fig. 4a. It consists of a radially constrained cir-
cular ring of rectangular cross-section under statically applied
distributed downward loading p. The surrounding medium is con-
sidered a tensionless rigid foundation, so that the ring can only de-
form inward. The geometrical and physical parameters used in the
analysis are also shown in Fig. 4a. Here the ring deforms locally in-
ward and is subjected to limit point instability when the length of
the contact region reaches a critical value. Due to symmetry, only a
half ring is discretized, as shown in Fig. 4b, and 50 nonlinear beam-
column elements are adopted. The rigid foundation is modeled by
discrete springs, also illustrated in Fig. 4b.
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Fig. 12. Circular arch under radial uniform pressure and contact constraints.

Fig. 13. Load-displacement curves of the circular arch under radial uniform
pressure and contact constraints.

Table 3
Comparison of critical load parameter Kcr (phR2/EI) and the central displacement
parameter wcr/h of shallow arch (snap-through behavior).

References Kcr wcr/h

Present work 2.2682 0.8514
Sun and Natori (1996) 2.2784 0.8702
Carnoy (1980) 2.2659 0.8605
Kerr and Soifer (1969) 2.2613 0.8508
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This problem was analyzed previously by Pian et al. (1967)
using a finite difference formulation and by Stein and Wriggers
(1984) who, using the finite element method, obtained the non-
linear equilibrium path up to the critical load. Kodikara and Moore
(1992) also studied the same ring using a FE model (48 curved
cubic isoparametric elements for a half ring) and a general nonlin-
ear iteration approach for the numerical treatment of solids with
rigid surfaces.

The results obtained by these researchers, showing the varia-
tion of the non-dimensional load parameter K = pR3/EI with the
deflection of the point lying on the vertical axis of symmetry v di-
vided by R, are compared with the results of the present numerical
formulation in Fig. 5a and b. Their values for the critical load
parameter are better compared with the present result in Table 1.
Notice that after reaching the upper limit point, the ring under
increasing load jumps to a remote attractor associated with large
displacements and rotations (snap-through buckling). The re-
sponse beyond the limit load is unstable until the crown of the ring
touches the opposite side. The computed values of the separation
angle u at different load levels, corresponding to stable, neutral
and unstable configurations, are compared to those reported by
Pian et al. (1967) in Table 2. At the limit point, u = 24.7�
(u = 24.6� in Pian et al. (1967) and u = 24� in Stein and Wriggers
(1984)). As observed, the present results compare well with those
found in the literature. This type of collapse is often observed in the
liners of stiff cavities such as grouted oil-well casing (Kyriakides
and Lee, 2005).

In many applications, however, the ring is embedded in a soft
soil. In order to investigate the influence of the foundation stiffness
on the non-linear response and the stability of the ring, the system
was analyzed considering increasing values for the non-dimen-
sional elastic foundation stiffness parameter k = KR3/EI (discrete
spring). The results are also presented in Fig. 5a. As the founda-
tion’s stiffness increases the limit point load increases and the
results approach asymptotically from below those obtained con-
sidering a rigid foundation, as shown in Fig. 6, where the limit
point load parameter K = pR3/EI is plotted as a function of the foun-
dation stiffness parameter k = KR3/EI. A foundation stiffness of
k ffi 180 � 103 practically reproduces the non-linear response
obtained by Pian et al. (1967). It should be pointed out that the
use of an elastic foundation with very large stiffness (much
higher than k ffi 180 � 103 in the present analysis), for example,
k > 12000 � 103, leads to numerical difficulties and the response
presents spurious results and oscillations. This is a problem typical
of penalty-type methods, so care should be taken in choosing the
foundation stiffness to represent a rigid foundation.

6.2. Arch analysis: elastic foundation below the structure

Consider now the support system shown in Fig. 1. The structure
is a slender circular arch of radius R, length 2cR, bending stiffness
EI and membrane stiffness EA resting on a Winkler tensionless
elastic foundation of modulus K. Only half arch is discretized as
illustrated in Fig. 7a and, for an incremental concentrated load P
applied at h = 0, the expected deformation pattern is shown in
Fig. 7b, where a central contact region defined by the angles ±u,
is expected, separating too non-contact regions.

The arch’s nonlinear equilibrium path without the elastic foun-
dation (k = 0) was originally obtained by Walker (1969), consider-
ing the data R/h = 500 (h = thickness), c = 10o, EI = 1.4, EA = 420,
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with the arch exhibiting a snap-through behavior and a limit load
parameter Klim = PR2/EI = 76.21. The authors of the present paper
also solved the same arch resting on a tensionless foundation using
a novel semi-analytical approach for unilateral contact problems
based on the Ritz method (Silveira et al., 2008).

Thus, the results obtained from this modal analysis are used
here to validate the results given by the proposed numerical for-
mulation. These results are compared in Fig. 8a and b. In Fig. 8a,
the variation of the lateral displacement w is plotted as a function
of the load parameter K = PR2/EI, for different values of the non-
dimensional elastic foundation stiffness parameter k = KR4/EI. Note
that for a flexible foundation (k < 104), no additional effects were
observed in the pre- and post-buckling behavior, being the re-
sponse similar to that of an unconstrained arch. With k = 104, a
small increase in the limit load is observed (Klim ffi 83.4). For
k P 5 � 104, the snap-through behavior disappears, and for
k = 100 � 104 and 1000 � 104 the equilibrium paths are practically
linear (very stiff foundation). Fig. 8b displays the variation of con-
tact regions Sc (2Ru) with the applied load.
6.3. Arch analysis: elastic foundation above the structure

Consider the same structural system as in the last example but
now with the elastic foundation located above of the arch, as
shown in Fig. 9a. Again, due to the problem symmetry, only half
arch is discretized, as shown in Fig. 9b. Fig. 9c shows the deforma-
tion pattern of the arch under a concentrated load P applied at = 0,
where a central non-contact region is expected. Figs. 10 and 11
present the results obtained for this contact problem using the pro-
posed numerical methodology.

Fig. 10 presents the influence of the non-dimensional elastic
foundation stiffness parameter k = KR4/EI in the arch’s nonlinear
behavior. Four different values of k are considered, namely: 0,
105, 107 and 109. These relations define various levels of the elastic
base stiffness: inexistent (k = 0), flexible, semi-rigid and rigid,
respectively. For an elastic foundation with k = 105, the arch’s non-
linear equilibrium path is almost the same as in the case of the arch
without foundation. The limit load is Klim = PR2/EI ffi 76.1. As the
Arch

Rigidflatsurface

(a) Λ ≅ Λ ≅ 1.40

(e) Λ ≅ Λ ≅ 0.66 (contact)

(i)Λ ≅ 3.61 Λ ≅                              (j) 9.19
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Fig. 14. Arch deformations with contact constraints (r = a/h = 498; K = phR2/EI; scale fa
K ffi 1.09, (f) K ffi 0.66 (contact), (g) K ffi 1.09, (h) K ffi 2.36, (i) K ffi 3.61, (j) K ffi 9.19, (k
foundation stiffness increases, the load carrying capacity of the
arch increases, accompanied by a decreasing transversal deflection.
For k = 107, for example, the critical load increases to K ffi 93, and
for k = 109, to K ffi 103. Higher values of k were tested but the limit
load K ffi 103 was never exceeded, showing that the rigid condition
was reached. Fig. 11 shows the variation of the arch deformation
pattern along the nonlinear equilibrium path when in contact with
a rigid base (k = 109). All equilibrium paths converge at large
deflections to the unconstrained solution as the entire arch looses
contact with the foundation. For the three-foundation stiffness
relations considered, at the instant of total loss of contact between
the bodies the load parameter value is close to K ffi 30. This corre-
sponds to an unstable equilibrium configuration. The comparison
of the present results with those of the previous example show
that, in the analysis of curved elements, the position of the founda-
tion (above or below the structure) has a strong influence on the
nonlinear behavior and buckling load of the structure. Thus, even
for straight structural elements, such as plates and beams, when
initial geometric imperfections are considered, the direction of
the imperfection may change completely the response of the
structure.
6.4. Arch analysis: post-buckling contact constraints

The last example, shown in Fig. 12a, considers the nonlinear
behavior of a slender circular arch under uniform radial pressure.
Researchers have frequently used this arch’s buckling and post-
buckling responses without contact constraints to test their geo-
metrically nonlinear formulations (Alves, 1995; Kerr and Soifer,
1969; Carnoy, 1980). Sun and Natori (1996) introduced to the anal-
ysis the unilateral contact constraints using a rigid flat surface
placed in such a way that contact only occurs in the post-critical
range. Their finite element results for the perfect arch (symmetri-
cal deformation) behavior are thus used here to validate the
proposed numerical formulation.

The finite element model adopted to solve this problem is given
in Fig. 12b. Due to the symmetry of the problem, only half the arch
is discretized and 30 elements used. The rigid flat surface is
Λ ≅ 2.27 (critical load) (d) Λ ≅ 2.00 

(g) Λ ≅ 1.09                                               Λ ≅ 2.36 

Λ ≅ 19.05 Λ ≅ 35.46 

(c)

(k) (l)

(h)

ctor = 10). (a) K ffi 0.12, (b) K ffi 1.40, (c) K ffi 2.27 (critical load), (d) K ffi 2.00, (e)
) K ffi 19.05, (l) K ffi 35.46.
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described by discrete springs with a high stiffness value. The rela-
tive position of the flat surface with regard to the structure’s un-
loaded position is included in the constraint equation.

The equilibrium paths that characterize the nonlinear structural
system response are shown in Fig. 13. The variation of the vertical
displacement w of node 19 (h = �6o) is plotted as a function of the
non-dimensional load parameter, K = phR2/EI. The adopted non-
dimensional distance (a/h) between the structure and rigid founda-
tion are 4.98, 5.85 and 7.31. In all cases there is excellent agree-
ment between the present results and those obtained by Sun and
Natori (1996), confirming the accuracy and efficiency of the pres-
ent methodology. Table 3 shows the computed critical load as well
as the arch’s central vertical displacement obtained using different
formulations.

Still looking at Fig. 13, observe that the points a0–a3 for the
contact problem a/h = 4.95 indicate transitions between character-
istic stages of response. The first part of the equilibrium curve (a0–
a1) follows the familiar nonlinear path of a perfect arch under
compression without contact. Contact occurs at position a2
(K ffi 0.67). After this point (a2–a3), as the load increases, the con-
tact region increases with the arch deformation pattern exhibiting
a flat central region. The variation of the deformation pattern for
increasing load levels is illustrated in Fig. 14, where the configura-
tions corresponding to points a2 and a3 are identified. As expected,
the constrained response is considerably stiffer than the free one.
7. Conclusions

The present work proposes a new numerical strategy for the
nonlinear equilibrium and stability analysis of slender curved ele-
ments such as arches, pipes and rings under unilateral constraints.
An essential step for the success of the proposed numerical algo-
rithm is the linearization of the contact problem at each load incre-
ment and its solution as a linear complementary problem (LCP) by
using Lemke’s algorithm. This linearization, in combination with
the use of an updated Lagrangian formulation, continuation meth-
ods and an efficient incremental-iterative strategy allows the
simultaneous calculation of the two problem variables: the size
and location of the contact regions and the displacement fields.
The iterative procedure minimizes the errors along the equilibrium
path and enables one to trace convoluted non-linear equilibrium
paths with a varying number of contact regions. In addition, the
paper shows that the use of optimization techniques allows for
the development of numerically simple algorithms for the solution
of non-classical equilibrium and stability problems. Finally, the
present formulation can be easily extended to allow the nonlinear
analysis of plates and shells under unilateral constraints.

The response of different types of structure-elastic foundation
contact problems shows good agreement with those found in liter-
ature using different methodologies. The examples analyzed also
show that the proposed nonlinear formulation can be used suc-
cessfully in many engineering problems with the unilateral contact
constraints being imposed at the beginning or along the structure
deformation process. In addition, the present work clarifies the
influence of the foundation position (above or below the structure)
and its stiffness on the nonlinear behavior and stability of curved
structures. Therefore, engineers can use the proposed methodology
for the design of several soil-structure interaction problems, in par-
ticular those involving non-cohesive soils.
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