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ABSTRACT. An increasing concern among water resources managers is the search for ways to improve 

reservoir sizing techniques. A simple technical and scientifically based technique is the sequent peak 

method, which has been widely disseminated, but presents limitations with respect to the length of the 

available data series. The objective of this study was to propose modifications to the sequent peak method 

to overcome the limitations related to the impossibility of associating the reservoir storage capacity with 

return periods different from the length of the data series. Storage capacities were estimated for every year, 

considering gauge stations located in the Urucuia River Basin, based on the sequent peak method. In order 

to associate such capacities with a frequency factor (return period), the Gumbel distribution was applied to 

the estimated storage values. This association with return periods which differ from the number of years in 

the data series showed great applicability.  
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Introduction 

The main purpose of a reservoir is to regulate natural streamflow by storing excess water in the rainy 

season and releasing the stored water in the dry season. In general, most of the annual streamflow is available 

during a few months of the rainy season, but water demands takes place all year round, thus storage is 

necessary to attend the demands in periods when the natural streamflow is not sufficient to do so (Adeloye, 

Soundharajan, & Mohammed, 2017; Xu et al., 2017).  

In this sense, according to Marino and Loaiciga (1985) a successful sizing method must be developed 

considering the characteristics of the system, in order to obtain simple mathematical formulations and 

overcome the usual dimensionality problems. There are simplified methods and more complex models of 

simulation and optimization. The simplified methods have some limitations that make it difficult to be 

applied to the dimensioning of complex systems. Simulation and optimization models, on the other hand, 

describe the behavior of the system over time and space depending on a given operating scenario. They can 

take into account the stochastic nature of rain and streamflow, and still preserve the characteristics of the 

natural hydrological regime through the use of extensive series (observed or generated). 

Several classifications of reservoirs are possible depending on their purpose, size and storage capacity. 

Based on the capacity, a reservoir may be classified as an annual (seasonal) or pluriannual (over-year) storage. 

An annual reservoir is designed to attend the requirements in months of water deficit within a year. These 

reservoirs are usually built on small tributaries to serve relatively small areas. A pluriannual reservoir is 

designed to attend water demands for periods longer than a year, where the storage accumulated at the end 

of a water year is carried over to the following year (Jain & Singh, 2003).  

Among the methods used to compute storage capacities for annual regularization reservoirs, those which 

are based on the critical period concept are highlighted. The critical period is defined as the period of 

convergence between the highest demand and lowest water supply (Adeloye et al., 2017). Thus, many 

researchers have used the sequent peak algorithm (SPA) in a variety of hydrological studies for water 

resources planning and management (Silva, Sánchez-Román, Teixeira, Franzotti, & Folegatti, 2013; Patskoski 

& Sankarasubramanian, 2015; Kuria & Vogel, 2015; Turner & Galelli, 2016; Adeloye et al., 2017; Al-Zakar, 

Sarlak, & Agha, 2017). Soundharajan, Adeloye, and Remesan (2016) and Adeloye, Soundharajan, Ojha, and 
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Remesan (2016), for instance, reported that the SPA is one of the methods used to calculate the capacity of 

the reservoir under conditions of climate change.  

One limitation of sizing techniques, including the sequent peak algorithm, is the fact that they do not 

allow the association of the reservoir capacity to a return period. Their extreme dependence upon the 

available database frequently limits their application (Nunes & Pruski, 2015; Patskoski & 

Sankarasubramanian, 2018). In this sense, some initiatives have been proposed. Sawatpru and Konyai (2016), 

for example, performed frequency analyses to learn the severity of streamflow droughts along the Yom River 

and quantified the amounts of storage needed along the river with acceptable risks. A deficit volume was used 

to characterize a drought event and the Weibull distribution model was chosen for analysis after comparison 

of log normal and Pareto models with an empirical distribution.  

Nunes and Pruski (2015) proposed potential modifications to the Reservoir Operation Study to overcome 

the dependence upon the first year of the time series and inability of associating the reservoir storage capacity 

with a frequency (return period). To make the reservoir capacity independent from the first year of the time 

series, they created (N − 1) synthetic series of streamflow (N = the number of years in the time series) and 

applied the Reservoir Operation Study method to each one; and to associate the reservoir capacity with a 

frequency factor (return period), they applied a Gumbel distribution to the reservoir capacity estimated from 

each one of the synthetic series. In this case, they worked with pluriannual reservoirs.  

In view of the foregoing, the present study was based on the hypothesis that the technical and scientific 

basis of the sequent peak algorithm combined with a minor dependence on the characteristics of the database 

can increase the use of this method, being still a research line little explored. The paper proposes 

modifications to the method in order to overcome the aforementioned limitations.  

Material and methods 

Sequent peak method 

The regulation volume computed by the sequent peak method is equal to the largest amplitude of the net 

accumulated volume (output volume subtracted from the input volume) estimated for the streamflow data 

series (Patra, 2008; Silva et al., 2013). The algorithm steps are: 

- Calculate Qi – Di (input volume minus the regulated volume – 40% of regularization) for i = 1, 2, … , N. 

The net accumulated volume is then calculated Vi = ∑ (Q
i 
- Di);N

i=1  

- Locate the first peak P1 (local maxima, equal to the value of Vi higher than the previous Vi-1 and higher 

than the posterior Vi+1), in the column of the net accumulated volumes Vi; 

- Locate the following peak P2, which is the second largest peak, i.e., P2 ≥ P1; 

- Between the pair of peaks P1 and P2, find the lowest value T1 of the net accumulated volume Vi and then 

calculate P1 – T1; 

- Starting with P2, find the next sequent peak P3, which must be higher than P2; 

- Find the lowest value T2 of Vi, between P2 and P3, and calculate P2 – T2; 

- Starting with P3, find P4 and T3, and calculate P3 – T3; 

- Continue for all sequent peaks of the N data series; and  

- Calculate the required reservoir capacity, given by: C = max (PK – TK), as shown in Figure 1. 

 

Figure 1. Representation of the critical period in the sequent peak method. 
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However, as cited in the introduction, there are limitations associated to this method, as the fact that it 

does not allow the association of the reservoir capacity to a return period. The extreme dependence upon the 

available database frequently limits its application. 

Modifications on the sequent peak method 

Given the limitations of the sequent peak method, we propose the application of one statistical distribution in 

order to associate the reservoir capacity to return periods different from the number of years in the data series and, 

consequently, minimize its dependence upon the length of the available time series data.  

Considering the characteristics of the data and according to Kuria and Vogel (2015), Youn, Chung, Kang, 

and Sung (2012) and Sawatpru and Konyai (2016) Gamma, Generalized Extreme Value (GEV), Gumbel, 

Lognormal 2P, Lognormal 3P and Pearson type III distributions were considered appropriated to fit the 

probability distribution. Kolmogorov–Smirnov (K–S) test was used to examine the goodness-of-fit of these 

distribution fittings with a significance level of 5%. ALEA software was used for data processing.  

Generally, the more parameters a distribution has, the better it will fit to the data. However, difficulty in 

the parameter estimation arises, and the distribution maybe too rigid to accurately extrapolate beyond the 

range of the available data (Catalunha, Sediyama, Leal, Soares, & Ribeiro, 2002). In this work, all the 

distribution fittings significantly passed the goodness-of-fit test and Gumbel distribution was applied to the 

‘N’ reservoir capacity values calculated by the sequent peak method for every year.  

According to Naghettini and Pinto (2007), the magnitude of the event is given by  

x(T) = β - α ln (- ln (1-
1

T
)) (1) 

where:  

x(T) = reservoir capacity with a return period T, m3; 

β = position parameter; 

α = scale parameter; 

T = return period, years. 

Estimating the distribution parameters by the Moments Method (MOM) are obtained: 

β = �̅� − 0,45 𝑠𝑥   (2)  

where: 

�̅� = sample mean of reservoir capacities, m3; 

𝑠𝑥 = sample standard deviation of reservoir capacities, m3. 

and 

α = 
sx

1,283
    (3) 

Case study 

The study was carried out using consistent time series data from 3 gauge stations located in the Urucuia 

River Basin (Figure 2). The stations belong to the hydro-meteorological network operated by the Brazilian 

National Water Agency (ANA). 

After the obtention of the time series for each station, we analyzed the availability of data for each year 

and selected those which did not present missing or inconsistent values. 

Results and discussion 

Table Table 1 shows the reservoir capacities obtained for each gauge station, for each year, using the 

provided time series data and the sequent peak method. The highest capacity values found for each station 

are highlighted in grey. 

The highlighted values are representative of a specific dry year, which will change only if an even drier 

year than the critical one is incorporated into the series. The consideration of this specific value does not 

allow the association of the reservoir capacity with the variations in the period of analysis. Such association 

occurs when using one statistical distribution, as proposed in this work. 

Table 2 shows the fitted probability distributions under the different stations. A ranking scheme was 

developed to judge the overall goodness-of-fit of each distribution by comparing the test statistic and p-value 
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of K-S test. A distribution with the lowest test statistic or highest p-value would be given a rank of 1. Table 2 

summarizes the overall ranking results. 

Examination of the goodness-of-fit test results reveals that in many cases there was little difference 

between the various distributions for each station. The best-fitting probability distributions of Station 

43429998 were Gumbel and GEV distributions, respectively. In Station 43670000, Pearson type III and GEV. 

GEV and Lognormal 3P provided the best fit for Station 43880000. The Lognormal 2P distributions was rank 

consistently poorly compared to the other stations. However, the fact that a distribution has a low ranking 

does not necessarily mean that it performed poorly, since the differences of good fit between different 

distributions may or may not be statistically significant. Thus, all fitted probability distributions were 

concluded to be appropriate for all stations because the K-S Test results. 

After assessing how well each distribution fit to the overall data sets, Table 3 shows the reservoir capacity 

values obtained by the Gumbel distribution for return periods of 10, 20, 30, 40, 50 and 100 years, as well as 

the highest capacity values found for each station using the sequent peak method. 

For the station 43429998, the capacities ranged from 418.6 to 710.1 hm3 for return periods between 10 and 

100 years, and the highest capacity found for the station using the sequent peak method was 523.2 hm3. If we 

consider the capacity estimated for the return period equal to N years of the time series, then for T = 20, the 

estimated value was 507.9 hm3, i.e., 3% lower than the highest value found for the series containing 18 years 

of data (523.2 hm3). This difference was expected considering that errors in the fitting process of using a 

probability distribution function instead of using empirical values are expected to occur. 

 

Figure 2. Location of the gauge stations used in the study. 
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Table 1. Reservoir capacities (hm3) for each year of the time series data obtained from the 3 gauge stations used in the study. 

Time series 
Gauge stations 

43429998 43670000 43880000 

1 120.3266 128.0377 282.0893 

2 26.7466 492.9772 196.0743 

3 30.8126 258.0749 547.9255 

4 100.6093 759.0358 238.2758 

5 27.4717 550.2261 847.1246 

6 59.3723 415.328 590.231 

7 71.2807 158.9672 452.2674 

8 195.5576 548.1334 153.6418 

9 211.6412 845.6145 582.4335 

10 341.2273 799.5169 932.298 

11 144.7304 215.6076 834.9728 

12 152.6533 35.0263 162.0272 

13 256.189 68.8858 60.7616 

14 409.672 125.26 127.6616 

15 258.202 74.6221 44.5741 

16 468.552 115.6499 105.6295 

17 523.217 143.0886 88.3623 

18 398.243 311.0642 327.8253 

19  357.7396 298.2856 

20  594.6413 611.8619 

21  355.3714 371.1377 

22  574.142 241.4594 

23  256.1985 362.2388 

24  279.9636 253.5866 

25  147.2421 314.7832 

26  497.1003 535.337 

27  405.8016 877.162 

28  630.4472 495.5092 

29  900.5687 975.5069 

30  579.3605 1120.147 

31  994.995 848.9773 

32  1074.339 1131.537 

33  834.0279 111.4959 

34   946.7663 

35   383.409 

36   593.0431 

37   145.1838 

Table 2. Fitted probability distribution under different gauge stations. 

Probability  

distributions 

43429998 43670000 43880000 

K-S Test 

Ranking 

K-S Test 

Ranking 

K-S Test 

Ranking Test Statistic  

(Critical Value = 0.309) 
p-value 

Test Statistic  

(Critical Value = 0.231) 
p-value 

Test Statistic  

(Critical Value = 0.218) 
p-value 

Gamma 0.118 0.950 5º 0.130 0.606 5º 0.119 0.642 4º 

GEV 0.108 0.978 2º 0.105 0.842 2º 0.114 0.694 1º 

Gumbel 0.106 0.983 1º 0.125 0.648 4º 0.122 0.610 5º 

Lognormal 2P 0.178 0.578 6º 0.188 0.173 6º 0.157 0.296 6º 

Lognormal 3P 0.112 0.969 4º 0.106 0.833 3º 0.116 0.671 2º 

Pearson type III 0.110 0.973 3º 0.104 0.846 1º 0.117 0.664 3º 

Table 3. Reservoir capacities (hm3) obtained using the sequent peak method (SPM) and the Gumbel distribution for return periods of 

10, 20, 30, 40, 50 and 100 years. 

Stations 
Return period (T) 

SPM 
10 20 30 40 50 100 

43429998 418.6 507.9 559.3 595.5 623.5 710.1 523.2 

43670000 823.8 988.8 1,083.7 1,150.6 1,202.4 1,362.4 1,074.3 

43880000 885.9 1,067.1 1,171.4 1,244.9 1,301.7 1,477.5 1,131.5 

 

When comparing the other capacities obtained by the Gumbel distribution with the highest value obtained 

by the sequent peak method (last column of Table 3), for the station 43429998, it was possible to observe that 

for T < N years of the series (T = 10), the estimated capacity was 20% lower than the highest value obtained 
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by the method. For T > N years of the series (T = 30, 40, 50, 100) the capacities exceeded in 7% (for T = 30) and 

36% (for T = 100) the value obtained using the sequent peak method.  

The behavior observed for the station 43429998 is quite similar to that observed for the stations 43670000 

and 43880000, as shown in Figure 3. The highest capacities estimated by the sequent peak method are 

represented by SPM lines and those estimated by the Gumbel distribution for different return periods were 

plotted in the MSPM (modified sequent peak method). 

Figure 3 shows that when considering the effect of associating capacities with different return periods 

(MSPM), for T = N years of the series, the estimated value differed by 1% from the highest value estimated by 

the sequent peak method for the station 43670000, and by 10% for the station 43880000. 

Considering the capacities associated with return periods shorter than the number of years (N) of the 

series, T = 10 and 20 years, it was possible to observe that they presented coherent behaviors. For T = 10 years, 

the capacities estimated by the Gumbel distribution were 23 and 22% lower than the highest value estimated 

by the sequent peak method, for the stations 43670000 and 43880000, respectively. For T = 20 years, the 

capacities estimated by Gumbel were 8 and 6% lower than the highest value estimated by the sequent peak 

method. 

For the capacities associated with return periods longer than the number of years (N) of the series, for the 

station 43670000, the differences with respect to the highest value estimated by the sequent peak method 

and those estimated by the Gumbel distribution ranged from 7%, for T = 40 to 27%, for T = 100. For the station 

43880000, such differences ranged from 15%, for T = 50 to 31%, for T = 100.  

Similar results were obtained by Nunes and Pruski (2015), which proposed potential modifications to the 

ROS to overcome the dependence upon the first year of the time series and inability of associating the 

reservoir storage capacity with a frequency (return period). Applying Gumbel distribution, in this case working 

with pluriannual reservoirs, when the return period was greater than the number of years in the time series, 

the differences ranged from 10 to 62 % for T = 40 and from 20 to 78% for T = 100. 

Still in this context, Sawatpru and Konyai (2016) performed frequency analyses to learn the severity of 

streamflow droughts along the Yom River and quantified the amounts of storage needed along the river with 

acceptable risks. Weibull distribution model was chosen for analysis after comparison of log normal, and 

Pareto models with an empirical distribution. The authors concluded that the method presented can help to 

quantify the severity of hydrological drought along any river so that drought management measures can be 

undertaken. 

Considering, then, future works, probability functions different to Gumbel distribution can be used, 

according to data profile, in order to better associate the reservoir capacity with a frequency factor (return 

period). It is also important to mention that it was calculated annual storage for high return periods as 50-

100 years, considering 40% of the potential of regularization (regulated volume). For higher percentages of 

regularization, shorter return periods should be evaluated, considering that the assumption of intra-annual 

regulation and independence between years can be compromised. 

 

Figure 3. Reservoir capacities estimated by the sequent peak method (SPM) and Gumbel distribution (MSPM) for different return 

periods, and for stations 43429998, 43670000 and 43880000. 
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Conclusion 

The modifications proposed to the sequent peak method showed great applicability to overcome the 

limitations related to the dependence upon the length of the time series, i.e., they allowed the association of 

the reservoir capacity with return periods different from the number of years in the data series.  

The resulting approach suggest that the technique is a tool that is more reliable than the classical empirical 

and more practical than the synthetic hydrology approaches in reservoir storage studies. However, it is 

important to mention, this is a simplified method with limitations to be applied in the dimensioning of 

complex systems.  
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