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Abstract

This work is mainly concerned with a general strategy, based on well known concepts of classical mechanics, for taking into account
initial conditions in frequency-domain (FD) and time-domain (TD) analyses. A general approach, extended here to three-dimensional
applications, is presented. Special problems associated with analyses through Discrete-Fourier-Transform (DFT) algorithms, as those
occurring in consequence of a non-correct choice of extended period or those connected with aliasing phenomenon, are also discussed.
Furthermore, an alternative starting procedure for time-marching schemes (in TD analyses) is proposed. At the end of the paper, to val-
idate the proposed techniques and to demonstrate their generality, two- and three-dimensional problems with non-homogeneous initial
conditions are solved through frequency- and time-domain approaches by employing the Finite Element Method (FEM). Numerical
results are compared with existing analytical solutions.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

According to the nature of the dynamic problem to be solved, the numerical solution can be sought either in the time-
domain or in transformed domains. Although time-domain formulations can be efficiently adopted for solving a great
range of problems, in some cases the analysis via transformed domains (e.g. frequency, Laplace or wavelet domains)
is the only feasible alternative [25,7,11]. Particular attention will be devoted here to the frequency-domain approach
[25,7,22] that has been extensively used in analyses in which the physical parameters, such as the damping in soil–
structure interaction problems, are frequency-dependent. Practical problems in which the analyses of dynamic systems
are carried out in the frequency domain are presented by Wolf [28], related to soil–structure interaction problems, Clough
and Penzien [7], related to structural systems, Hall [12] and Kinsler [15], related to FEM modeling of acoustic prob-
lems, and Beskos [3], Dominguez [8], Brebbia [4] and Banerjee [1], related to engineering problems modeled with the
BEM.

A great deal of attention has been devoted to turn the frequency-domain approach more efficient. One of the deficiencies
of the Fourier analysis, as described by Thomson [25], Clough and Penzien [7], Paz [22], Oppenheim and Schafer [21], is
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concerned with the periodic nature of the Fourier transform and, consequently, with the difficulty of considering initial
conditions. In spite of the importance of this topic, to the best of the authors� knowledge, only a few works concerning
this matter have been presented until now. Venancio-Filho and Claret [27] presented the concept of the Implicit Fourier
Transform (ImFT), extended later to non-linear problems by Mansur et al. [17]. Veletsos and Ventura [26] employed
the Green�s function and its time derivative in modal coordinate analyses, and in Soares and Mansur [24] the inverse
discrete Fourier transform of the steady state Green�s function is carried out to obtain the corresponding time-
domain Green�s function for SDOF mechanical systems. The techniques described above, in spite of being efficient and
of taking into account initial conditions, are applied to problems described by modal coordinates (i.e., SDOF mechanical
systems).

The present work describes a quite general method to take into account initial conditions. The proposed method, which
is based on the concepts of pseudo-forces, see Refs. [9,18], and generalized functions [6], will be applied to the solution of
three- and two-dimensional scalar problems, in the time- and frequency-domain, modeled with finite elements. Initially, the
time-dependent and frequency-dependent partial differential equations governing wave propagation problems are pre-
sented. Then the corresponding algebraic systems of equations are shown. A discussion concerning DFT-based analysis,
which emphasizes the special role played by the extended period of analysis and by the aliasing phenomenon in the acqui-
sition of the numerical response, is also presented.

The steps adopted to take into account the initial conditions, related to the potential and its time derivative, in fre-
quency-domain analyses are presented. In addition, the method previously presented by Mansur et al. [18] for 2D problems
is extended to 3D frequency- and time-domain applications.

Finally, aiming at validating the described algorithms, the results from the analyses of two- and three-dimensional prob-
lems with non-homogeneous initial conditions, in time- and frequency-domain, are presented and compared with analytical
results.

2. The wave propagation problem

The scalar wave equation is usually associated with the description of vibrational phenomena, such as the vibration of
strings and membranes, and the propagation of acoustic waves and electric signals along wires. In its general form, the
associated initial boundary value problem is given by (see [19,20])

q
o2uðx; tÞ

ot2
�r � ðEruðx; tÞÞ ¼ f ðx; tÞ in X; ð1Þ

with the boundary conditions

uðx; tÞ ¼ uðx; tÞ on Cu;

pðx; tÞ ¼ ouðx; tÞ
onðxÞ ¼ pðx; tÞ on Cp

ð2Þ

and the initial conditions

uðx; 0Þ ¼ u0ðxÞ in X; ð3Þ
_uðx; 0Þ ¼ _u0ðxÞ in X. ð4Þ

In the above equations u(x, t) denotes the scalar solution, f(x, t) the domain source function, and q and E the medium den-
sity and Young�s modulus respectively.

The solution of Eq. (1), under harmonic excitations, can be assumed to behave harmonically with angular frequency x,
if a long enough time has elapsed after the occurrence of initial disturbances. In this way, the problem is said to be sta-
tionary. The physical variables of the acoustic problem can be represented as follows:

uðx; tÞ ¼ Uðx;xÞeixt; f ðx; tÞ ¼ F ðx;xÞeixt; pðx; tÞ ¼ P ðx;xÞeixt; ð5Þ

where U(x, x), F(x, x) and P(x, x) are complex functions. After substituting expressions (5) into Eq. (1) and eliminating
the exponential function eixt, the resulting Helmholtz�s equation can be written as

qx2Uðx;xÞ þ r � ðErUðx;xÞÞ ¼ �F ðx;xÞ in X. ð6Þ
The boundary conditions to Eq. (6) are given by

Uðx;xÞ ¼ Uðx;xÞ on Cu;

P ðx;xÞ ¼ Pðx;xÞ on Cp.
ð7Þ
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2.1. Spatial discretization

The Finite Element Method (FEM) was adopted as a numerical tool for the solution of the scalar wave Eq. (1) (see
[29,2,14]). The resulting system of linear algebraic equations can be written as

M €Uþ C _Uþ KU ¼ R. ð8Þ

Matrices M, C and K represent, respectively, mass, damping and stiffness global matrices.
For harmonic problems, one has U(t) = Uxeixt and R(t) = Rxeixt (Ux and Rx represent the nodal potential and nodal

flux amplitudes respectively); thus the corresponding system of equations reads

ð�x2Mþ ixCþ KÞUx ¼ Rx. ð9Þ
2.2. Damping

A usual way to add damping to the system is by expressing its viscous damping matrix, C, proportional to the mass and
stiffness matrices (Rayleigh�s damping model). By assuming stiffness-proportional damping, say c = a1E (c denotes the vis-
cous damping coefficient associated with the continuum model), its implementation in the FD formulations can be directly
carried out by substituting Young�s modulus, E, by the following complex one:

Ed ¼ Eð1þ ixa1Þ; with a1 ¼
c
E

; hence Ed ¼ E þ ixc. ð10Þ

As seen above, the viscous damping assumes frequency-dependent energy dissipation. This assumption is sometimes
non-realistic (see [25,7]). Indeed, experimental observations show that the dissipated energy is frequency-independent
for a great deal of materials employed in engineering at a wide frequency range. In this case, the following frequency-inde-
pendent damping model (hysteretic damping) should be used instead

Ed ¼ Eð1þ igÞ; ð11Þ

where g is the hysteretic damping coefficient.

2.3. Nyquist frequency

In order to obtain the solution of transient dynamic problems by a frequency-domain formulation, the Fourier trans-
form is applied to the time-dependent excitation. Subsequently, after the response spectrum is determined (i.e. solving Eq.
(9)), the synthesis of the frequency-dependent spectrum is carried out via inversion. The number of time sampling points
must be chosen so that the highest excitation frequency in the Fourier spectrum be higher than the highest frequency (that
matters) of the discretized mechanical system at hand (see [21,23,5]); this excitation frequency is the so-called Nyquist fre-
quency, defined as

xNyq ¼
Np
T
; ð12Þ

where N is the number of sampling points and T is the total time of analysis. The consequence of the violation of this
condition is an incorrect superposition of effects, leading to a distortion of the inverse Fourier transform (aliasing
phenomenon).

2.4. Extended period

The Fourier transform is based on the assumption that the external excitation and the system response are periodic in
time. Hence, to attain a correct response to a non-periodic loading, it is necessary to extend the time of analysis up to a time
Tp, the extended period, so that at Tp the system is at rest. If Tp is large enough, the causality condition is obeyed, i.e., per-
turbations acting before the initial time will not influence the response in the interval of interest. Since the prediction of the
extended period, Tp, is inadvisable in practice, it must be estimated. In previous works, e.g. Refs. [17,24], the extended per-
iod has been estimated as a time interval longer than any time required to damp down the first mode contribution (mea-
sured, for instance, in terms of displacement amplitudes) to h percent of its initial contribution. Thus, by following this
approach, the extended period can be established according to the relation

T p P
lnð100=hÞ

n1x1

; ð13Þ
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where n1 is the damping ratio associated with the first mode and x1 is the fundamental frequency of the system. Usually,
1% is adopted for h.

3. Contribution of initial conditions to transient problems

The correct specification of the initial conditions plays an important role in the description of time-dependent problems.
The method developed here introduces initial conditions via pseudo-forces in 3D frequency- and time-domain modeling.
The time-domain strategy is new, and so is the 3D frequency-domain approach, which allows for non-trivial initial con-
ditions [25,7,22].

3.1. Initial displacement

First, only the initial displacement field is imposed to the system. The initial velocity field is assumed to be null and no
external forces are applied. The basic step consists in substituting the initial displacement field by static pseudo-forces
which generate the given initial displacement field. An equivalent pseudo-force vector, FU, is obtained according
to FU = K�1U0, U0 being the known nodal initial displacement vector. Note that FU is an external static force vector,
applied to the system previously to the initial time of the analysis, which generates the initial field U0. The system motion
starts by the application of a nodal equivalent force vector �FU at t = 0, which generates a displacement field DUt, com-
puted by

MD€U
t þ CD _U

t þ KDUt ¼ �FUHðtÞ ¼ �KU0HðtÞ; ð14Þ
where H(t) is the Heaviside function (or unit-step function), see [20]. One can assume that the total displacement field, Ut,
for the present case, is constituted of two parts: one due to the action of the field force represented by FUH(t) and the other
due to the initial displacement field. Thus

Ut ¼ DUt þU0. ð15Þ

In frequency-domain analyses, the equivalent pseudo-force vector, FU, is incorporated to the system by following a sim-
ilar procedure. The final equation is

ð�x2Mþ ixCþ KÞDUx ¼ �FUHx ¼ �KU0Hx; ð16Þ

where x is the Fourier transform parameter and Hx is the Fourier transform of the Heaviside function. Analogously to
expression (15), the total complex displacement field can be computed as a sum of two parts, as follows:

Ux ¼ DUx þ dðxÞU0. ð17Þ
It is important to note that if the DFT (or FFT) algorithm is employed, the Heaviside function, H(t), must be replaced by
the product H(t)[1 � H(t � T/2)]. In this case, the extended period must be considered twice that of the initial guess (ob-
tained for instance from expression (13)).

3.2. Initial velocity

The contribution due to an initial velocity field can be obtained from the following concepts of classical mechanics
(under the assumption of constant mass, [10,16]):

Momentum (Q): The momentum is a conservative quantity. It is defined as follows:

Q ¼ mv. ð18Þ
Impulse (I): The impulse is defined as the time integral of the force, given by

I ¼
Z Dt

0

Fdt ¼ m
Z Dt

0

dv

dt
dt. ð19Þ

The impulse–momentum relation states that the impulse I acting on the mass will result in a change in the momentum and,
consequently, in its velocity. If the mass is initially at rest, one can write

I ¼ mv0. ð20Þ
Then, the contribution of an initial velocity field, V0 ¼ _Uð0Þ, can be taken into account by the pseudo-force FV defined
below [20,6]

FV ¼M _UðtÞdðtÞ; ð21Þ
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where d(t) is the Dirac delta function. Thus, the displacement Ut due to the presence of an initial velocity field can be com-
puted from

M €U
t þ C _U

t þ KUt ¼ FV ¼M _UðtÞdðtÞ. ð22Þ
In the frequency domain, the Fourier transform of the Dirac delta function is equal to the unity, hence the corresponding
transformed equation of motion is given by

ð�x2Mþ ixCþ KÞUx ¼MV0. ð23Þ
It must be observed that the Fourier transform of FV, which is equal to MV0, must be corrected when DFT algorithms

are employed. As shown by Clough and Penzien [7]: DFTðMV0dðtÞÞ ¼ 1
NDt MV0, where NDt = T.

3.3. General case

When the structure is subjected to the action of external forces Rt under non-homogeneous initial conditions U0 and V0,
the system of equations is written as (in the time-domain)

MD€U
t þ CD _U

t þ KDUt ¼ Rt � KU0HðtÞ þM _UðtÞdðtÞ; ð24Þ
where

Ut ¼ DUt þU0. ð25Þ

Alternatively to classical starting procedures for time-marching schemes (see [2,14]), the time-step procedure can be ini-
tialized using the new initial conditions in the deformed state, given by

DU0 ¼ D _U
0 ¼ 0. ð26Þ

In this case, the loading vector of the dynamic equilibrium equation, Eq. (24), is given by

Rt � KU0 þ
MV0

Dt
at t ¼ 0 and Rt � KU0 for t > 0. ð27Þ

In frequency-domain analyses, the complex response in the transformed domain is obtained from

ð�x2Mþ ixCþ KÞDUx ¼ Rx � KU0Hx þMV0; ð28Þ
where the complex displacement field is given by

Ux ¼ DUx þ dðxÞU0. ð29Þ
4. Applications

4.1. Rod under a Heaviside type forcing function and initial conditions prescribed all over the domain

In this example, a prismatic rod fixed at one end and free at the other is analyzed (see [31]). For the discretization, 4000
lagrangean linear hexahedral elements where employed, which gives 4961 degrees of freedom, see Fig. 1. The rod length is
L = 1.2 m and its cross-section area is A = 0.3 m · 0.3 m. The longitudinal wave propagation velocity and density are
respectively c = 1000 m/s and q = 0.01 kg/m3. The rod is subjected to the initial conditions

U 0 ¼
p0L
E
� z
L
; 0 6 z 6 L;

V 0 ¼
p0c
E
; c ¼

ffiffiffiffi
E
q

s
0 6 z 6 L;

8>>><
>>>:

with p0 ¼ 100 N=m2. ð30Þ

In expressions (30), E is the Young�s modulus. Additionally, a Heaviside type-forcing function p0H(t) is applied at the free
end of the rod. This problem was analyzed through the time- and frequency-domain formulations. For the FD analysis, the
extended period Tp = 0.196 s and 4096 sampling points were adopted. It must be pointed out that the extended period, Tp,
calculated by considering modal damping ratio n1 = 0.0125 and modal frequency x1 ffi 1309 rad/s, corresponds to h = 4%
(i.e., reduction to 4% of the first mode contribution). In the TD analysis, the implicit damped HHT scheme [13] was used
with: Dt = 0.00005 s, a ¼ � 1

9
; c ¼ 1

2
� a; b ¼ ð1�aÞ2

4
, and total time of analysis Ta = 0.0096 s (192 time steps). In the FD anal-

ysis, a hysteretic damping coefficient g = 2n1 = 0.025 was adopted. The proportionality factor used for taking into account
a similar viscous damping (adjusted by the first mode) proportional to the stiffness matrix [7] is then a1 = 1.91 · 10�5. Figs.
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Fig. 2. Displacement time-history at the free end of the rod under Heaviside-type forcing function and initial conditions prescribed all over the domain.
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Fig. 1. Rod discretization: 4961 nodes, 4000 linear hexahedral elements.
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2 and 3 present the response at the free end of the rod in terms of displacement and velocity, respectively. A good agree-
ment between numerical and analytical responses is observed.

4.2. Rod under a Heaviside type forcing function and initial conditions prescribed in part of the domain

In this example, the following initial conditions are imposed to the rod analyzed in the previous example:

U 0 ¼
1

4

p0L
E
� z� 3L

4

� �
4

L
;

3L
4
6 z 6 L;

V 0 ¼
p0c
E
; c ¼

ffiffiffiffi
E
q

s
;

3L
4
6 z 6 L;

V 0 ¼ U 0 ¼ 0; 0 6 z <
3L
4
;

8>>>>>>>><
>>>>>>>>:

with p0 ¼ 100 N=m2. ð31Þ

Again, the HHT time-marching scheme was adopted for the time-domain analysis with the same parameters a, b, and c, the
same time step and total time of analysis as in the previous example. The values of the hysteretic and viscous damping
coefficients are the same as well. Once more, the results agree quite well with each other. Figs. 4 and 5 present, respectively,
the displacement and velocity at the free end of the rod.
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4.3. Square membrane under prescribed initial velocity: 3D and 2D analyses

This example consists of a square membrane of side L = 50 cm, subjected to zero initial displacements in its entire
domain and the initial velocity field described below (see Fig. 6):

V 0 ¼
100c
EA

; if
L
4
6 x 6

3L
4

� �
\ L

4
6 y 6

3L
4

� �
\ ½0 6 z 6 h�;

0; in the remainder of the domain.

8<
: ð32Þ

The following parameters were adopted: c = 1000 cm/s and q = 0.01 kg/cm3. In the 2D analysis, 20,000 isoparametric
linear triangular elements were adopted. In the 3D analysis 2500 isoparametric parabolic continuum elements were
employed (see Fig. 7). In the frequency-domain analyses, 4096 sampling points and an extended period Tp = 2.5 s, esti-
mated to reduce the contribution of the first mode (x1 ffi 89 rad/s, n1 = 0.05) to h = 1.49 · 10�3% of its initial contribution,
were adopted. In the TD analysis, the implicit HHT method was applied to march on time. Dt = 0.0001 s and 1250 time-
steps were employed. A hysteretic damping coefficient g = 2n1 = 0.10 was adopted. The corresponding stiffness-propor-
tional viscous-damping factor (adjusted by the first mode, and used for both HHT and viscous-damping frequency-domain
analyses) is a1 = 1.13 · 10�3. Note that a TD analysis without damping via HHT scheme with parameters a = 0.00,
b = 0.25, and c = 0.50 was also carried out.
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Figs. 8 and 9 show, respectively, the results related to the vertical displacement and velocity at point A(25,25,0) at the
centre of the membrane. In Figs. 10 and 11, results at point B(12.5,12.5,0) obtained from the 3D analysis is compared with
the corresponding analytical solution (see [19,31]). A good agreement is observed between analytical and numerical
responses. The results obtained from the 2D analysis are not shown, since they are very close to the 3D ones.

With the purpose of observing the influence of the extended period on the response determined through FD analyses,
the membrane shown in Fig. 6 is analyzed again with different extended periods. Namely, the following pairs of Tp values
and sampling points were considered: Tp = 2.5 s and N = 2048; Tp = 1.25 s and N = 1024; Tp = 0.625 s and N = 512;
Tp = 0.3125 s and N = 256; and Tp = 0.1563 s and N = 128. These values of the extended period correspond, respectively,
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to h values of approximately 1.49 · 10�3%, 0.39%, 6.22%, 24.9% and 49.9%, respectively. The time reconstitution of the
displacement at the centre of the membrane is presented in Fig. 12.

In Fig. 13, the velocity time-history at the centre of the membrane, obtained by employing the Central Difference [29]
and the Fourth Order Finite Difference [30] explicit algorithms (TD analyses), is presented. The classic initialization pro-
cedure as well the initialization procedure proposed here, were adopted. As in the case of the previous TD analyses, 1250
time steps of length Dt = 0.1 ms and no damping were considered.

5. Conclusions

This work is concerned with the presentation and validation of a unified approach that enables one to compute the con-
tribution of initial conditions in time- and frequency-domain analyses. Basically, the approach consists in expressing the
initial conditions in terms of suitable pseudo-forces. As shown here, the method is quite general, i.e., frequency-domain
equations are directly obtained from corresponding time-domain ones. The examples presented confirm its applicability
and generality, encouraging its further extension to elastodynamics. In all cases analyzed, a quite good agreement with
the analytical solutions was attained (see Figs. 2–5, 8–11). As observed in Fig. 12, the correct choice of the extended period
Tp plays an important role in a reliable representation of the causality. A very short value of Tp brings perturbations at the
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initial time due to previous time history, i.e. the causality condition is not verified; otherwise, if Tp is too long the analysis
cost will be increased.

On the other hand, the responses shown in Fig. 13, obtained through TD analyses also indicate that the proposed ini-
tialization procedure can be adopted in the most general case of initial conditions. It is important to notice that the use of
this initialization procedure can be very attractive from the computational point of view, since the inversion of the mass
matrix in implicit time-marching schemes becomes unnecessary.

The Finite Element Method (FEM) was used here. Nevertheless, the pseudo-force method is independent of the numer-
ical approach adopted and can be applied with other numerical methods, for instance, the Finite Difference Method
(FDM) or the Boundary Element Method (BEM).
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