
Syntactic Similarity of Web Documents

Álvaro R. Pereira Jr Nivio Ziviani
Department of Computer Science

Federal University of Minas Gerais
Belo Horizonte, Brazil

�alvaro, nivio�@dcc.ufmg.br

Abstract

This paper presents and compares two methods for eval-
uating the syntactic similarity between documents. The first
method uses the Patricia tree, constructed from the original
document, and the similarity is computed searching the text
of each candidate document in the tree. The second method
uses shingles concept to obtain the similarity measure for
every document pairs, and each shingle from the original
document is inserted in a hash table, where shingles of each
candidate document are searched. Given an original doc-
ument and some candidates, two methods find documents
that have some similarity relationship with the original doc-
ument. Experimental results were obtained by using a pla-
giarized documents generator system, from 900 documents
collected from the Web. Considering the arithmetic average
of the absolute differences between the expected and ob-
tained similarity, the algorithm that uses shingles obtained
a performance of ����� and the algorithm that uses Patri-
cia tree a performance of �����.

1. Introduction

The problem of detecting web documents that have some
similarity degree with a given input document has been
studied in several contexts: search engines avoid indexing
similar documents in their document bases, people wish to
find documents that originated an input text, or even de-
tect plagiarism between several documents obtained from
the Web, among others.

This work is part of a system called “Copy Detection
Mechanism of Web Documents”. It consists of a system
that search and match similar documents to an input docu-
ment. From a text document whose “possible predecessor”
we wish to find, the system searches the Web for similar-
ity candidate documents and then calculate the similarity
degree of these documents with the document informed by
the user. The word “similarity” will be used to indicate the

“similarity degree” between “candidate documents” and the
input document, called here “plagiarized document”. Fig-
ure 1 shows the main steps performed by the system, as fol-
lows:

1. The user presents the input document that he wishes to
find similar documents;

2. The input document is converted to ASCII format;

3. The parsing of input document is performed to obtain a
“fingerprint” that will be used in the meta-search step;

4. The meta-search is performed in different search en-
gines using the document fingerprint;

5. Several candidate documents are returned and con-
verted to ASCII format;

6. The similarity between the original document and each
candidate is calculated and returned to the user.

4

2
1

3

5
6

WWW

Figure 1. copy detection mechanism of web
documents

This paper presents two methods for detecting and eval-
uating the syntactic similarity between documents: Patricia

Proceedings of the First Latin American Web Congress (LA-WEB 2003)
0-7695-2058-8/03 $17.00 © 2003 IEEE

tree and shingles. Given a plagiarized and several candidate
documents, the two methods allow to find documents with
some similarity relationship with the plagiarized document.

The first method uses the Patricia tree [11]. The Patricia
tree is constructed over the plagiarized document and the
candidate documents have their contents searched on the
tree, which allows detect occurrences of long similar pas-
sages in the plagiarized document. The Patricia tree con-
struction algorithm can be found in [1, 16] and has time
complexity O(�log�). A quadratic algorithm was proposed
in [2] for secondary memory. In [15] a linear algorithm is
proposed.

The second method uses the “shingles” concept [4] for
measuring syntactic similarity between each candidate doc-
ument and the plagiarized, compared in pairs. The total
number of shingles present and not present in each pair of
documents is used to calculate the pair similarity.

The aim of this work is to study the similarity between
a given document and a set of candidate documents, which
represents step 6 of the system “Copy Detection Mechanism
of Web Documents”. Experimental results were obtained
using a set of documents generated by a plagiarized doc-
ument generator system. The similarity of a generated doc-
ument was compared with each candidate document used in
its composition.

2. Inserting and Searching SiStrings in the
Patricia Tree

Patricia tree (Practical Algorithm To Retrieve Informa-
tion Coded In Alphanumeric) algorithm was presented in
[11]. It is a binary digital tree where individual bits from the
key are used to decide the branch that should be followed.
A bit “zero” will indicate a branch to the left sub-tree and a
bit “one” will indicate a branch to the right sub-tree. Each
tree internal node contains an integer that indicates which
bit of the query might be analyzed for branching. The exter-
nal nodes store key values [16, 1].

A semi-infinite string, SiString, is a subsequence of char-
acters from the text document, taken from a given starting
point but going on as necessary to the right. It was also used
in [10], as a data structure called suffix arrays.

Figure 2 shows the SiStrings for “uma rosa é uma rosa.”,
considering each character as indexing points, and Figure 3
shows for the same example the SiStrings considering the
beginning of each term as indexing points.

In the following we show an example of a Patricia tree
for the SiStrings of Figure 3. For the understanding of the
process, we take the binary extended ASCII code of the
first character of every different term of the example: é =
11101001, r = 01110010 and u = 01110101. We also con-
sider the code of the character that indicates the end of the
text, in this case “.” = 00101110 and the space character

uma rosa é uma rosa.
ma rosa é uma rosa.
a rosa é uma rosa.
rosa é uma rosa.
......
osa.
sa.
a.

Figure 2. SiStrings with indexing points be-
ing each character

1. uma rosa é uma rosa.
2. rosa é uma rosa.
3. é uma rosa.
4. uma rosa.
5. rosa.

Figure 3. SiStrings with indexing points be-
ing the begin of the terms

“ ” = 00100000. Figure 4 shows the Patricia tree for the
SiStrings of the text “uma rosa é uma rosa.”. The internal
nodes contain a number that represents the order of the bit
that does not match the SiStrings that appear in that sub-
tree. The external nodes have pointers to places on the text.

412 5

6937

1

36

Figure 4. Patricia Tree using SiStrings

As characters r and u differ from character é in the first
bit, the tree root node has the value �. Going to the right sub-
tree, we find a leaf node pointing to the single SiString that
begins with the character é. Going to the left sub-tree, we
find that the bit that differs these characters is the sixth, and
the number � appears in the next internal node. From this
point, going to the left sub-tree, the number �� appears in
internal node indicating that SiStrings � and � differ them-
selves only in their thirty seventh bit. This can be verified by
noticing that SiStrings have � equal characters. Following,
the SiString � has a space and the SiString � has an indica-

Proceedings of the First Latin American Web Congress (LA-WEB 2003)
0-7695-2058-8/03 $17.00 © 2003 IEEE

tive of end of the text. Comparing the set of bits that repre-
sents these two characters, we verify that they differ them-
selves by the fifth bit. Thus, the number �� in the node in-
dicates that they have � equal characters (� � 	
 ��) and
in the fifth character they differ themselves by the fifth bit
(�� � �
 ��).

Figure 5 presents the algorithm. We consider the begin-
ning of each term as indexing points. Meaning of each vari-
able is:

�� – plagiarized document;
��� – candidate document �;
���� – number of characters of plagiarized document;
��� – set of SiStrings from plagiarized document;
��� – number of characters matched for candidate

document �;
��� – Similarity counter for candidate �;
��� – Total similarity between candidate document � and

the plagiarized document;

1. read �� and each ���;
2. ���� = Length(��);
3. ��� = GenerateSiStrings(��);
4. for each ���� generated:

InsertPatricia(����);
5. for each ���:

while (��� != EOF):
��� = SearchPatricia(���);
if (��� � ��):

���
 ��� ����;
���
 ��� ����;

���
 ���	����;
return ���;

Figure 5. Patricia tree algorithm

Each candidate document is searched in the Patricia
tree obtained for the plagiarized document. The similarity
counter ��� is incremented only when ��� � ��. This is the
way of eliminating “false matches” in the answer set. Other
values were tried but �� gave the best results. The new text
for searching is taken by ���
 ��� ����.

The total similarity ���
 ���	���� indicates how much
of candidate document � is present in the plagiarized docu-
ment.

As an example, consider �� = “uma rosa é uma rosa é
uma rosa.” and ��� = “nunca uma rosa é uma rosa é uma
violeta.”. The algorithm starts reading the two documents
and storing the length of ��, which is �� characters long,
in ����. Next the SiStrings of �� are inserted in the Patri-

cia tree. From this point, the algorithm computes �
�, by
searching each ��� in the Patricia tree obtained for ��. The
result of this search, given in number of characters, is stored
in ���. If this number is greater than fifteen, �
� is incre-
mented by ���. The new ��� will be the remaining of the
SiString that it was not found in the search. In the example,
the first six searches return values less than �� for ���, since
the term “nunca ” is not found in the tree. The next SiString
in ��� is “uma rosa é uma rosa é uma violeta.”. The search
for this SiString returns ���
 ��, since the matched string
is “uma rosa é uma rosa é uma ”. The search for the remain-
ing of the SiString also does not return ��� � ��, so, the
final value of �
� is ��. Thus, ���
 ��	��
 	����.

Patricia trees are very efficient because only O(logn)
bit inspections are necessary to obtain the whole set of
SiStrings answering a query [3], where � is the number of
indexing points.

3. Use of Shingles in the Similarity Measure

According to [4], two documents A and B can present
the relations of “resemblance” and “containment”. The �-
shingling����� of a document� is the set of whole shin-
gles with size � contained in �. This set represents the
information used to calculate the similarity between doc-
uments. For example, the �-shingling of the text “uma rosa
é uma rosa é uma rosa” is:

��� ��
 �(uma, rosa, é, uma), (rosa, é, uma, rosa), (é,
uma, rosa, é)�,
resulting in three different shingles with �
 �. In this
work, the shingles that occur more than once in the text will
appear only once in answer set, as with the two first shin-
gles from the example. Experiments demonstrate that a bet-
ter performance is obtained for this situation.

From the distinct set of whole shingles of two docu-
ments, the absolute similarity between them is calculated
using the concept of intersection and union of sets, as
shown:

����

��� � � ����

��� � � ����
(1)

where �� � represents the set of whole shingles of the pla-
giarized document and ��� the set of shingles of the can-
didate document.

In practice, we have �� � � ��� representing the total
number of shingles occurring in the plagiarized document
and in the candidate document and �� ����� represent-
ing the sum of the number of shingles occurring simultane-
ously in two documents plus the number of shingles that oc-
curs in each of the documents that do not occur in the other
one.

In the same way, it is possible to verify how much of a
candidate document C is contained in another plagiarized

Proceedings of the First Latin American Web Congress (LA-WEB 2003)
0-7695-2058-8/03 $17.00 © 2003 IEEE

document P, as in the following equation:

����

��� � � ����

��� ��
(2)

Figure 6 presents the pseudo-code of the algorithm. It con-
siders ���� as the set of shingles of the plagiarized docu-
ment and ���� as the set of shingles of the candidate docu-
ment.

1. read �� and ���;
2. ���� = GenerateShingles(��);

for every �����:
�� = SearchHash(�����);

if (�����

 �): /*not found*/
InsertHash(�����);
�� �++;

3. ���� = GenerateShingles(��);
for every �����:

����� = PesquisaHash(�����);
if (������
 �):

�� � � ���� � �;
DeleteHash(�����);

5. return
����;

Figure 6. Shingles algorithm

As an example of the execution of the algorithm con-
sider �� = “uma rosa é uma rosa é uma rosa”, ��� = “uma
rosa é uma rosa vermelha ou branca.”, and �
 �. By step
2, the �-shingles of �� are taken and inserted in a hash ta-
ble. Each different shingle is inserted only once, even if it
occurs more than once. The total number of inserted shin-
gles stored in �� � is �, for this example: (uma, rosa, é,
uma), (rosa, é, uma, rosa) and (é, uma, rosa, é). In step 3,
shingles from ��� are taken: (uma, rosa, é, uma), (rosa, é,
uma, rosa), (é, uma, rosa, vermelha), (uma, rosa, vermelha,
ou) and (rosa, vermelha, ou, branca); following, they are
searched in the hash table. The total number of successful
searches is stored in �� �� ����. In this case, two shin-
gles are found. In step 4, the obtained similarity ��� is cal-
culated by
����
 �	�
 �����.

Some other works use hash to verify the similarity be-
tween documents. In the tool COPS [6], the sentences of
documents are inserted in the hash table, while SCAM [13]
inserts each different term in the table. Other works as
[9, 12, 5, 7] use hashing with different heuristics for de-
ciding the information to be stored, as well as different hash
functions.

4. Experimental Results

4.1. Automatic Generation of Plagiarized Docu-
ments

We created a synthetic set of documents as follows. We
composed a set of documents from passages of documents
available in the Web, whose themes are given by the word
from the query. The aim of the system is to simulate a com-
position of a document made by an user using pieces of
documents from the web. The number of documents that
might be used in the composition of a plagiarized document
is given, as well as the number of terms that the plagia-
rized document might have related to the size of the docu-
ments returned from the search. It is also possible to insert
the paragraphs in the plagiarized document. This function-
ality is added since the user that makes a plagiarism nor-
mally completes the document with its own text. This situ-
ation was not treated in the experiments.

In the initial step the system collects the first ten docu-
ments returned from a query performed by the search engine
TodoBR [14]. Following, the HTML document is parsed to
obtain the text in ASCII format, which is separated in para-
graphs. Random paragraphs from each document are used
to compose the plagiarized document, always maintaining
the percentage of common terms that the plagiarized docu-
ment has related to each document used in the composition.
This information is the expected similarity, ��, of the pla-
giarized document related to the candidate document.

Figures 7, 8, 9 and 10 present different documents 1 that
are used to generate the plagiarized document presented in
Figure 11. Next we will explain how the plagiarized docu-
ment of Figure 11 was obtained.

“O amor quer abraçar e não pode.
A multidão em volta,
com seus olhos cediços,
põe caco de vidro no muro
para o amor desistir.

Figure 7. Document A

Document A from Figure 7, with 25 terms, will be con-
sidered as containing passages written by the user. The doc-
ument is created with 60% of its text composed by the doc-
uments from the query (documents B, C and D, from Fig-
ures 8, 9 and 10, with 39, 16 and 22 terms, respectively) and
40% of its text composed from the user document (in this
case document A). Thus, we hope that the plagiarized docu-

1 Pieces extracted from the poem “Corridinho”, written by Adélia
Prado.

Proceedings of the First Latin American Web Congress (LA-WEB 2003)
0-7695-2058-8/03 $17.00 © 2003 IEEE

O amor usa o correio,
o correio trapaceia,
a carta não chega,
o amor fica sem saber se é ou não é.
O amor pega o cavalo,
desembarca do trem,
chega na porta cansado
de tanto caminhar a pé.

Figure 8. Document B

Fala a palavra açucena,
pede água, bebe café,
dorme na sua presença,
chupa bala de hortelã.

Figure 9. Document C

Tudo manha, tudo truque, engenho:
é descuidar, o amor te pega,
te come, te molha todo.
Mas água o amor não é”

Figure 10. Document D

ment would be composed by at least ��	��
 ����� of the
terms from each one of the three documents used in this ex-
ample.

The system reads randomly paragraphs from each doc-
ument and save, also randomly, paragraphs in plagiarized
document. For document C, which contains 16 terms, 20%
means approximately three terms. When taking each para-
graph, considering that they have 4 terms each, no another
paragraph from this document would be taken, since the
similarity value is already above 20%. The expected sim-
ilarity will be given by ��
 � � ����	��
 �����. The
paragraph used would be inserted in the plagiarized docu-
ment randomly.

é descuidar, o amor te pega,
A multidão em volta,
dorme na sua presença,
“O amor quer abraçar e não pode.
a carta não chega,
para o amor desistir.
O amor pega o cavalo,

Figure 11. Example of plagiarized document

As the new document of Figure 11 has 15 terms from
document A, 9 terms from document B, 4 terms from docu-
ment C and 6 terms from document D, the expected similar-
ity between the plagiarized document and each of its gener-
ators is ������, ������, ������ and ������, respectively,
for documents A, B, C e D, according to the total number
of terms of each document used to compose the plagiarized
document.

As the algorithm works by taking whole paragraphs from
documents until the minimal similarity calculated is ob-
tained (for our example, 20% for each document from the
search and 40% for the user document), some values of ex-
pected similarity can be significantly greater than this lim-
its, as happens with document A.

4.2. The Experiments

The collection used in the experiments was composed by
the 10 first HTML pages returned from 900 different queries
submitted to the search engine TodoBR [14]. The steps for
the performance evaluation of the two implemented meth-
ods where:

1. Generation of plagiarized documents containing pas-
sages from the first 10 documents returned from 900
queries;

2. Use of shingles to determinate the similarity between
the documents;

3. Use of the Patricia tree to determinate the similarity be-
tween the documents;

4. Calculation of the difference between the expected and
obtained similarity for both Patricia and shingles algo-
rithms;

5. Calculation of the average differences for each algo-
rithm.

Step 1 was described in section 4.1. Step 2 was per-
formed for � varying from 2 to 10. At this point, each
document used to compose the plagiarized document ��

is matched against �� using the shingles algorithm pre-
sented in section 6. In step 3, a procedure similar to the
one presented in step 2 is performed using the Patricia tree.
Step 4 obtains the absolute difference between each value
of the expected similarity (obtained in step 1) and the ob-
tained similarity, for each running of the algorithms. Step 5
returns a list of average differences obtained in step 4.

4.3. Results

Experiments were performed to evaluate the differences
between the expected similarity (obtained by the generator)
and the similarity obtained by the Patricia and shingles al-
gorithms. For the shingles algorithm, different values were

Proceedings of the First Latin American Web Congress (LA-WEB 2003)
0-7695-2058-8/03 $17.00 © 2003 IEEE

evaluated for �, from 2 to 10. The value of �
 � was not
considered.

The arithmetic average of differences between the ex-
pected and obtained similarity was obtained for each
method, between each candidate document �� and the pla-
giarized document ��, for each query. We considered 900
queries for each method,

Table 1 presents the results for the two methods. The
numbers represent the total arithmetic average obtained for
each method, including the variations for the shingle algo-
rithm, with different values of �. A value close to zero rep-
resents the best possible result, that is, the smallest differ-
ence between the expected and the obtained similarity by
each method.

Figure 12. Graphic of the average of differ-
ences between expected and obtained re-
sults

The algorithm implementing shingles presents better re-
sults than the algorithm implementing the Patricia tree. The
best value verified for � was �, whose difference between
expected and obtained results was �����. The same mea-
sure for the Patricia tree was �����.

5. Conclusions

This paper have presented and compared two effective
methods to evaluate the syntactic similarity between docu-
ments. The methods are able to detect plagiarism in a given
document, and documents collected from the Web.

The first method implemented the Patricia tree, which
has time complexity O(�log�) for the tree construction,
where � is the size of the document, and constant complex-
ity for searching similar passages.

The second method used shingles, which also has time
complexity O(�log�).

The best result obtained was with shingles algorithm,
for the value of �
 �, whose average difference between
the expected result and the obtained result was �����. The
same measure for the Patricia tree was �����.

As a future work, we will study ways of determining the
best fingerprinting to a query document. This fingerprinting
might be used in the search in the Web for similarity candi-
date documents.

Acknowledgements

This work was supported in part by the SIAM project–
grant MCT/FINEP/CNPq/PRONEX 76.97.1016.00,
the GERINDO project–grant MCT/CNPq/CT-INFO
552.087/02-5, and by CNPq grant 520.916/94-8 (Nivio Zi-
viani).

References

[1] L. C. A. Albuquerque. Recuperação eficiente de informação
em bancos de dados não estruturados. Master’s thesis,
DCC/UFMG, Belo Horizonte, Brasil, Março 1987.

[2] G. H. Gonnet; R. A. Baeza-Yates and T. Snider. Informa-
tion Retrieval: Data Structures and Algorithms, chapter New
Indices for Text: Pat Trees and Pat Arrays, pages 66–82.
Prentice-Hall, 1992.

[3] R. Baeza-Yates, E. F. Barbosa, and N. Ziviani. Hierarchies of
indices for text searching. Information Systems, 21(6):497–
514, 1996.

[4] A. Broder. On the resemblance and containment of doc-
uments. In Compression and Complexity of Sequences
(SEQUENCES’97), pages 21–29. IEEE Computer Society,
1998.

[5] D. M. Campbell; W. R. Chen and R. D. Smith. Copy detec-
tion systems for digital documents. 78-88. In IEEE Advances
in Digital Libraries (ADL 2000), pages 78–88, Washington,
May 22-24 2000.

[6] S. Brin; J. Davis and H. Garcia-Molina. Copy detection
mechanisms for digital documents. In ACM SIGMOD An-
nual Conference, pages 398–409, San Francisco, May 1995.

[7] R. A. Finkel, A. Zaslavsky, K. Monostori, and H. Schmidt.
Signature extraction for overlap detection in documents.
In Michael J. Oudshoorn, editor, Twenty-Fifth Australasian
Computer Science Conference (ACSC2002), Melbourne,
Australia, 2002. ACS.

[8] W. Frakes and R. Baeza-Yates. Information Retrieval: Data
Structures and Algorithms. Prentice-Hall, North Virginia,
1992.

[9] N. Heintze. Scalable document fingerprinting. In 1996
USENIX Workshop on Electronic Commerce, November
1996.

[10] U. Manber and G. Myers. Suffix arrays: A new method for
on-line string searchs. In 1st ACM-SIAM Symposium Dis-
crete Algorithms, pages 319–327, San Francisco, 1990.

Proceedings of the First Latin American Web Congress (LA-WEB 2003)
0-7695-2058-8/03 $17.00 © 2003 IEEE

Methods w = 2 w = 3 w = 4 w = 5 w = 6 w = 7 w = 8 w = 9 w = 10 Patricia
Differences 8.97% 6.72% 4.13% 5.04% 7.34% 9.67% 11.42% 12.71% 13.78% 7.50%

Table 1. Average of differences between expected and obtained results

[11] D. R. Morrison. Practical algorithm to retrieve information
coded in alphanumeric. ACM, 15(4):514–534, Oct 1968.

[12] R. L. Ribler and M. Abrams. Using visualization to de-
tect plagiarism in computer science classes. In IEEE Sym-
posium on Information Vizualization 2000, pages 173–178,
Salt Lake City, Utah, October 09 - 10 2000.

[13] N. Shivakumar and H. Garcia-Molina. Scam: A copy de-
tection mechanism for digital documents. In 2nd Inter-
national Conference in Theory and Practice of Digital Li-
braries (DL’95), Austin, Texas, June 1995.

[14] TodoBR. http://www.todobr.com.br, 2003.
[15] E. Ukkonen. On-line construction of suffix trees. In Algo-

rithmica, pages 14:249–260, 1995.
[16] N. Ziviani. Projeto de Algoritmos com Implementações em

Pascal e C. São Paulo, Brazil, 1993.

Proceedings of the First Latin American Web Congress (LA-WEB 2003)
0-7695-2058-8/03 $17.00 © 2003 IEEE

