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a b s t r a c t

In this work, a generic substructuring algorithm is employed to construct global block-diagonal

preconditioners for BEM systems of equations. In this strategy, the allowable fill-in positions are those

on-diagonal block matrices corresponding to each BE subregion. As these subsystems are independently

assembled, the preconditioner for a particular BE model, after the LU decomposition of all subsystem

matrices, is easily formed. So as to highlight the efficiency of the preconditioning proposed, the Bi-CG

solver, which presents a quite erratic convergence behavior, is considered. In the particular applications

of this paper, 3D representative volume elements (RVEs) of carbon-nanotube (CNT) composites are

analyzed. The models contain up to several tens of thousands of degrees of freedom. The efficiency and

relevance of the preconditioning technique is also discussed in the context of developing general

(parallel) BE codes.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Applying iterative solvers to large-order engineering problems
has been intensively pursued in the last decades, mainly because
their unquestionable appeal to solve truly large models [1,2].
Herein, the parallelism embedded in them allied with the today’s
parallel computer architectures plays a decisive role, so that it can
be well stated that developing fast scalable (preconditioned)
parallel Krylov solvers is a key point for getting high-fidelity
solution for large-order complex engineering problems. In these
cases, direct solvers may be exceedingly expensive concerning
both memory and CPU time, and their parallel implementation is
awkward.

For general non-symmetric matrices, like BE matrices, based
on the number of terms involved in the iterative formulas, the
Krylov solvers can be subdivided in two broad classes of
algorithms: long-recurrence algorithms (GMRES and variants)
and short-recurrence ones (Bi-CG and variants). Over the last
several decades, milestone contributions in these algorithms have
been definitely given by the following works: the Lanczos method
(by Lanczos in 1952) [3], the Bi-CG method (by Fletcher in 1976)
[4], the GMRES method (by Saad and Schultz in 1986) [5], the CGS
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method (by Sonneveld in 1989) [6], the Bi-CGSTAB (by van der Vosrt
in 1992) [7], and the Bi-CGSTAB(l) (by Sleijpen and Fokkema in
1993) [8]. Of course, in this period of time, a series of other works
that significantly contributed for increasing the efficiency of
Krylov solvers have also been published, including those related
to particular applications to symmetric definite matrices.

Particularly for BEM systems of equations, the first successful
applications of iterative solvers were reported at the end of the
80s and beginning of the 90s [9–12], wherein diagonal-precondi-
tioned Bi-CG [9–10,12], and preconditioned GMRES [11] methods
were used. According to the authors’ knowledge, before these
works, only basic iterative methods as the Jacobi or Gauss–Seidel
methods, or at most the CGN solver, which consists of applying
the CG method to the normal equations, AT Ax¼AT b, had been
considered [13–14]. A patent disadvantage of these iterative
solvers are the non-reliability regarding convergence, so that they
actually cannot be regarded as general-purpose solvers for
practical applications. In fact, applying basic iterative methods,
convergence is assured only if the spectral radius of the
corresponding iteration matrix is less than 1, which is not the
case for general systems. On the other hand, considering the CGN
has the disadvantage of squaring the condition number of the
original system Ax¼b, which may cause the iterative process fail
to converge. The Bi-CG and GMRES methods, and their variants
(or combinations) are then the remaining alternatives for deriving
general-purpose solvers for BEM equations.

In fact, long-term recurrence methods as GMRES and variants
should be avoided because of memory requirements for large
problems and non-rare convergence stagnation in practice.
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Fig. 1. Discontinuous boundary elements.
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Restarting the iterative process after a number m of iterations is an
obvious strategy for reducing memory costs involved in using
GMRES, but, depending on the choice of m, bad convergence
characteristics (including stagnation) may be enhanced, also
leading to non-reliable solvers for general purposes in practice.
Concerning the Bi-CG method, the shortcoming is its erratic
convergence behavior. Thus, a likely optimal iterative solver
should be generated by combining the Bi-CG method, which takes
into account short-term recurrences, with a residual-minimization
method, as the GMRES, which should smooth out convergence
irregularities connected with the Bi-CG iterations. Following these
ideas culminated in developing the transpose-free Bi-CGSTAB(l)
[8] and the GPBi-CG (generalized product Bi-CG) [15] solvers.

Whether or not solvers like the Bi-CGSTAB(l) or the GPBi-CG
will always, sure and fast, provide an accurate solution for any
practical problem, it is a question that does not have any
mathematically founded answer yet. However, two facts are
relevant herein. First, convergence failure or slowness is a token
that the corresponding model is not suitable for the description of
the physical response; second, preconditioners may be employed
to accelerate the iterative process [1,17]. For BEM solvers, a series
of preconditioners have been reported in the technical literature
[9–12,16–19,20]. In general, the splitting matrix of basic iterative
methods as the Jacobi, block Jacobi, Gauss–Seidel or incomplete
LU decomposition methods can be used to construct precondi-
tioners. Roughly speaking, preconditioners are also a way to state
a relationship between direct and iterative solvers, in the sense
that if the preconditioning matrix becomes the system matrix, so
the iterative method at hand becomes a direct solver (giving then
the system solution at one single iteration step). Furthermore,
domain decomposition methods (DDM) allied with direct meth-
ods may also be employed to construct global preconditioners.
Herein, in general, direct solvers are employed to get the solution
for the many subdomains, while iterative techniques describe the
interactions between them. Concerning the parallel processing
(actually not addressed in this study), we see that domain
decomposition strategies also suits to easily parallelize incomplete
LU-based preconditioners, indeed the most efficient ones, but not
easily parallelizable. In case of block-diagonal preconditioners, the
parallelization is straightforward. Thus, DDM-based precondi-
tioners are very convenient for developing parallel solvers.

In this work, we objectively employ the BE substructuring
algorithm [21–22] to form a global block-diagonal preconditioner.
This substructuring algorithm is nothing other than a DDM-based
strategy to decompose a certain problem domain into a generic
number of coupled BE models, so that the preconditioning here
developed can be designated as a BE-subdomain-based precondi-
tioner. Although the coupling conditions between the subdomains
are imposed in a direct (non-iterative) way, the subsystems are
independently assembled, and so the block-diagonal matrices
corresponding to each subregion can be easily decomposed in
their L and U factors. It is worth commenting that the price paid
for constructing this preconditioning, which is much higher than
e.g. a plain diagonal one, is in fact insignificant if convergence
reliability and convenience for developing general parallel
boundary-element codes is attained. Moreover, the more the
number of subregions, the less expensive the constructing of the
BE-substructuring-based preconditioner is. For the applications
here, the preconditioning proposed is incorporated into the Bi-CG
solver. As this solver is theoretically less efficient than the
Bi-CGSTAB(l) or the GPBi-CG solvers, as discussed above, the
efficiency of the preconditioner itself will be highlighted in
the numerical experiments.

This paper is structured in the following way: we present an
overview of the generic BE substructuring algorithm in Section 2,
the construction of the preconditioner in Section 3, and analyze
different complex carbon-nanotube (CNT) composites in Section 4.
The models considered contains up to several tens of thousands of
degrees of freedom. The efficiency and relevance of the pre-
conditioning proposed is discussed also in the context of ideas for
developing general scalable BE parallel codes, in effect the goal of
the chief ideas on the base of this paper.
2. The boundary-element substructuring algorithm

The fact that the boundary element method (BEM) is derived from
the exact boundary-integral representation of problem solutions, in
closed or open domains, accounts for the following advantages: high
accuracy, fulfillment of radiation conditions in open domains, and
easier mesh generation. Indeed, very accurate responses are obtained
if homogeneous single-domain problems are considered and the
integrals involved are accurately evaluated. However, this is way not
the case in practice, wherein e.g. material heterogeneity is often
present, and a BE subregion technique is in general needed. Here,
the BE subregion-by-subregion (BE-SBS) algorithm reported in
Refs. [21,22] is adopted to both model complex heterogeneous
problems as CNT composites, and to construct preconditioners to be
used together with the Krylov solver embedded.

To derive the BE-SBS algorithm, besides continuous elements,
discontinuous boundary elements are employed when needed.
Herein, another interesting characteristic of the BEM is taken into
account: interelement compatibility (in the FE sense) is not
required to assure solution convergence. Actually, discontinuous
elements allow generating very complex boundary-element
models, for instance containing a number of inclusions and voids
as in composites. If only continuous boundary elements were
used, setting up complex coupled models for general problems
may be awkward [23]. Thus, considering discontinuous boundary
elements is very convenient. However, because of the unavoidable
proximity of the displaced collocation (functional) nodes to
neighboring elements (see Fig. 1), besides singular, nearly singular
integrals also take place, and special quadratures are required.

As known, in 3D elasticity standard boundary-element
formulations, surface integrals of the formZ
Ge

p�ikðw; xÞuiðwÞdGðwÞ, ð1aÞ

Z
Ge

u�ikðw; xÞpiðwÞdGðwÞ, ð1bÞ

take place, where u�ik and p�ik are the Kelvin fundamental kernels, ui

and pi the boundary displacement and traction, respectively, and
Ge the surface of the eth boundary. Actually, the efficient
evaluation of these integrals in the singular and nearly singular
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cases is needed for getting high-quality responses. In previous
works [21,22,24–28], several numerical quadratures have been
investigated. One has concluded that the numerical integration
strategy proposed in Ref. [22] was the best one among the
techniques observed. It has the following characteristics:
1.
 Weakly singular and nearly weakly singular surface integrals
are computed by combining triangle-polar [24] and polyno-
mial coordinate transformations [25];
2.
 Nearly strongly singular integrals are evaluated by applying
the line-integral approach reported in Refs. [26,27] together
with the improvements brought about in Ref. [22], which
concern the inclusion of analytical expressions for nearly
strongly singular line integrals occurring in the process.
Fig. 2. Square-packed lo
3.
 Strongly singular integrals (Cauchy principal values) are
indirectly calculated by applying rigid-body displacements.

In the above, the terms nearly weakly singular and nearly strongly

singular integrals mean a nearly singular integral associated,
respectively, with u�ik (the weakly singular kernel) and p�ik (the
strongly singular kernel). All details of the quadratures involved are
described in Ref. [22]. Of course, this integration strategy also suits
to model thin-walled domains, allowing then e.g. the modeling of
shell-like elements by means of 3D formulations.

With proper integration procedures, discontinuous boundary
elements can be used, and so the BE-SBS algorithm, reported in
Refs. [21,22], is derived. This algorithm is comparable to the element-
by-element (EBE) technique, developed to finite-element analysis
ng-CNT-based RVEs.
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(FEA) [29] while a subregion or substructure corresponds to a finite
element. Notice that, if needed, we could have a subregion mesh as
fine as a finite-element mesh, and if the BE global system matrix
were explicitly assembled, it would be highly sparse as well.
Furthermore, the BE-SBS algorithm can also be compared to finite
element tearing and interconnecting (FETI) methods [30], where a
given problem domain is decomposed (torn) into non-overlapping
subdomains and posteriorly interconnected by imposing the
corresponding continuity conditions at the interfaces.

Unlike other BE–BE coupling algorithms which look for
suitable compressed formats to store the corresponding global
sparse matrix [31,32], the main idea of the BE-SBS method, which
takes into account Krylov iterative solvers, is to get the global
response for a problem working exclusively with its local full-
populated subsystems of equations, which are independently
generated and stored. No global explicit system matrix is
assembled; no zero blocks are stored or handled. The boundary
conditions for the ith subdomain (associated with the outer
boundary of Oi, denoted by Gii) are introduced during the matrix
assembly for each subsystem. The interface conditions, e.g. at the
interface Gij (between the subdomains i and j), given by

uij ¼ uji

pij ¼�pji
at Gij

(
ð2Þ

are directly (not iteratively) imposed while calculating the matrix–
vector products during the iterative solution process, where uij and pij

denote, respectively, the displacement and traction vectors of sub-
domain i at Gij. Thus, for ns subregions, after introducing the boundary
conditions, the BE global system of equations is then given by

Xi�1

m ¼ 1

ðHimumi�GimpimÞþAiixiþ
Xns

m ¼ iþ1

ðHimuimþGimpmiÞ ¼ Biiyi, i¼ 1,ns,

ð3Þ
Ω1 Ω2 Ω3

G32

A11 H12 H13

A22 H23G21

A33G31

G12 G13

G23H21

H31 H32

Ω1

Ω3

Ω2

Ω4

H14

H41

H24

H34

G

H42 H43

y1

Ω 1 Ω 2 Ω 3 Ω 4

B 11

B22

B 33

Ω 1

Ω 3

Ω 2

Ω 4B 44

y2
y3
y
4

where Aii, Bii, Hij and Gij denote the regular BE matrices obtained for
source points pertaining to subregion Oi and associated, respectively,
with the boundary vectors xi, yi, uij and pij. Note that xi and yi are the
vectors containing the boundary unknown and boundary prescribed
values of Oi (after column interchange).

To accelerate the solver iterations, structured matrix–vector
products (SMVP) [21,28] are employed. Herein, the matrix
columns of a given subregion are grouped into three separate
blocks: one associated with interfaces Gij for which i4 j, a
second associated with the outer boundary Gii, at which boundary
values are prescribed, and one associated with interfaces
Gij for io j. This corresponds to the matrix structuring given
in (4) below

][
][

1,1,1

1,1,1

iniiiiiiii

iniiiiiiii

GGBGGG
HHAHHH

......
......

+−

+−

=
=

block 1 block 2 block 3

ð4Þ

Hi and Gi are the BE matrices for the ith subregion.
Notice that the 3D BE subregion-by-subregion algorithm

discussed in this section is a general-purpose technique for the
BEM analysis of multi-domain problems with a generic number of
subregions, of any shapes, under any spatial substructure
arrangements (periodic or non-periodic). As easily inferred, the
non-linear contact can also be promptly incorporated into the
algorithm.
3. BE-SBS-based block-diagonal preconditioning

If the system of equations in (3) were, say for ns¼4 (four
subregions), explicitly assembled, it would have the following
general aspect:
x 33

x 11

x 22

p31

u12
u13

u24

u14
p21

u23

p32

u34

x 44

p41
p42
p43

Ω4

G24

G34

14

A44G41 G42 G43

ð5Þ



Table 1
Model data for the square-packed long-CNT RVEs.

Model nsuba nelb nnodesc ndof d Sparsity (%)
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In this system, note that if the ith and jth subdomains are not
coupled, so the respective block matrices are identically null, i.e.
Hij¼Hji¼Gij¼Gji¼0. However, as commented previously, we do
not have any explicit system of equations. Instead, the working
subsystems are those (structured) ones shown in expression
(4). The matrix–vector and transpose-matrix–vector products are
then calculated from the separate contributions from each
subsystem, and during the solver iterations, the interface
conditions are imposed in a direct way.

In this study, the preconditioner is constructed by taking the
diagonal blocks of the coupled system. Based on the particular
(explicit) system of equations shown in (5), we are talking about
that subset of positions highlighted in gray. Inferring from Eq. (5)
that, for a generic number of subregions, the diagonal blocks of
the coupled system are given by

Q i ¼ �Gi1 � � � �Gi,i�1 Aii Hi,iþ1 � � � Hin

h i
, i¼ 1, ns, ð6Þ

where the Qi matrices are straightforwardly formed having the
subregion matrices of the model at hand, the construction of the
global SBS-based block-diagonal preconditioner for the coupled
system of Eq. (3) is then immediate. Explicitly written, this global
preconditioner is of the form

Q ¼

Q 1

&

Q i

&

Q ns

2
6666664

3
7777775

ð7Þ

However, as the subdomain submatrices, this global precondi-
tioner is not explicitly assembled either; it is separately stored per
subregion at an additional memory space of the size [nno(is)�
ndofn]� [nno(is)�ndofn], where nno(is) is the number of nodes of
the isth subregion, and ndofn is the number of degrees of freedom
per node (the same for the whole model). In the computational
implementation, only their L and U decomposition factors,
obtained right after the BE subsystem matrices are formed, are
stored. In this work, the Bi-CG solver, which also requires
transpose matrix–vector multiplications, is employed. In effect,
by considering left preconditioning, the preconditioner is applied
to the iterative solution for the ith subregion, xi, by solving
systems like (LiUi)xi¼xi and (LiUi)

Txi¼xi. Notice that the irregular
convergence property of the Bi-CG iterations actually highlights
the importance and efficiency of the preconditioner.
1�1 2 128 608 1824 29

2�2 8 512 2660 7980 81

5�5 50 1344 17,456 52,368 97

a n. of subregions
b n. of elements
c n. of nodes
d n. of degrees of freedom

Table 2
Engineering constants for the square-packed long-CNT RVEs.

Model E1/Em E2/Em, E3/Em n12,n13 n23

1�1 1.3227 0.8302 0.2974 0.3595

2�2 1.3228 0.8319 0.2973 0.3600

5�5 1.3228 0.8319 0.2972 0.3580

Chen & Liu (3D FE) 1.3255 0.8492 0.3000 0.3799

Rule of mixturea 1.3255 – – –

a RVE volume fraction is Vf¼3.617%.
4. Results and discussions

The efficiency of the SBS-based block-diagonal preconditioner
detailed above is observed by determining engineering constants
for complex CNT-based composites. The composite representative
volume elements (RVEs) are constructed by arranging long and
short CNT fibers along square and hexagonal packing patterns
inside the polymer matrix. A single or several coupled composite
unit cells have been used.

The integration quadratures employed in the analyses follow
the general description in Section 2 above. In all analyses, 8�8
and 6 integration points are used for evaluating all surface and
line integrals involved, respectively. In all RVEs, the following
pure phase constants are adopted [33]:

CNT : ECNT ¼ 1000
nN

nm2
ðGPaÞ; nCNT ¼ 0:30,

Matrix : Em ¼ 100
nN

nm2
ðGPaÞ; nm ¼ 0:30:
The long CNT fibers are geometrically defined by cylindrical
tubes having outer radius r0¼5.0 nm and inner radius ri¼4.6 nm,
and length lf¼10 nm. The short CNTs have cross section and
hemispherical caps with same previous outer and inner radius; its
length (including both caps) is lf¼50 nm. Noting that long-fiber
composites have their fibers all the way through their length, 2D
elasticity description applies, and so, the fiber lengths in 3D
models must not necessarily be long at all. Thus, in the 3D models
in this paper, the long CNTs (lf¼10 nm) are actually shorter than
the short CNTs (lf¼50 nm).

In general, when needed, discontinuous boundary elements
are automatically generated by shifting the nodes interior to the
elements a distance of d¼0.10 (measured in the natural
coordinate system). The matrix-copy option is also conveniently
considered to replicate physically and geometrically identical
subdomains, avoiding then assembling repeatedly their corre-
sponding matrices. The 8-node quadrilateral boundary element
is employed, and the tolerance for the iterative solver (Bi-CG)
is taken as z¼10�8. The diagonal preconditioning (Jacobi) and
the preconditioning proposed in this paper (BE-SBS-based
block-diagonal decomposition) are then contrasted to show
the efficiency brought about by the latter preconditioner. The
analyses were carried out at a notebook with dual intel 2.26 GHz
processor, and 3 GB of random access memory.
4.1. RVEs with square-packed long CNT fibers

In this application, RVEs based on 1�1, 2�2, and 5�5 unit
cells are employed for modeling long-CNT-based composites
(see Fig. 2). The length along the 1 direction (fiber direction) of the
specimen is the same as the CNT length (l1¼10 nm). The other
dimensions of each unit cell (along the 2 and 3 axes; see Fig. 2)
are taken as l2¼ l3¼20 nm. Important model data are provided
in Table 1. In Table 2, the engineering parameters extracted from
the analysis of all the RVEs shown in Fig. 2 are compared
with results calculated by Liu and Chen [33] via finite-element
analysis, and estimated (when possible) by the rules of mixture
(see Refs. [33, 34]).
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Fig. 3. Residual norm vs. iteration: 5�5-unit-cell, square-packed long CNT:

(a) strain state 1 and (b) strain state 2.
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As seen from Table 2, there is a very good agreement between
the material parameters calculated with the present method and
estimated by refined 3D FE models [33] or the rules of mixture
([22, 34]). Furthermore, no significant change in the constant
values is also observed as the number of unit cells per RVE
increases.

In Table 3, results showing the performance of the precondi-
tioners are presented. As one sees, compared to the Jacobi
preconditioner, a considerable acceleration of Bi-CG solver is
observed when the BE SBS-based block-diagonal one is applied
(e.g. it makes the solver about 24 times faster for the 5�5-unit-
cell RVE under strain state 1). Notice that, although the cost per
iteration is higher using the BE SBS-based block-diagonal
preconditioning, the corresponding number of iterations is
considerably reduced. The decaying of the Euclidean residual
norm, :d:2, as a function of the iteration order for both contrasted
preconditioners is also shown in Fig. 3. This graph clearly
shows the superiority of the BE SBS-based block-diagonal
preconditioning.

4.2. RVEs with hexagonal-packed long CNT fibers

Here, 1�1, 2�2, 3�3, and 5�5 RVEs are analyzed (see
Fig. 4), each one built with unit cells having dimensions l1¼10 nm
and l2¼ l3¼20 nm. Model data and estimated material parameters
are given in Tables 4 and 5, respectively. For comparison
purposes, only E1, estimated by the rules of mixture, is considered
[34], and we verify that E1 values estimated by the rules of
mixture and calculated with the present method are about the
same magnitude. Here we also note that increasing the number
of unit cells per RVE does not significantly change the estimated
material constants. In Table 6 the performance of both precondi-
tioners is presented, and in the graph in Fig. 5 the decaying of the
corresponding residual Euclidean norms during the Bi-CG itera-
tions is given. Again, the performance of the BE SBS-based block-
diagonal preconditioning has shown superior.

4.3. RVEs with squared-packed short CNT fibers

In this application, the RVEs are constituted of 1�1 and 2�2
short capsule-like CNTs smeared inside the matrix material along
square-packing patterns (Fig. 6, Table 7). A single-cell RVE has
outer dimensions l1¼100 nm and l2¼ l3¼20 nm, and the geome-
trical details of the CNT were furnished above. Compared to the
results obtained by Liu and Chen [33], and, when possible, by the
extended rule of mixture [22], the values estimated by applying
the BE SBS-based strategy show good agreement (Table 8). For
both RVEs, about the same material constant values are
estimated. In Table 9, performance data of the Jacobi and BE
SBS-based preconditioners are given. In Fig. 7, the residual norm
decaying as a function of the iteration order is shown. Again, the
Table 3
Performance data for the square-packed long-CNT RVEs; tol¼1.0�10�8.

Model System
order

n. of iterations
(BE SBS-based
block diagonal)

1�1 unit cell, strain state 1 1824 57

1�1 unit cell, strain state 2 1824 73

2�2 unit cells, strain state 1 7980 81

2�2 unit cells, strain state 2 7980 104

5�5 unit cells, strain state 1 52,368 116

5�5 unit cells, strain state 2 52,368 157

a Including the LU decomposition CPU time
BE SBS-based preconditioning clearly increases the efficiency of
the Bi-CG solver, making it for the 2�2-unit-cell RVE under strain
state 1 about 10 times faster.
n. of iterations
(Jacobi)

CPU time (s)
(BE SBS-based
block diagonal)a

CPU time (s)
(Jacobi)

561 2 5

621 2 6

2241 11 104

1805 12 84

8920 119 2917

5983 142 2,084
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Fig. 4. Hexagonal-packed long-CNT-based RVEs.

Table 4
Model data for the hexagonal-packed long-CNT RVEs.

Model nsuba nelb nnodesc ndof d Sparsity (%)

1�1 6 138 856 2568 72

2�2 17 656 3456 10,368 86

3�3 34 1464 7800 23,400 93

5�5 86 4040 21,720 65,160 97

a n. of subregions
b n. of elements
c n. of functional nodes
d n. of degrees of freedom

Table 5
Engineering constants for the hexagonal-packed long-CNT RVE.

Model E1/Em E2Em, E3/Em n12,n13 n23

1�1 1.8081 1.0889 0.2943 0.5107

2�2 1.8074 1.0839 0.2936 0.5107

3�3 1.8074 1.0916 0.2931 0.5185

5�5 1.8126 1.0813 0.2927 0.4997

Rule of mixturea 1.8131 – – –

a RVE volume fraction is Vf¼9.035%.
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5. Conclusions and prospects

Using a robust boundary-element subregion-by-subregion
(BE SBS) technique proposed in previous papers ([21, 35]), a
straightforward strategy for constructing block-diagonal precon-
ditioners for BE systems of equations is presented. The perfor-
mance of this preconditioning was verified by analyzing complex
composite representative volume elements (RVEs).
Observing Tables 3, 6 and 9, and graphs in Figs. 3, 5 and 7,
we see that the BE-SBS-based block-diagonal preconditioning,
compared to the Jacobi (diagonal) one, considerably accelerates
the Bi-CG solver, making it in all cases analyzed several times
faster. Moreover, it causes the decaying of the residual Euclidean
norm as a function of the iteration order to be more regular
(see Figs. 3, 5 and 7). In fact, the BE-SBS-based block-diagonal
preconditioning states a transition (or connection) between direct
and iterative solvers, in the sense that the less the number of
interfaces, the closer to the global system matrix the preconditioning



Table 6
Performance data for the hexagonal-packed long-CNT RVEs; tol¼1.0�10�8.

Model System
order

n. of iterations
(BE SBS-based
block diagonal)

n. of iterations
(Jacobi)

CPU time (s)
(BE SBS-based
block diagonal)a

CPU time
(s) (Jacobi)

1�1 unit cell, strain state 1 2568 68 446 3 5

1�1 unit cell, strain state 2 2568 85 451 3 5

2�2 unit cells, strain state 1 10,368 249 1170 29 64

2�2 unit cells, strain state 2 10,368 296 1166 33 64

3�3 unit cells, strain state 1 23,400 316 1696 79 211

3�3 unit cells, strain state 2 23,400 477 2413 114 297

5�5 unit cells, strain state 1 65,160 614 4537 490 1713

5�5 unit cells, strain state 2 65,160 884 4058 565 1476

a Including the LU decomposition CPU time
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Fig. 5. Residual norm vs. iteration: 5�5-unit-cell, hexagonal-packed long CNT:

(a) strain state 1 and (b) strain state 2.

Fig. 6. Square-packed short-CNT-based RVEs.

Table 7
Model data for the square-packed short-CNT RVEs.

Model nsuba nelb nnodesc ndof d Sparsity (%)

1�1 2 352 1064 3192 27

2�2 8 1408 5156 15,468 78

a n. of subregions
b n. of elements
c n. of functional nodes
d n. of degrees of freedom

Table 8
Engineering constants for the square-packed short-CNT RVEs.

Model E1/Em E2/Em, E3/Em n12,n13 n23

1�1 1.0378 0.9366 0.2963 0.3207

2�2 1.0379 0.9379 0.2976 0.3217

Chen & Liu (3D FE) 1.0391 0.9342 0.3009 0.3217

Rule of mixturea 1.0396 – – –

a The extended rule of mixture is considered.
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matrix, Q, is. For example, if no interface is present in the model, the
Q matrix is identical to the system matrix (with one single or many
decoupled subregions), and convergence will be reached at one



Table 9
Performance data for square-packed short-CNT RVEs; tol¼1.0�10�8.

Model System
order

n. of iterations
(BE SBS-based
block diagonal)

n. of iterations
(Jacobi)

CPU time (s)
(BE SBS-based
block diagonal)a

CPU time (s)
(Jacobi)

1�1 unit cell, strain state 1 3192 51 763 6 21

1�1 unit cell, strain state 2 3192 67 822 7 23

2�2 unit cells, strain state 1 15,468 83 2348 60 610

2�2 unit cells, strain state 2 15,468 87 2510 60 481

a Including the LU decomposition CPU time.
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Fig. 7. Residual norm vs. iteration: 2�2-unit-cells, square-packed short CNT:

(a) strain state 1 and (b) strain state 2.
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single iteration. In addition, knowing that the global coupled system
is highly sparse, we can well conclude that the preconditioner
proposed will be certainly a good approximation of the global
system matrix, which is one of the requirements for finding good
preconditioners. Generally speaking, the larger the size of the
subsystems, the higher the cost for constructing the preconditioner,
however, on the other hand, a better approximation for the global
system is achieved, reducing then the number of iterations.
Furthermore, being this preconditioner based on the BE-SBS
algorithm, its parallelization is immediate. By the way, in a cost-
benefit analysis, not only the acceleration of the iterative process but
also the solver-convergence reliability and parallel-processing
suitability should be considered as benefit.

Among others, we can finally affirm that the BE-SBS strategy has
the following general advantages: (1) it is a fundamental technique to
model complex heterogeneous problems, (2) it is a spontaneous way
to parallelize BE codes [36], and (3) it is, as shown in this paper, an
easy way to construct efficient block-diagonal preconditioners for the
Krylov solver the BE-SBS algorithm itself embeds. Although reliable
and fast convergence of iterative solvers is a still open question for
general practical modeling in engineering, mainly in the case of BE
formulations, where usually non-symmetric matrices are involved
[37], it seems that the BE-SBS-based block-diagonal preconditioner
proposed in this paper will be one more contribution towards making
the reliable use of iterative solvers in engineering feasible. Of course,
much more efficiency would have been attained if, compared
to the Bi-CG solver, more efficient Krylov solvers, as e.g. the
Bi-CGSTAB(l) [8] or the GPBi-CG [15], had been employed.
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