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Abstract  This article presents a careful comparative
evaluation of two techniques for numerical curvature
estimation of 2D closed contours (more specifically closed,
regular and simple parametric curves).  The considered
methods are: (a) a 1-D Fourier-based approach; and (b) a 2-D
Fourier-based approach involving the embedding of the
contour into a 2-D regular surface (presented for the first time
in this article).  Both these techniques employ Gaussian
smoothing as a regularizing condition in order to estimate the
first and second derivatives needed for curvature estimation.
These methods are considered according to a multi resolution
approach, where the standard deviation of the Gaussians are
used as scale parameters.  The methods are applied to a
standard set of curves whose analytical curvatures are known
in order to estimate and compare the errors of the numerical
approaches.  Three kinds of parametric curves are considered:
(i) curves with analytical description; (ii) curves synthesized in
terms of Fourier components of curvature; and (iii ) curves
obtained by splines.  A precise comparison methodology is
devised which includes the adoption of a common spatial
quantization approach (namely square box quantization) and
the explicit consideration of the influence of the related
smoothing parameters.  The obtained results indicate that the 1-
D approach is not only faster, but also more accurate.
However, the 2-D approach is still interesting and reasonably
accurate for applications in situations  where the curvature
along the whole 2-D domains is needed.

Key-words:  Differential geometry, numerical techniques,
cuvature estimation, performance evaluation, Fourier
transform.

1 INTRODUCTION
One of the keys to characterize and analyze visual information,
as well as many natural signals, consists in removing the many

redundancies often found in such data [Barlow, 1994].  Typical
images in our visual world are indeed characterized by a high
degree of correlation between neighboring points.  For
instance, the current page is characterized by a high degree of
correlation regarding both the letters (black points) and
background (white points).  Consequently, a first sensible step
in addressing image analysis consists in applying some high-
pass filter capable of enhancing high contrast points, i.e. the
object borders, in detriment of low contrast regions.  When
such enhanced images are followed by binary border
extraction, the resulting contours will often preserve the
majority of the original visual information, reinforcing the
importance of contours as compact and information preserving
representations of visual shape. However, despite the
redundancy removal implemented by border extraction, the
obtained contours stil l may exhibit a high degree of
redundancy.  For instance, straight lines are maximally
correlated 1-D elements in space, since they can be represented
in terms of just their extremities.  It becomes clear that
additional levels of redundancy removal are needed in order to
better represent visual shapes.  Interestingly, the compaction
allowed by redundancy removal is essential not only for
reducing storage, but also allows the more relevant and salient
information (such as vertices) to be emphasized. While the
above mentioned piecewise linear scheme can be considered, it
represents a first order approach which is not particularly
effective for more elaborated curves.  Indeed, piecewise linear
representations can be understood as being dual to the analysis
of high curvature points, since straight lines present the lowest
curvature magnitude (i.e. zero).  One particularly effective
means of characterizing and representing shapes is in terms of
point curvature, given by Equation (1) for parametric
representation, which is not restricted to arc-length parameter.
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θ , where both s and w are arc-lengths.

The special relevance of curvature as a shape descriptor stems
from the following facts: (i) the curvature is conceptually and
physically meaningful, indicating how bent a portion of a curve
is; (ii ) the curvature representation preserves information in the
sense that the original curve can be recovered from its point
curvatures, except for translation and rotation  see Equation
(2); and (iii ) as will be further discussed in this article,
curvature expresses the inverse of the local spatial scale
(related to the curvature center), thus providing a valuable
indication of this important parameter. Indeed, the importance
of digital curvature estimation has motivated a series of related
approaches (e.g. [Mokhtarian & Mackworth, 1992; Medioni &
Yasumoto, 1987; Baroni & Barletta, 1992]), as well as some
comparative assessments [Worring & Smeulders, 1992;
Fairney & Fairney, 1994].  As a matter of fact, curvature is one
of the most important information about shape contours, being
used in many different situations, such as for object
classification or polygonal approximation [Pernus et al, 1993;
Medioni & Yasumoto]. Nevertheless, in spite of its importance,
no definitive numerical technique for curvature estimation has
been obtained and vision researchers face are confronted with a
multitude of different techniques for estimating the curvature
of digital contours. While the curvature of continuous curves
can often be easily and precisely determined by using the
respective symbolic expression and derivatives involved in
Equation 1, the problem of estimating curvature of spatially
sampled contours is not straightforward.  The principal
problem with such "digital curvature" estimation approaches is
that spatially sampled curves do not even present curvature in a
strict sense, for they are no more than a set of singularities
(isolated points).  Thus, some regularizing pre-processing, such
as smoothed interpolation, is needed before curvature can be
estimated. In order to circumvent the problem of numerical
differentiation, some works have developed techniques that
estimate alternative measures, such as the c-curvature [Davis,
1977]. On the other hand, curvature may be directly estimated
by using numerical differentiation (such as finite differences),
interpolation [Medioni & Yasumoto, 1987] or signal
processing techniques (such as convolution with differentiation
kernels or Fourier properties) [Mokhtarian & Mackworth,
1992, Cesar & Costa, 1997]. Finally, there are methods that
attemp to estimate the curvature directly from the 2-D data
[Chen et al., 1995].

The work reported in the current article considers the following
two principal numerical approaches to the estimation of digital
curvature of closed, regular, and simple parametrized curves:
(a) a 1-D Fourier-based including Gaussian smoothing [Cesar
and Costa, 1997]; and (b) a 2-D Fourier-based approach,
involving 2-D embedding of the curve into a surface and
Gaussian smoothing, presented for the first time in this article.
These two approaches present similarities and differences.  To
start with, both techniques have a multi resolution nature
defined by the standard deviation of the Gaussians, which are
used to provide the regularization (under the constrain of
smoothness) required for effective curvature estimation.  In
both cases, this regularization implements some interpolation
scheme along the original isolated points in the contour.  Yet,
while the 1-D approach works directly on the 1-D parametrized
representation of the curve, the 2-D method applies 2-D
derivative fil ters and required the 1-D curve to be transformed
into a surface. Such Fourier-based approaches use the well-

known derivative property of the Fourier transform
[Castleman, 1996], given by Equation (3), where s(t) is the
original signal in the time (t) domain, a is the order of the
derivative (a real value), j is the imaginary number, f stands for
frequency, and ℑ is the Fourier transform.
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Although the accuracy and performance of the 1-D Fourier-
based approach has been assessed previously by comparing the
exact and estimated values for curves generated by splines
[Mortenson, 1985], having produced encouraging results, it
would be interesting to develop a more comprehensive and
formal comparison approach.  The main objective of the
present article is not only to pursue such a possibilit y, but also
to compare the obtained results with those produced by the
considered 2-D Fourier-based scheme.  As in [Cesar and Costa,
1997], curves with known analytical curvature are adopted as
standard for comparison, using Euclidean metric. The
considered curves, all closed regular and simple, include two
analytical curves, a Fourier synthesized contour [Zahn and
Roskies, 1972], and a curve obtained by using splines.  Special
attention is drawn to devising a fair comparison scheme.  This
includes a histogram-based limitation of curvature values in
order to enforce a reasonable representation of curvature values
in the orthogonal grid.  In addition, the sensitivity of the two
techniques with respect to the scale space parameter is
explicitly and carefully considered.  Firstly investigated is the
effect of the scale over the estimation, and the best scales are
then considered for all subsequent comparisons, i.e. the latter
consider the best overall results for each curve with respect to
each scale parameters.  The obtained results are statistically
analyzed, including errors distribution in terms of curvature
ranges and dependence with the scale space parameters.  In
addition to accuracy, the execution speed is also considered
and comparatively quantified.

The current article starts by reviewing the two considered
numerical techniques for curvature estimation and proceeds by
discussing the developed approach for comparing them.  The
obtained results are then presented and discussed.

2 1-D FOURIER-BASED CURVATURE
ESTIMATION

The method presented in this section is based on the multiscale
curvature approach (the curvegram) introduced in (Cesar &
Costa (1997)). This approach has proven to be a useful
practical tool in many situations, such as in stereo vision and in
the analysis of neural images for biomedical applications.. We
start with the parametric curve c(n) = (x(n), y(n)), where the
parameter n = 0,…,N-1, where N is the number of points along
the contour. This contour can be represented by a complex

signal u(n) = x(n) + i y(n), where 1−=i . The method
makes use of the Fourier transform pair defined by  u(n), which
can be defined as (Brigham, 1988):
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The curvature calculation involves the estimation of the
discrete derivatives of the digital signal u(n), which is done
based on the Fourier transform and its derivative property
(Brigham, 1988). The application of this property to the
coeff icients generated by FFT algorithms (which are usually
applied to compute Fourier transforms) requires the definition
of an auxili ary function η(s):
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where N2 = floor(N/2) is the traditional truncation function.
Function η(s) is used to cope with the standard indexing
representation of the FFT.  The first and the second derivatives
of u(n) can then be defined as:
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where n = 0,1,…,N-1 and s = 0,1,…,N-1. The multiscale
behavior is introduced by filtering the original signal with a
Gaussian Ga(s) = exp(-(a η(s))2):
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which is equivalent to a convolution (Brigham, 1988) with
inverser Fourier transform of the above Gaussian function.
The scaling parameter "∆t" corresponding to the parameter
quatization, presented for the first time in this article, is needed
in order to conserve the center of mass of the closed curve and
to altogether avoid the somewhat subjective normalization
procedure, for instance in terms of perimeter or signal energy,
used in (Cesar & Costa (1997)).  The multiscale curvature
description of the contour c(n), which constitute the curvegram
(Cesar & Costa (1997)), is defined as:
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where z* denotes complex conjugate.

3 2-D FOURIER-BASED CURVATURE
ESTIMATION

While the technique discussed in the last section is based on 1-
D parametrized complex contours, it is also possible to use 2-D
differential operators such as that in Equation (6) to estimate
the curvature.  Given a regular and simple parametrized curve
c(t) as in the previous section, they have to be extended onto

the 2-D domain in some way before such 2-D operators can be
applied.  Two possible alternatives for such an embedding are:
(i) to fill the interior of c(t) with '1s'; and (ii ) to apply a signed
distance transform to the contour, in such a way that the
interior becomes negative (resp. positive) and the exterior
positive (resp. negative).  The present article has adopted the

former scheme.  Once such an extension ( )yx,φ  is achieved,

the curvature of the contour defined by ( ) ayx =,φ (a level-

curve) can be estimated by using Equation (6).
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As with the 1-D approach described in the previous section, it

is necessary to regularize ( )yx,φ , since this is represented in

a spatially sampled space.  This will be done by convolving

( )yx,φ  with a circularly symmetric 2-D Gaussian given by

Equation (7).
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4 THE COMPARISON METHODOLOGY
As reviewed in the previous sections, both Fourier-based
methods can operate on the original contour and produce, for a
specific spatial scale parameter σ, a numeric estimation of the
point curvature along the closed curve.  The main purpose of
the current article is to provide a careful assessment of the
performance of both techniques by taking into account
accuracy, sensibility to parameter variation, and execution
time.  However, in order that meaningful conclusions can be
reached, every care is needed in devising a reasonably
comprehensive and fair comparison procedure.

The first important issue regards what curves to consider.  Such
curves should not only allow  accurate analyitic point curvature
estimation, but also reasonably represent typical shapes found
in image analysis and vision.  While it is impossible to consider
every class of shapes in an experimental assessment, we have
considered three classes of curves, two of which re ill ustrated,
jointly with their curvature plot and respective equations, in
Figure 1.  These include (i) analytical curves; (ii ) curves
synthesized in terms of Fourier components of curvature
(Zahn & Roskies (1972)); and (iii ) general curves generated by
using splines (Fig. 1c) (Mortenson, 1985). The spline-baesd
contours address the curvature estimation of free forms, which
represent in a more legitimate way those commonly found in
real pictures. Within this framework, contours are generated
interactively through the definition of a series of control points
along the Cartesian plan. Once the B-splines are expressed in
terms of analytical polynomial expressions, it is possible to
calculate the curvature of each point along the contour.  It
should be observed that while the equations in Figure 1 adopt
the parametrization allowing the simplest equations, in the
implementation and comparison all parameters have been
normalized within the interval [0,1].
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Figure 1 - Two of the four types of curves considered in the comparative evaluation: (a) curve generated by splines and (b) curve
synthesized in terms of Fourier components of curvature.

A B-spline curve is generated by combining a series of
blending functions Bj,r  weighted by a set of control points pj  [
Mortenson, 1985 ]. Particularly, cubic B-splines may be
expressed in piecewise fashion as:
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where p t x t y tj j j( ) ( ( ), ( ))= , 0 1≤ <t ,

i n= −1 2 2, , ,� . From this B-spline representation it is
possible to obtain the analytical derivatives of the curve, i.e.:
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The next important step in devising a fair and meaningful
comparative framework regards the means through which the
adopted curves are spatially sampled onto the orthogonal
lattice.  Such a choice should reflect the inherent features of
each specific situation  for instance, a CCD camera can be
roughly modeled by using the square-box quantization scheme,
which is the scheme adopted in the present article.   Such a
spatial quantization, however, implies lost of information
through a degenerated mapping.  Indeed, there is an infinity of
possible continuous curves having the same discretizations,
hence the necessity of Gaussian smoothing as a regularizing
constraint.  Indeed, such low-pass act in such a way as to limit
the infinite bandwidth implied by the point singularities
introduced in the square-box quantization.  Although providing
a model of contours typically found in images, the use of
spatial quantization also implies the problem of how to
compare the estimated curvature with the analytic exact

curvature of the pre-image (i.e. the original curve before
quantization).  The chosen criterion is to compare the curvature
at each lattice point with the closest analytic curvature obtained
by a fine but discrete quantization in the original parameter.

The next important consideration relates to how the scale
parameters in both curvature estimation methods should be
taken into account.  While ideally it would be expected that
each method produced accurate curvature estimations
irrespectively to the parameter values, this is by no means
feasible in practice.  Indeed, the parameters in each method
arise from the need to implement regularization of the spatially
sampled curves, and are thus unavoidable.  If on one hand large
values of σ will produce more smoothed representations by
filtering out the quantization noise, too high values for this
parameter will also remove inherent information from the
original curves.  It is thus clear that the best estimations should
be obtained within an interval of spatial scale where the
respective smoothing is just enough to filter out the noise and
not yet too strong as to undermine the curve representation.
For such reasons, we aimed at investigating how the curvature
estimation error varies with the scale parameter σ.

5 RESULTS
The evaluation framework was developed in MATLAB and
Borland Delphi, and included database and visualization
facilities.  The software was executed on a Pentium 233.  The
curvature of each considered curve was estimated for σ varying
from 0 to 100, and comprehensive data statistics were obtained
including: (a) execution times; (b) evolution of square error εσ
between analytic and estimated curvature values; and (c)
histograms of curvature estimation error in terms of the scale
parameter and curvature intervals.  Average execution times of
2s and 120s were obtained for the 1-D and 2-D approaches,
respectively. Regarding the curvature estimation error (square



SBA Controle & Automação Vol. 00 no. 00 / Jan., Fev., Mar, Abril de 0000     5

distances between analytical and estimated values), it was
observed that large errors are found for very small σ, and that
such errors tend to reach their minimum values around σ  =
2.5.  As the scale parameter increases, the error start to grow,
reaching a stable value for σ larger than 200.  While this
behavior was observed for virtually every considered curve, the
fined details of the error evolution do vary from case to case,
depending of the specific curves. Figure 2 shows the error
evolution for the curves in Figure 1(a) and (b).

Another interesting phenomenon was the fact that the 2-D
estimation sometimes produced some instabilities, such as in
Figure 2(a), characterized by sudden increase of the error
value.
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Figure 2 - The square error between the analytic and estimated
curvatures in terms of the scale parameter σ.

6 DISCUSSION
In addition to corroborating the validity of Fourier-based
approaches to multi-resolution curvature estimation of closed
parametric contours, the obtained results have also indicated

some interesting phenomena and tendencies.  To start with,
every considered situation was characterized by presenting
minimum error at about σ  = 2.5.  The reason for this is that for
a smaller smoothing degree, the noise implied by the spatial
quantization of the original curves still prevails; for larger
values of the scale parameter, the smoothing is too high and the
curve becomes too much distorted.  Fortunately, small
curvature estimation errors are obtained for a reasonably large
interval around σ  = 2.5.

The interference effect in the 2-D approach has been interpred
as being understood as being caused by two portions of the
curve with distinct curvature values that are close in the 2-D
space but distant in the 1-D parameter domain, such as the
bottleneck in Figure 1(a).   Since the derivatives in Equation
(6) are implemented in the 2-D space, such interferences tend
to mix the curvatures at both portions of the contour. The error
peak has been verified to occur at a spatial scale proportional to
the minimal 2-D distance between portions of the same curve.
Such an effect indicates a definite advantage of the 1-D
scheme, since such interferences are completely avoided.
Allied with the much faster execution speed, such behavior
provides a clear indication of the superiority of the 1-D
method.  However, it should be observed that the 2-D method
is not much worse and represents a valid alternative in
situations where the curvature in every point of the 2-D domain
have to be estimated.

7 CONCLUSIONS AND FUTURE
DEVELOPMENTS

This article has addressed the important problem of accurate
numerical estimation of point curvature in closed parametrized
curves.  While the application potential of such techniques is
considerable for vision research, image processing and
analysis, shape analysis and computer graphics, relatively little
attention has been focused on the issue of comparing and
validating such numerical approaches.  The present article has
not only introduced a new approach to curvature estimation,
namely the 2-D Fourier-based methodology, as well as the
exclusion of perimeter/energy normalization, but also
presented a careful and reasonably comprehensive comparison
of the 1-D and 2-D Fourier-based approaches. An interesting
phenomenon that has been verified consists in the fact that the
2-D approach tend to suffer when the curve is characterized by
regions that are close in the 2-D space but distant along the 1-D
parameter.  Although the obtained results clearly indicate
definite advantages in using the 1-D as far as execution time
and accuracy is concerned, the 2-D approach is still relevant
for problems involving the estimation of curvature in 2-D
embeddings of  parametric spatial curves. One such problem,
namely the use of level-set methods to calculate propagating
fronts [Sethian, 1996], is currently under investigation in the
Cybernetic Vision Research Group, including the possibility of
using the 1-D and 2-D curvature estimation techniques
addressed in the current article as means for improving the
accuracy of the curvature values required by  the level-set
approaches.
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